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Abstract. We study the set of periods of the homogeneous poly-
nomial maps f : Rn → Rn and f : Cn → Cn of degree m > 1.
For these complex maps we also describe the number of invariant
straight lines through the origin by fk for k = 1, 2, . . ., and the
dynamics of fk over them.

1. Introduction and statement of the main results

We consider discrete dynamical systems given by a real or complex
homogeneous polynomial map defined in Rn or Cn, respectively. For
the discrete dynamical systems the periodic orbits play an important
role for understanding their dynamics. Perhaps the best known exam-
ple in this direction are the results contained in the paper entitle Period
three implies chaos for continuous self–maps on the interval, see [19] or
the book [2].

The real homogeneous polynomial maps f : Rn → Rn have been
studied by many authors, see for instance the survey of Aliashvili [1]
and the references quoted therein. But not too much attention has
been put in the study of their periodic orbits with the exception of
their fixed points, see for instance [8, 17, 25].

Let CPn be the complex projective space of dimension n. The com-
plex homogeneous polynomial maps f : Cn → Cn also has been consid-
ered in [1] and in the references quoted there, but again not too much
attention was put into their periodic orbits. On the other hand for the
complex homogeneous polynomial maps f : CPn → CPn their set of
periods have been studied, see Fornaes and Sibony [11], or [10]. On the
other hand, these maps also have been studied from the point of view
of their degree, see [15].

The study of the set of periods of the real homogeneous polynomial
maps f : Rn → Rn is our objective for such maps, while for complex
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homogeneous polynomial maps f : Cn → Cn our main goal is to the
study their invariant straight lines through the origin of coordinates by
fk for k = 1, 2, . . . and the dynamics of the map fk restricted to these
straight lines.

Let F be the set of all real R or complex C numbers, and let F[x1, . . .,
xn] be the ring of all polynomials in the n variables x1, . . . , xn with co-
efficients in F. A polynomial P (x1, . . . , xn) of degree m is homogeneous
if

P (λx1, . . . , λxn) = λm(x1, . . . , xn) for all λ ∈ F \ {0}.
A homogeneous polynomial map f : Fn → Fn of degree m is a map

f = (f1, . . . , fn) where fi ∈ F[x1, . . . , xn] is a homogeneous polynomial
of degree m for all i = 1, . . . , n.

Here fk denotes the composition of the map f with itself k times. A
point x ∈ Fn is fixed by the map f if f(x) = x. Let k > 1 be a positive
integer. A point x ∈ Fn is k–periodic or periodic of period k by the
map f if fk(x) = x and f j(x) ̸= x for j = 1, . . . , k − 1. The set

{x, f(x), f 2(x), . . . , fk−1(x)}
is the periodic orbit of x.

We say that the fixed points of f have period 1. We shall denote by
Per(f) the set of periods of all periodic points of the map f . Clearly
Per(f) is a subset of the set N of all positive integers.

The sets Per(f) when f is a homogeneous polynomial map of degree
m change completely if the homogeneous polynomial map is real or
complex. If the degree m = 1, then the map is linear and its dynamics
it is easy to study. Here we only consider homogeneous polynomial
maps of degree m > 1.

In order to state our result for the complex homogeneous polynomial
maps of degree m > 1 we need some preliminary notions.

Let f : Cn → Cn be a homogeneous polynomial map of degree m.
For each x ∈ Cn \ {0} we define the straight line Lx through the origin
of Cn as

Lx = {µx : for all µ ∈ C},
and we say that x is a director vector of Lx. A straight line through
the origin of Cn with director vector x is invariant by f if f(x) = λx
for some λ ∈ C \ {0}. Then f(Lx) = Lx.

It is clear that every k–periodic point x of f is on the invariant
straight line Lx of fk, i.e. fk(Lx) = Lx. Moreover, the set of straight
lines

{Lx,Lf(x),Lf2(x), . . . ,Lfk−1(x)}



PERIODS OF POLYNOMIAL HOMOGENEOUS MAPS 3

is a k–periodic orbit of f in the set of all invariant straight lines through
the origin, i.e. fk(Lx) = Lx and f ℓ(Lx) ̸= Lx for ℓ = 1, . . . , k − 1.

