POLYNOMIAL HOMOGENEOUS MAPS AND THEIR PERIODS

JAUME LLIBRE ${ }^{1}$ AND VIOLETTA PILYUGINA ${ }^{1}$

Abstract

We study the set of periods of the homogeneous polynomial maps $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ of degree $m>1$. For these complex maps we also describe the number of invariant straight lines through the origin by f^{k} for $k=1,2, \ldots$, and the dynamics of f^{k} over them.

1. Introduction and statement of the main results

We consider discrete dynamical systems given by a real or complex homogeneous polynomial map defined in \mathbb{R}^{n} or \mathbb{C}^{n}, respectively. For the discrete dynamical systems the periodic orbits play an important role for understanding their dynamics. Perhaps the best known example in this direction are the results contained in the paper entitle Period three implies chaos for continuous self-maps on the interval, see [19] or the book [2].

The real homogeneous polynomial maps $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ have been studied by many authors, see for instance the survey of Aliashvili [1] and the references quoted therein. But not too much attention has been put in the study of their periodic orbits with the exception of their fixed points, see for instance $[8,17,25]$.

Let $\mathbb{C P}^{n}$ be the complex projective space of dimension n. The complex homogeneous polynomial maps $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ also has been considered in [1] and in the references quoted there, but again not too much attention was put into their periodic orbits. On the other hand for the complex homogeneous polynomial maps $f: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ their set of periods have been studied, see Fornaes and Sibony [11], or [10]. On the other hand, these maps also have been studied from the point of view of their degree, see [15].

The study of the set of periods of the real homogeneous polynomial maps $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is our objective for such maps, while for complex

[^0]homogeneous polynomial maps $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ our main goal is to the study their invariant straight lines through the origin of coordinates by f^{k} for $k=1,2, \ldots$ and the dynamics of the map f^{k} restricted to these straight lines.

Let \mathbb{F} be the set of all real \mathbb{R} or complex \mathbb{C} numbers, and let $\mathbb{F}\left[x_{1}, \ldots\right.$, x_{n}] be the ring of all polynomials in the n variables x_{1}, \ldots, x_{n} with coefficients in \mathbb{F}. A polynomial $P\left(x_{1}, \ldots, x_{n}\right)$ of degree m is homogeneous if

$$
P\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)=\lambda^{m}\left(x_{1}, \ldots, x_{n}\right) \text { for all } \lambda \in \mathbb{F} \backslash\{0\} .
$$

A homogeneous polynomial map $f: \mathbb{F}^{n} \rightarrow \mathbb{F}^{n}$ of degree m is a map $f=\left(f_{1}, \ldots, f_{n}\right)$ where $f_{i} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a homogeneous polynomial of degree m for all $i=1, \ldots, n$.

Here f^{k} denotes the composition of the map f with itself k times. A point $\mathbf{x} \in \mathbb{F}^{n}$ is fixed by the map f if $f(\mathbf{x})=\mathbf{x}$. Let $k>1$ be a positive integer. A point $\mathbf{x} \in \mathbb{F}^{n}$ is k-periodic or periodic of period k by the $\operatorname{map} f$ if $f^{k}(\mathbf{x})=\mathbf{x}$ and $f^{j}(\mathbf{x}) \neq \mathbf{x}$ for $j=1, \ldots, k-1$. The set

$$
\left\{\mathbf{x}, f(\mathbf{x}), f^{2}(\mathbf{x}), \ldots, f^{k-1}(\mathbf{x})\right\}
$$

is the periodic orbit of \mathbf{x}.
We say that the fixed points of f have period 1 . We shall denote by $\operatorname{Per}(f)$ the set of periods of all periodic points of the map f. Clearly $\operatorname{Per}(f)$ is a subset of the set \mathbb{N} of all positive integers.

The sets $\operatorname{Per}(f)$ when f is a homogeneous polynomial map of degree m change completely if the homogeneous polynomial map is real or complex. If the degree $m=1$, then the map is linear and its dynamics it is easy to study. Here we only consider homogeneous polynomial maps of degree $m>1$.

In order to state our result for the complex homogeneous polynomial maps of degree $m>1$ we need some preliminary notions.

Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a homogeneous polynomial map of degree m. For each $\mathbf{x} \in \mathbb{C}^{n} \backslash\{0\}$ we define the straight line $\mathcal{L}_{\mathbf{x}}$ through the origin of \mathbb{C}^{n} as

$$
\mathcal{L}_{\mathbf{x}}=\{\mu \mathbf{x}: \text { for all } \mu \in \mathbb{C}\}
$$

and we say that \mathbf{x} is a director vector of $\mathcal{L}_{\mathbf{x}}$. A straight line through the origin of \mathbb{C}^{n} with director vector \mathbf{x} is invariant by f if $f(\mathbf{x})=\lambda \mathbf{x}$ for some $\lambda \in \mathbb{C} \backslash\{0\}$. Then $f\left(\mathcal{L}_{\mathbf{x}}\right)=\mathcal{L}_{\mathbf{x}}$.