The Möbius function µ : N → N is defined as

µ(r) =


1 if r = 1,

0 if some k2|r for some k ∈ N,
(−1)s if r = p1 · · · ps (distinct primes).

Theorem 1. Let f : Cn → Cn be a homogeneous polynomial map of
degree m > 1 such that f(x) ̸= 0 if x ̸= 0. Let k be a positive integer.

(a) The number of invariant straight lines through the origin for
the map fk is (mkn − 1)/(mk − 1) taking into account their
multiplicities.

(b) The number of ℓ–periodic invariant straight lines through the
origin for the map fk is∑

r|ℓ

µ(r)
mkℓn/r − 1

mkℓ/r − 1
,

where µ : N → N is the Möbius function, and if all the mul-
tiplicities of the invariant straight lines of statement (a) are
simple.

(c) If Lx is an invariant straight line of fk, then Per(fk|Lx) = N.
(d) All the periodic points of the map fk|Lx with the exception of

the origin are on a circle centered at the origin of coordinates,
and these periodic points are repelling. In fact, this circle is the
Julia set of the map fk|Lx : C → C, where we have identified
Lx with C.

(e) The number of ℓ–periodic points of the map fk|Lx is∑
r|ℓ

µ(r)mkℓ/r,

where µ : N → N is the Möbius function.

The multiplicities mentioned in Theorem 1 are in the sense of the
multiplicities of the Bezout Theorem, see for more details [7, 12, 24].
For a definition of the Julia set see for instance [9].

Theorem 1 is proved in section 2.

By Theorem 1 every homogeneous polynomial map f : Cn → Cn of
degree m > 1 has k–periodic points for all positive integer k. So from
the point of view of the periodicity these maps are not very interesting.
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The situation is completely different from homogeneous polynomial
map f : Rn → Rn.

The homogeneous polynomial maps f : CPn → CPn of degree d have
been studied by Fornaes and Sibony [11]. Their results are related with
the ones presented in statement (a) Theorem 1 for the homogeneous
polynomial maps f : Cn+1 → Cn+1 of degree m, because the periodic
points of the homogeneous polynomial maps of CPn are the periodic
straight lines through the origin of Cn+1, see for more details Corollary
3.2 of [11], see also [21] and [23].

We denote the Euclidean norm of x ∈ Rn by ||x||. Let Sn−1 be the
unit sphere of Rn, i.e. Sn−1 = {x ∈ Rn : ||x|| = 1}.

Let f : Rn → Rn be a homogeneous polynomial map of degree m
such that f(x) ̸= 0 if x ̸= 0. Then, the map

F = Ff : Sn−1 → Sn−1 is defined by F (x) =
f(x)

||f(x)||
.

Let Z be the set of all integer numbers. The number of elements of
the set {

(x1, . . . , xn) ∈ Zn : 0 ≤ xi < m,
n∑

i=1

xi =
1

2
(m− 1)n

}
is denoted by πn(m). This number was introduced by Arnold [3], see
also Khovanskii [16], and for low values of n is

π2(m) = m,

π3(m) =

{
(1 + 3m2)/4 if m is odd,

0 if m is even,

π4(m) = (m+ 2m3)/3,

π5(m) =

{
(27 + 50m2 + 115m4)/192 if m is odd,

0 if m is even,

π6(m) = (4m+ 5m3 + 11m5)/20,

π7(m) =

{
(1125 + 1813m2 + 2695m4 + 5887m6)/11520 if m is odd,

0 if m is even,

π8(m) = (45m+ 49m3 + 70m5 + 151m7)/315,

see for more detalls about the number πn(m) the appendix of the paper
of Cima, Gasull and Torregrosa [6].
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For real homogeneous polynomial maps of degree m > 1 we have the
following result.

Theorem 2. The following statements hold.

(a) Let f : Rn → Rn be a homogeneous polynomial map of degree
m such that f(x) ̸= 0 if x ̸= 0.
(a.1) Then Per(f)= Per(F ) ∪ {1}, and
(a.2) the topological degree of F is an integer d congruent with

m mod. 2 satisfying |d| ≤ πn(m).
(b) Let d be an integer congruent with m mod. 2 satisfying |d| ≤

πn(m). Then there exists a homogeneous polynomial map of
degree m such that f(x) ̸= 0 if x ̸= 0, for which the topological
degree of Ff is d.