It is clear that every k-periodic point \mathbf{x} of f is on the invariant straight line $\mathcal{L}_{\mathbf{x}}$ of f^{k}, i.e. $f^{k}\left(\mathcal{L}_{\mathbf{x}}\right)=\mathcal{L}_{\mathbf{x}}$. Moreover, the set of straight lines

$$
\left\{\mathcal{L}_{\mathbf{x}}, \mathcal{L}_{f(\mathbf{x})}, \mathcal{L}_{f^{2}(\mathbf{x})}, \ldots, \mathcal{L}_{f^{k-1}(\mathbf{x})}\right\}
$$

is a k-periodic orbit of f in the set of all invariant straight lines through the origin, i.e. $f^{k}\left(\mathcal{L}_{\mathbf{x}}\right)=\mathcal{L}_{\mathrm{x}}$ and $f^{\ell}\left(\mathcal{L}_{\mathbf{x}}\right) \neq \mathcal{L}_{\mathrm{x}}$ for $\ell=1, \ldots, k-1$.

The Möbius function $\mu: \mathbb{N} \rightarrow \mathbb{N}$ is defined as

$$
\mu(r)=\left\{\begin{aligned}
1 & \text { if } r=1 \\
0 & \text { if some } k^{2} \mid r \text { for some } k \in \mathbb{N} \\
(-1)^{s} & \text { if } r=p_{1} \cdots p_{s} \text { (distinct primes) }
\end{aligned}\right.
$$

Theorem 1. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a homogeneous polynomial map of degree $m>1$ such that $f(\mathbf{x}) \neq 0$ if $\mathbf{x} \neq 0$. Let k be a positive integer.
(a) The number of invariant straight lines through the origin for the map f^{k} is $\left(m^{k n}-1\right) /\left(m^{k}-1\right)$ taking into account their multiplicities.
(b) The number of ℓ-periodic invariant straight lines through the origin for the map f^{k} is

$$
\sum_{r \mid \ell} \mu(r) \frac{m^{k \ell n / r}-1}{m^{k \ell / r}-1}
$$

where $\mu: \mathbb{N} \rightarrow \mathbb{N}$ is the Möbius function, and if all the multiplicities of the invariant straight lines of statement (a) are simple.
(c) If $\mathcal{L}_{\mathbf{x}}$ is an invariant straight line of f^{k}, then $\operatorname{Per}\left(\left.f^{k}\right|_{\mathcal{L}_{\mathbf{x}}}\right)=\mathbb{N}$.
(d) All the periodic points of the map $\left.f^{k}\right|_{\mathcal{L}_{\mathrm{x}}}$ with the exception of the origin are on a circle centered at the origin of coordinates, and these periodic points are repelling. In fact, this circle is the Julia set of the map $\left.f^{k}\right|_{\mathcal{L}_{\mathrm{x}}}: \mathbb{C} \rightarrow \mathbb{C}$, where we have identified \mathcal{L}_{x} with \mathbb{C}.
(e) The number of ℓ-periodic points of the map $\left.f^{k}\right|_{\mathcal{L}_{\mathbf{x}}}$ is

$$
\sum_{r \mid \ell} \mu(r) m^{k \ell / r}
$$

where $\mu: \mathbb{N} \rightarrow \mathbb{N}$ is the Möbius function.
The multiplicities mentioned in Theorem 1 are in the sense of the multiplicities of the Bezout Theorem, see for more details [7, 12, 24]. For a definition of the Julia set see for instance [9].

Theorem 1 is proved in section 2.
By Theorem 1 every homogeneous polynomial map $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ of degree $m>1$ has k-periodic points for all positive integer k. So from the point of view of the periodicity these maps are not very interesting.

The situation is completely different from homogeneous polynomial map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

The homogeneous polynomial maps $f: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ of degree d have been studied by Fornaes and Sibony [11]. Their results are related with the ones presented in statement (a) Theorem 1 for the homogeneous polynomial maps $f: \mathbb{C}^{n+1} \rightarrow \mathbb{C}^{n+1}$ of degree m, because the periodic points of the homogeneous polynomial maps of $\mathbb{C P}^{n}$ are the periodic straight lines through the origin of \mathbb{C}^{n+1}, see for more details Corollary 3.2 of [11], see also [21] and [23].

We denote the Euclidean norm of $\mathbf{x} \in \mathbb{R}^{n}$ by $\|\mathbf{x}\|$. Let \mathbb{S}^{n-1} be the unit sphere of \mathbb{R}^{n}, i.e. $\mathbb{S}^{n-1}=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|=1\right\}$.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a homogeneous polynomial map of degree m such that $f(\mathbf{x}) \neq 0$ if $\mathbf{x} \neq 0$. Then, the map

$$
F=F_{f}: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1} \text { is defined by } F(\mathbf{x})=\frac{f(\mathbf{x})}{\|f(\mathbf{x})\|}
$$

Let \mathbb{Z} be the set of all integer numbers. The number of elements of the set

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}: 0 \leq x_{i}<m, \sum_{i=1}^{n} x_{i}=\frac{1}{2}(m-1) n\right\}
$$

is denoted by $\pi_{n}(m)$. This number was introduced by Arnold [3], see also Khovanskii [16], and for low values of n is

$$
\begin{aligned}
& \pi_{2}(m)=m, \\
& \pi_{3}(m)= \begin{cases}\left(1+3 m^{2}\right) / 4 & \text { if } m \text { is odd, } \\
0 & \text { if } m \text { is even, },\end{cases} \\
& \pi_{4}(m)=\left(m+2 m^{3}\right) / 3, \\
& \pi_{5}(m)= \begin{cases}\left(27+50 m^{2}+115 m^{4}\right) / 192 & \text { if } m \text { is odd, } \\
0 & \text { if } m \text { is even, },\end{cases} \\
& \pi_{6}(m)=\left(4 m+5 m^{3}+11 m^{5}\right) / 20, \\
& \pi_{7}(m)= \begin{cases}\left(1125+1813 m^{2}+2695 m^{4}+5887 m^{6}\right) / 11520 & \text { if } m \text { is odd }, \\
0 & \text { if } m \text { is even, }\end{cases} \\
& \pi_{8}(m)=\left(45 m+49 m^{3}+70 m^{5}+151 m^{7}\right) / 315,
\end{aligned}
$$

see for more detalls about the number $\pi_{n}(m)$ the appendix of the paper of Cima, Gasull and Torregrosa [6].

For real homogeneous polynomial maps of degree $m>1$ we have the following result.

Theorem 2. The following statements hold.
(a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a homogeneous polynomial map of degree m such that $f(\mathbf{x}) \neq 0$ if $\mathbf{x} \neq 0$.
(a.1) Then $\operatorname{Per}(f)=\operatorname{Per}(F) \cup\{1\}$, and
(a.2) the topological degree of F is an integer d congruent with m mod. 2 satisfying $|d| \leq \pi_{n}(m)$.
(b) Let d be an integer congruent with m mod. 2 satisfying $|d| \leq$ $\pi_{n}(m)$. Then there exists a homogeneous polynomial map of degree m such that $f(\mathbf{x}) \neq 0$ if $\mathbf{x} \neq 0$, for which the topological degree of F_{f} is d.

In fact statements (a.2) and (b) of Theorem 2 follow directly from [3] and [16] respectively. See for more details Corollary 1 of [16] and its proof. Here we only will prove statement (a) of Theorem 2 in section 3.

The set of periods of the homogeneous polynomial maps $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is characterized in the next theorem, but first we need some definitions.

We recall the Sharkovskii ordering on the set \mathbb{N} this total ordering from the largest one to the smallest one is

$$
\begin{aligned}
& 3,5,7, \ldots, 2 \cdot 3,2 \cdot 5,2 \cdot 7, \ldots, 2^{2} \cdot 3,2^{2} \cdot 5,2^{2} \cdot 7, \ldots, 2^{\ell} \cdot 3,2^{\ell} \cdot 5,2^{\ell} \cdot 7, \\
& \ldots, 2^{3}, 2^{2}, 2,1
\end{aligned}
$$

For $k \in \mathbb{N}$ the set $S(k)$ is formed by k and all the elements of \mathbb{N} which follow k in the Sharkovskii ordering. Thus, for instance $S(3)=\mathbb{N}$. We also define the set $S\left(2^{\infty}\right)=\{1,2,4,8, \ldots\}$.

Let $a, b \in \mathbb{R}$. For $a \leq b$ we define the set

$$
M(a, b)=\{k \in \mathbb{N}: a<\ell / k<b\}
$$

i.e. $M(a, b)$ is formed by the positive denominators of all rational numbers which are in the interior of the interval $[a, b]$. We note that we do not assume that ℓ and k are coprime. Of course, $M(a, b)=\emptyset$ if $a=b$.

Every continuous map $F: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ of degree 1 has associated a closed rotation interval $[a, b]$, eventually a and b can be equal, see [2] for a precise definition of the rotation interval.

If $a=\ell / k$ is rational with ℓ and k coprime, then we define the set $S(a, r)=k S(r)$ for some $r \in \mathbb{N} \cup\left\{2^{\infty}\right\}$, here $k S(r)$ is the set formed by all the elements of the set $S(r)$ multiplied by k. If a is irrational, then we define the set $S(a, r)=\emptyset$.