In fact statements (a.2) and (b) of Theorem 2 follow directly from
[3] and [16] respectively. See for more details Corollary 1 of [16] and its
proof. Here we only will prove statement (a) of Theorem 2 in section
3.

The set of periods of the homogeneous polynomial maps f : R2 → R2

is characterized in the next theorem, but first we need some definitions.

We recall the Sharkovskii ordering on the set N this total ordering
from the largest one to the smallest one is

3, 5, 7, . . . , 2 · 3, 2 · 5, 2 · 7, . . . , 22 · 3, 22 · 5, 22 · 7, . . . , 2ℓ · 3, 2ℓ · 5, 2ℓ · 7,
. . . , 23, 22, 2, 1.

For k ∈ N the set S(k) is formed by k and all the elements of N which
follow k in the Sharkovskii ordering. Thus, for instance S(3) = N. We
also define the set S(2∞) = {1, 2, 4, 8, . . .}.
Let a, b ∈ R. For a ≤ b we define the set

M(a, b) = {k ∈ N : a < ℓ/k < b},

i.e. M(a, b) is formed by the positive denominators of all rational num-
bers which are in the interior of the interval [a, b]. We note that we do
not assume that ℓ and k are coprime. Of course, M(a, b) = ∅ if a = b.

Every continuous map F : S1 → S1 of degree 1 has associated a
closed rotation interval [a, b], eventually a and b can be equal, see [2]
for a precise definition of the rotation interval.

If a = ℓ/k is rational with ℓ and k coprime, then we define the set
S(a, r) = kS(r) for some r ∈ N ∪ {2∞}, here kS(r) is the set formed
by all the elements of the set S(r) multiplied by k. If a is irrational,
then we define the set S(a, r) = ∅.
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Theorem 3. Let f : R2 → R2 be a homogeneous polynomial map of
degree m > 1 such that f(x) ̸= 0 if x ̸= 0, and let d ∈ [−m,m] the
topological degree of F = Ff . If d = 1 we denote by [a, b] the rotation
interval of f . Then Per(f) = Per(F ) ∪ {1} and Per(F ) is equal to

N if d ̸= −2,−1, 0, 1;

N \ {2} or N if d = −2;

S(k) for some k ∈ N ∪ {2∞} if d = −1, 0;

S(a, r) ∪M(a, b) ∪ S(b, s) for some r, s ∈ N ∪ {2∞} if d = 1.

Theorem 3 is proved in section 4.

From Theorem 3 it follows that Per(F ) ̸= ∅ except if d = 1 and
a = b /∈ Q.

In general we can say almost nothing about the set of periods of the
homogeneous polynomial maps f : Rn → Rn when n > 2, except if
these maps are transversal then we can say many things.

Clearly the map F = Ff , associated to a homogeneous polynomial
map f : Rn → Rn with f(x) ̸= 0 if x ̸= 0, is of class C1.

A C1 map F : Sn−1 → Sn−1 is called transversal if for all k ∈ N the
graph of F k intersects transversally the diagonal of Sn−1×Sn−1 at each
point (x, x) such that x is a fixed point of fk; in other words, if the
Jacobian matrix DF k(x) has not the eigenvalue 1 for all fixed point x
of fk.

Theorem 4. For n > 2 let f : Rn → Rn be a homogeneous poly-
nomial map of degree m > 1 such that f(x) ̸= 0 if x ̸= 0, and let
d ∈ [−πn(m), πn(m)] the topological degree of F = Ff . Assume that F
is transversal. Then Per(f) = Per(F ) ∪ {1} and

1 ∈ Per(F ) if d = 0;

Per(F ) can be empty if n is odd and d = 1;

1 ∈ Per(F ) if n is even and d = 1;

1 ∈ Per(F ) if n is odd and d = −1;

{1, 2} ∩ Per(f) ̸= ∅ if n is even and d = −1;

Per(F ) ⊃ {1, 3, 5, 7, . . .}, and for every k even if k ̸∈ Per(F ),
then Per(F ) ⊃ {k/2, 2k} if d ̸∈ {−1, 0, 1}.