Theorem 3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a homogeneous polynomial map of degree $m>1$ such that $f(\mathbf{x}) \neq 0$ if $\mathbf{x} \neq 0$, and let $d \in[-m, m]$ the topological degree of $F=F_{f}$. If $d=1$ we denote by $[a, b]$ the rotation interval of f. Then $\operatorname{Per}(f)=\operatorname{Per}(F) \cup\{1\}$ and $\operatorname{Per}(F)$ is equal to
\mathbb{N} if $d \neq-2,-1,0,1$;
$\mathbb{N} \backslash\{2\}$ or \mathbb{N} if $d=-2$;
$S(k)$ for some $k \in \mathbb{N} \cup\left\{2^{\infty}\right\}$ if $d=-1,0$;
$S(a, r) \cup M(a, b) \cup S(b, s)$ for some $r, s \in \mathbb{N} \cup\left\{2^{\infty}\right\}$ if $d=1$.
Theorem 3 is proved in section 4.
From Theorem 3 it follows that $\operatorname{Per}(F) \neq \emptyset$ except if $d=1$ and $a=b \notin \mathbb{Q}$.

In general we can say almost nothing about the set of periods of the homogeneous polynomial maps $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ when $n>2$, except if these maps are transversal then we can say many things.

Clearly the map $F=F_{f}$, associated to a homogeneous polynomial map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $f(\mathbf{x}) \neq 0$ if $\mathbf{x} \neq 0$, is of class \mathcal{C}^{1}.

A $\mathcal{C}^{1} \operatorname{map} F: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1}$ is called transversal if for all $k \in \mathbb{N}$ the graph of F^{k} intersects transversally the diagonal of $\mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$ at each point (x, x) such that x is a fixed point of f^{k}; in other words, if the Jacobian matrix $D F^{k}(x)$ has not the eigenvalue 1 for all fixed point x of f^{k}.
Theorem 4. For $n>2$ let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a homogeneous polynomial map of degree $m>1$ such that $f(\mathbf{x}) \neq 0$ if $\mathbf{x} \neq 0$, and let $d \in\left[-\pi_{n}(m), \pi_{n}(m)\right]$ the topological degree of $F=F_{f}$. Assume that F is transversal. Then $\operatorname{Per}(f)=\operatorname{Per}(F) \cup\{1\}$ and
$1 \in \operatorname{Per}(F)$ if $d=0 ;$
$\operatorname{Per}(F)$ can be empty if n is odd and $d=1$;
$1 \in \operatorname{Per}(F)$ if n is even and $d=1$;
$1 \in \operatorname{Per}(F)$ if n is odd and $d=-1$;
$\{1,2\} \cap \operatorname{Per}(f) \neq \emptyset$ if n is even and $d=-1$;
$\operatorname{Per}(F) \supset\{1,3,5,7, \ldots\}$, and for every k even if $k \notin \operatorname{Per}(F)$, then $\operatorname{Per}(F) \supset\{k / 2,2 k\}$ if $d \notin\{-1,0,1\}$.
Theorem 4 is proved in section 5 .
Here we have considered homogeneous polynomial maps, but if we consider polynomial maps many other questions on these maps can be studied, see for instance [13, 14, 18, 26].

2. Proof of Theorem 1

The set of invariant straight lines through the origin of a homogeneous polynomial map $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ of degree m has been studied by the authors in [21] and by Feng Rong [23], see also [11]. The following result was proved by the authors under generic assumptions (see Theorem 1 of [21]), and in general in Theorem 1 of [23]. It also follows from Corollary 3.2 of [11].

Theorem 5. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a homogeneous polynomial map of degree m. Assume that f has finitely many straight lines \mathcal{L}_{x} such that $f\left(\mathcal{L}_{\mathbf{x}}\right) \subset \mathcal{L}_{\mathbf{x}}$. Then f has $1+m+m^{2}+\cdots+m^{n-1}=\left(m^{n}-1\right) /(m-$ 1) of these straight lines through the origin taking into account their multiplicities.

From Theorem 5 it follows immediately the next result.
Corollary 6. Let $f: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a homogeneous polynomial map of degree m such that $f(\mathbf{x}) \neq 0$ if $\mathbf{x} \neq 0$. Assume that f has finitely many invariant straight lines $\mathcal{L}_{\mathbf{x}}$ such that $f\left(\mathcal{L}_{\mathbf{x}}\right)=\mathcal{L}_{\mathbf{x}}$. Then f has $\left(m^{n}-1\right) /(m-1)$ invariant straight lines through the origin taking into account their multiplicities.

In 1964 Baker [4] completely described the periodic set of any polynomial map $P: \mathbb{C} \rightarrow \mathbb{C}$. More precisely he proved:

Theorem 7. Let P be a polynomial of degree at least two and suppose that $P: \mathbb{C} \rightarrow \mathbb{C}$ has no periodic points of period k. Then $k=2$, and P is conjugate to the polynomial $z^{2}-z$.

The proof of this theorem can also be found in [5] and [10]. In this last paper Theorem 7 is proved using Lefschetz numbers.

Proof of Theorem 1. Statement (a) follows immediately from Corollary 6.

For a map h having finitely many periodic points of every period we define $\mathcal{F}(k)$ as the number of fixed points of h^{ℓ}, and $\mathcal{P}(\ell)$ as the number of periodic points of period ℓ of h. Then it is known that

$$
\begin{equation*}
\mathcal{P}(\ell)=\sum_{r \mid \ell} \mu(r) \mathcal{F}(\ell / r) \tag{1}
\end{equation*}
$$

see for more details [22]. Then for the map f acting on the straight lines through the origin, we have that $\mathcal{F}(\ell)=\left(m^{\ell n}-1\right) /\left(m^{\ell}-1\right)$. In short, from (1) it follows immediately the statement (b) of Theorem 1.

We shall prove the rest of the statements of Theorem 1 for $k=1$, the proof for $k>1$ is completely similar recalling that the degree of f^{k} for $k>1$ is m^{k}.

If f has infinitely many invariant straight lines, let $\mathcal{L}_{\mathbf{x}}$ be one of them. Otherwise, since $f(\mathbf{x}) \neq 0$ if $\mathbf{x} \neq 0$, by Corollary $6 f$ has invariant straight lines. Let $\mathcal{L}_{\mathbf{x}}$ be one invariant straight line of f.

Changing the coordinates from $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$ to $\mathbf{y}=$ $\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$ doing a rotation through the origin of coordinates which pass the invariant straight line $\mathcal{L}_{\mathbf{x}}$ to the y_{1}-axis of \mathbb{C}^{n}, the homogeneous polynomial map f of degree m becomes a homogeneous polynomial map g of degree m having the y_{1}-axis invariant. So $g\left(y_{1}, 0, \ldots, 0\right)=$ $\left(a y_{1}^{m}, 0, \ldots, 0\right)$ with $a \in \mathbb{C} \backslash\{0\}$. In other words, the map $\left.f\right|_{\mathcal{L}_{\mathbf{x}}}$ can be identified with the polynomial map $P: \mathbb{C} \rightarrow \mathbb{C}$ defined by $P(z)=a z^{m}$. So all the fixed points of P are the origin and all the roots of the equation $z^{m-1}=(1 / a)^{1 /(m-1)}$.

By Theorem 7 and since $m>1$ and the polynomial map $P(z)=a z^{m}$ is not conjugated to the map $z \mapsto z^{2}-z$, it follows that $\operatorname{Per}(P)=\mathbb{N}$, consequently $\operatorname{Per}\left(\left.f\right|_{\mathcal{L}_{\mathrm{x}}}\right)=\mathbb{N}$, and statement (c) of Theorem 1 is proved.

Since $\left.f^{\ell}\right|_{\mathcal{L}_{\mathrm{x}}}$ can be identified with the polynomial map $P^{\ell}: \mathbb{C} \rightarrow \mathbb{C}$ of the form $P^{\ell}(z)=a^{\left(m^{\ell}-1\right) /(m-1)} z^{m^{\ell}}$, all the periodic points of period ℓ or of period a divisor of ℓ of P are solutions of the equation $a^{\left(m^{\ell}-1\right) /(m-1)} z^{m^{\ell}}=z$. Then, for the map P the origin $z=0$ is a fixed point, and the other periodic points with period a divisor of ℓ are the roots of the equation

$$
z^{m^{\ell}-1}=\frac{1}{a^{\frac{m^{\ell}-1}{m-1}}} .
$$

Therefore, all the periodic points of $\left.f^{\ell}\right|_{\mathcal{L}_{\mathrm{x}}}$ are on the circle centered at the origin of radius $(1 / a)^{1 /(m-1)}$ contained in $\mathcal{L}_{\mathbf{x}}$, the unique exception is the fixed point localized at the origin.

Assume that $f\left(\mathcal{L}_{\mathbf{x}}\right)=\mathcal{L}_{\mathbf{x}}$. Therefore, if $\mathbf{y} \in \mathcal{L}_{\mathbf{x}} \backslash\{0\}$, we have that $f(\mathbf{y})=\lambda(\mathbf{y}) \mathbf{y}$ with $\lambda(\mathbf{y}) \neq 0$, and consequently

$$
f^{k}(\mathbf{y})=\lambda(\mathbf{y})^{1+m+m^{2}+\cdots+m^{k-1}} \mathbf{y}
$$

Therefore the fixed point 0 at the origin of the invariant straight line $\mathcal{L}_{\mathbf{x}}=\mathbb{C}$ is stable for the map $\left.f\right|_{\mathcal{L}_{\mathrm{x}}}$, its bassin of attraction is the set of points $\mathbf{y} \in \mathcal{L}_{\mathbf{x}}$ such that $|\lambda(\mathbf{y})|<1$. Note that for the points \mathbf{y} in the circle of radius $(1 / a)^{1 /(m-1)}$ centered at the origin we have that their $|\lambda(\mathbf{y})|=1$ because the set of all periodic points of $\left.f\right|_{\mathcal{L}_{\mathbf{x}}}$ is dense in this circle. Therefore, all the points of $\mathcal{L}_{\mathbf{x}}$ in the interior of the region limited by the circle containing the periodic points of $\left.f\right|_{\mathcal{L}_{x}}$ tend to the
origin under the iteration by $\left.f\right|_{\mathcal{L}_{x}}$, and the points outside the region limited by this circle tend to infinity because for them $|\lambda(\mathbf{y})|>1$. Hence all periodic points of the circle are repelling, and since they are dense in the circle, its closure (the Julia set) is the circle. In short, statement (d) is proved.

Applying the formula (1) to the map $\left.f\right|_{\mathcal{L}_{\mathrm{x}}}$ we have that $\mathcal{F}(\ell)=m^{\ell}$. Therefore it follows immediately the statement (e) of Theorem 1.

Remark 8. If $f(\mathbf{x})=\lambda(\mathbf{x}) \mathbf{x}$ for some $\lambda(\mathbf{x}) \in \mathbb{C} \backslash\{0\}$, then for every $\mathbf{y} \in \mathbb{C}$ we have that $f(\mathbf{y})=\lambda(\mathbf{y}) \mathbf{y}$, where $\lambda(\mathbf{y})=c^{m-1} \lambda(\mathbf{x})$ with $c=$ y / x.

3. Proof of Theorem 2

We denote by \mathbb{R}^{+}the set of all positive real numbers. For each $\mathbf{x} \in \mathbb{R}^{n} \backslash\{0\}$ we define the ray $L_{\mathbf{x}}$ as

$$
L_{\mathbf{x}}=\left\{\lambda \mathbf{x}: \text { for all } \lambda \in \mathbb{R}^{+}\right\}
$$

Therefore, clearly $f\left(L_{\mathbf{x}}\right)=L_{f(\mathbf{x})}$.
Lemma 9. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a homogeneous polynomial map of degree $m>1$. If $L_{\mathbf{x}}=L_{f(\mathbf{x})}$, then there is a unique fixed point in the ray $L_{\mathbf{x}}$.

Proof. Since the ray $L_{\mathbf{x}}$ is invariant by the map f, working as in the proof of Theorem 1 we can identify the map $\left.f\right|_{L_{\mathbf{x}}}$ to the polynomial map $P: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$defined by $P(z)=a z^{m}$ but now with $a>0$.

Since the equation $a z^{m}=z$ has a unique real solution, namely $z=$ $(1 / a)^{1 /(m-1)}$, it follows that the map $\left.f\right|_{L_{\mathbf{x}}}$ has a unique fixed point. Hence, the lemma is proved.

Under the assumptions of Lemma 9 it is easy to check that the fixed point y on the ray $L_{\mathbf{x}}=\mathbb{R}^{+}=(0,+\infty)$ is unstable. More precisely, the points smaller than y tends to the origin, and the points larger than y tends to $+\infty$.

Proof of statement (a) of Theorem 2. We claim that if $\mathbf{x} \in \mathbb{R}^{n} \backslash\{0\}$ is a k-periodic point of f, then $\mathbf{x} /\|\mathbf{x}\| \in \mathbb{S}^{n-1}$ is a k-periodic point of F. Now we shall prove the claim.

First we shall see by induction that

$$
\begin{equation*}
F^{j}\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}\right)=\frac{f^{j}(\mathbf{x})}{\left\|f^{j}(\mathbf{x})\right\|} \text { for all } j=1,2, \ldots \text { and } \mathbf{x} \neq 0 \tag{2}
\end{equation*}
$$

For $j=1$ the equality (2) follows from

$$
F\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}\right)=\frac{f\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}\right)}{\left\|f\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}\right)\right\|}=\frac{\frac{1}{\|\mathbf{x}\|^{m}} f(\mathbf{x})}{\left\|\frac{1}{\|\mathbf{x}\|^{m}} f(\mathbf{x})\right\|}=\frac{f(\mathbf{x})}{\|f(\mathbf{x})\|}
$$

Assume that (2) holds for $1,2, \ldots, j$, and we shall prove it for $j+1$. Indeed, we have

$$
\begin{aligned}
F^{j+1}\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}\right) & =F\left(\frac{f^{j}(\mathbf{x})}{\left\|f^{j}(\mathbf{x})\right\|}\right)=\frac{f\left(\frac{f^{j}(\mathbf{x})}{\left\|f^{j}(\mathbf{x})\right\|}\right)}{\left\|f\left(\frac{f^{j}(\mathbf{x})}{\left\|f^{j}(\mathbf{x})\right\|}\right)\right\|} \\
& =\frac{\frac{1}{\left\|f^{j}(\mathbf{x})\right\|^{m}} f^{j+1}(\mathbf{x})}{\left\|f^{j}(\mathbf{x})\right\|^{m}}\left\|f^{j+1}(\mathbf{x})\right\|
\end{aligned} \frac{f^{j+1}(\mathbf{x})}{\left\|f^{j+1}(\mathbf{x})\right\|} .
$$

Hence (2) is proved.
Now we prove the claim. Let $\mathbf{x} \in \mathbb{R}^{n} \backslash\{0\}$ be a k-periodic point of f. First, from (2) we have that

$$
F^{k}\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}\right)=\frac{f^{k}(\mathbf{x})}{\left\|f^{k}(\mathbf{x})\right\|}=\frac{\mathbf{x}}{\|\mathbf{x}\|}
$$

Therefore $\mathbf{x} /\|\mathbf{x}\|$ is fixed by F^{k}. It remains to show that

$$
F^{j}\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}\right) \neq \frac{\mathbf{x}}{\|\mathbf{x}\|} \text { for all } j=1, \ldots, k-1
$$

Assume that

$$
F^{j}\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}\right)=\frac{\mathbf{x}}{\|\mathbf{x}\|} \text { for some } j \in\{1, \ldots, k-1\}
$$

Then $f^{j}(\mathbf{x})$ and \mathbf{x} are in the ray $L_{\mathbf{x}}$, and this ray is invariant by f^{k}, i.e. $L_{\mathbf{x}}=L_{f^{k}(\mathbf{x})}$. Therefore, f^{k} has two fixed points in the ray $L_{\mathbf{x}}$, namely $f^{j}(\mathbf{x})$ and \mathbf{x}, in contradiction with Lemma 9.

In short, we have proved that if $x \in \operatorname{Per}(f)$ then $x \in \operatorname{Per}(F)$. On the other hand, let O be the origin of \mathbb{R}^{n}, since $f(O)=O$ it follows that $1 \in \operatorname{Per}(f)$. Therefore, we have proved that

$$
\operatorname{Per}(f) \subset \operatorname{Per}(F) \cup\{1\}
$$

Now we claim that if $\mathbf{x} \in \mathbb{S}^{n-1}$ is a k-periodic point of F, then there exists $\mathbf{y} \in L_{\mathbf{x}}$ such that \mathbf{y} is a k-periodic point of f. We prove the claim. From (2) we have

$$
\mathbf{x}=F^{k}(\mathbf{x})=\frac{f^{k}(\mathbf{x})}{\left\|f^{k}(\mathbf{x})\right\|}
$$

So $f^{k}(\mathbf{x})=\left\|f^{k}(\mathbf{x})\right\| \mathbf{x}$. Then $L_{\mathbf{x}}=L_{f^{k}(\mathbf{x})}$. Therefore, by Lemma 9 there exists $\mathbf{y} \in L_{\mathbf{x}}$ such that $f^{k}(\mathbf{y})=\mathbf{y}$. From (2) if follows that $L_{f j(\mathbf{x})}=L_{F^{j}(\mathbf{x})}$ for $j=1,2, \ldots$, then since $L_{\mathbf{x}}=L_{\mathbf{y}}$ the rays $L_{f^{j}(\mathbf{y})}=$ $L_{f^{j}(\mathbf{x})}=L_{F^{j}(\mathbf{x})}$ for $j=1,2, \ldots$ Since the rays $L_{F^{j}(\mathbf{x})}$ are different for $j=0,1, \ldots, k-1$, it follows that \mathbf{y} is a k-periodic point of f. Hence the claim is proved. Consequently,

$$
\operatorname{Per}(F) \subset \operatorname{Per}(f)
$$

This completes the proof.

4. Continuous maps of the circle \mathbb{S}^{1}

The following result is proved in [2].
Theorem 10. Let $F: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be a continuous map of degree d. If $d=1$ we denote by $[a, b]$ the rotation interval of F. Then $\operatorname{Per}(F)$ is equal to

$$
\begin{aligned}
& \mathbb{N} \text { if } d \neq-2,-1,0,1 \\
& \mathbb{N} \backslash\{2\} \text { or } \mathbb{N} \text { if } d=-2 ; \\
& S(k) \text { for some } k \in \mathbb{N} \cup\left\{2^{\infty}\right\} \text { if } d=0,1 \text {; } \\
& S(a, r) \cup M(a, b) \cup S(b, s) \text { for some } r, s \in \mathbb{N} \cup\left\{2^{\infty}\right\} \text { if } d=1 \text {. }
\end{aligned}
$$

Theorem 3 follows immediately from Theorem 10.

5. Transversal maps on the sphere \mathbb{S}^{n-1}

For a \mathcal{C}^{1} transversal map $f: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1}$ we define its minimal set of periods in the class of \mathcal{C}^{1} transversal self-maps of \mathbb{S}^{n-1} as the set

$$
\operatorname{MPer}(f):=\bigcap_{g} \operatorname{Per}(g),
$$

where g runs over all \mathcal{C}^{1} transversal self-maps of \mathbb{S}^{n-1} of the same degree than f.

For \mathcal{C}^{1} transversal self-maps of \mathbb{S}^{n-1} we have the following result, see Theorem 3 of [20].

Theorem 11. Let $F: \mathbb{S}^{n-1} \rightarrow \mathbb{S}^{n-1}$ be a transversal map of degree d.
(a) If $d=0$ then $\operatorname{MPer}(F)=\{1\}$.
(b) If $n-1$ is odd and $d=1$, then $\operatorname{MPer}(F)=\emptyset$.
(c) If $n-1$ is even and $d=1$, then $\operatorname{MPer}(F)=\{1\}$.
(d) If $n-1$ is odd and $d=-1$, then $\operatorname{MPer}(F)=\{1\}$.
(e) If $n-1$ is even and $d=-1$, then $\{1,2\} \cap \operatorname{MPer}(F) \neq \emptyset$.
(f) If $d \notin\{-1,0,1\}$, then $\operatorname{MPer}(F) \supset\{1,3,5,7, \ldots\}$, and for k even if $k \notin \operatorname{MPer}(F)$, then $\operatorname{MPer}(F) \supset\{k / 2,2 k\}$.

Now Theorem 4 is an easy corollary of Theorem 11.

Acknowledgements

The first author is partially supported by the Agencia Estatal de Investigación grant PID2019-104658GB-I00, and the H2020 European Research Council grant MSCA-RISE-2017-777911.

References

[1] T. Aliashvili, Geometry and topology of proper polynomial mappings. Algebra and geometry, J. Math. Sci. 60 (2009), 679-692.
[2] L. AlsedÀ, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in dimension one (Second Edition), Advanced Series in Nonlinear Dynamics, vol 5, World Scientific, Singapore 2000.
[3] V.I. Arnold, Index of a singular point of a vector field, the Petrovskii-Oleinik inequalities, and mixed Hodge structures, Funct. Anal. Appl. 12 (1978),1-11.
[4] I.N. Baker, Fixpoints of polynomials and rational functions, J. London Math. Soc. 39 (1964), 615-622.
[5] A. Beardon, Iteration of rational functions, Graduate Texts in Math., Springer-Verlag, 1991.
[6] A. Cima, A. Gasull and J. Torregrosa, On the relation between index and multiplicity, J. London Math. Soc. 57 (1998), 757-768.
[7] D. Cox, J. Little and D. O'Shea, Using Algebraic Geometry, SpringerVerlag, 1998.
[8] J. Cronin, Fixed points and topological degree in nonlinear analysis, Mathematical Surveys, No. 11, American Mathematical Society, Providence, R.I., 1964.
[9] R.L. Devaney, An introduction to chaotic dynamical systems, second edition, Westview, 2003.
[10] N. Fagella and J. Llibre, Periodic points of holomorphic maps via Lefstchetz numbers, Trans. Amer. Math. Soc. 352 (2000), 4711-4730.
[11] J.E. Fornaes and N. Sibony, Complex dynamics in higher dimension I, Astérisque 222 (1994), 201-231.
[12] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley Classics Library Edition, Wiley, New York, 1994.
[13] C. Harris, M. Michalek and E.C. Sertöz, Computing imags of polynomial maps, Adv. in Comput. Math. 45 (2019), 2845-2865.
[14] J. Itikawa and J. Llibre, New classes of polynomial maps satisfying the real Jacobian conjecture in \mathbb{R}^{2}, An. Acad. Bras. Cienc. 91(2) (2019), 6 pp.
[15] M. Jonsson and E. Wulcan, Canonical heights for plane polynomial maps of small topological degree, Math. Res. Lett. 19 (2012), 1207-1217.
[16] A.G. KhovanskiI, Index of a polynomial field, Funct. Anal. Appl. 13 (1979), 38-45
[17] Y. Krasnov, A. Kononovich and G. Osharovich, On a structure of the fixed point set of homogeneous maps, Discrete and Continuous Dynamics Systems, Series S 6 (2013), 1017-1027.
[18] D. Kyed and H.D. Petersen, Polynomial cohomology and polynomial maps on nilpotent groups, Glasgow Math. J. 62 (2020), 706-736.
[19] T.Y. Li and J. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992.
[20] J. Llibre, A note on the set of periods of transversal homological sphere selfmaps, J. Difference Equations and Applications 9 (2003), 417-422.
[21] J. Llibre and V. Pilyugina, Number of invariant straight lines for homogeneous polynomial vector fields of arbitrary degree and dimension, J. Dynam. and Differential Equations 21 (2009), 487-499.
[22] I. Niven and H.S. Zuckerman, An introduction to the theory of numbers, fourth edition, John Wiley \& Sons, New York, 1980.
[23] F. Rong, On the number of characteristic lines for homogeneous vector fields, J. Dynam. Differential Equations 24 (2012), 823-825.
[24] I.R. Shafarevich, Basic Algebraic Geometry, Springer, 1974.
[25] R. Wood, Polynomial maps from spheres to spheres, Invent. Math. 5 (1968), 163-168.
[26] X. Zhang and G. Chen, Polynomial maps with hidden complex dynamics, Disc. Cont. Dyn. Syst. Series B 24 (2019), 2941-2954.
${ }^{1}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

Email address: jllibre@mat.uab.cat
Email address: violetta.piliugina@gmail.com

[^0]: 2000 Mathematics Subject Classification. 37F10, 37C25.
 Key words and phrases. homogeneous polynomial map, period, set of periods, self-maps of a sphere.