Theorem 4 is proved in section 5.

Here we have considered homogeneous polynomial maps, but if we
consider polynomial maps many other questions on these maps can be
studied, see for instance [13, 14, 18, 26].
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2. Proof of Theorem 1

The set of invariant straight lines through the origin of a homoge-
neous polynomial map f : Cn → Cn of degree m has been studied by
the authors in [21] and by Feng Rong [23], see also [11]. The follow-
ing result was proved by the authors under generic assumptions (see
Theorem 1 of [21]), and in general in Theorem 1 of [23]. It also follows
from Corollary 3.2 of [11].

Theorem 5. Let f : Cn → Cn be a homogeneous polynomial map of
degree m. Assume that f has finitely many straight lines Lx such that
f(Lx) ⊂ Lx. Then f has 1 +m +m2 + · · · +mn−1 = (mn − 1)/(m −
1) of these straight lines through the origin taking into account their
multiplicities.

From Theorem 5 it follows immediately the next result.

Corollary 6. Let f : Cn → Cn be a homogeneous polynomial map of
degree m such that f(x) ̸= 0 if x ̸= 0. Assume that f has finitely
many invariant straight lines Lx such that f(Lx) = Lx. Then f has
(mn−1)/(m−1) invariant straight lines through the origin taking into
account their multiplicities.

In 1964 Baker [4] completely described the periodic set of any poly-
nomial map P : C → C. More precisely he proved:

Theorem 7. Let P be a polynomial of degree at least two and suppose
that P : C → C has no periodic points of period k. Then k = 2, and P
is conjugate to the polynomial z2 − z.

The proof of this theorem can also be found in [5] and [10]. In this
last paper Theorem 7 is proved using Lefschetz numbers.

Proof of Theorem 1. Statement (a) follows immediately from Corollary
6.

For a map h having finitely many periodic points of every period
we define F(k) as the number of fixed points of hℓ, and P(ℓ) as the
number of periodic points of period ℓ of h. Then it is known that

(1) P(ℓ) =
∑
r|ℓ

µ(r)F(ℓ/r),

see for more details [22]. Then for the map f acting on the straight
lines through the origin, we have that F(ℓ) = (mℓn − 1)/(mℓ − 1). In
short, from (1) it follows immediately the statement (b) of Theorem 1.
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We shall prove the rest of the statements of Theorem 1 for k = 1,
the proof for k > 1 is completely similar recalling that the degree of fk

for k > 1 is mk.

If f has infinitely many invariant straight lines, let Lx be one of
them. Otherwise, since f(x) ̸= 0 if x ̸= 0, by Corollary 6 f has
invariant straight lines. Let Lx be one invariant straight line of f .

Changing the coordinates from x = (x1, . . . , xn) ∈ Cn to y =
(y1, . . . , yn) ∈ Cn doing a rotation through the origin of coordinates
which pass the invariant straight line Lx to the y1–axis of Cn, the homo-
geneous polynomial map f of degreem becomes a homogeneous polyno-
mial map g of degreem having the y1–axis invariant. So g(y1, 0, . . . , 0) =
(aym1 , 0, . . . , 0) with a ∈ C \ {0}. In other words, the map f |Lx can be
identified with the polynomial map P : C → C defined by P (z) = azm.
So all the fixed points of P are the origin and all the roots of the
equation zm−1 = (1/a)1/(m−1).

By Theorem 7 and since m > 1 and the polynomial map P (z) = azm

is not conjugated to the map z 7→ z2 − z, it follows that Per(P ) = N,
consequently Per(f |Lx) = N, and statement (c) of Theorem 1 is proved.

Since f ℓ|Lx can be identified with the polynomial map P ℓ : C → C
of the form P ℓ(z) = a(m

ℓ−1)/(m−1)zm
ℓ
, all the periodic points of pe-

riod ℓ or of period a divisor of ℓ of P are solutions of the equation
a(m

ℓ−1)/(m−1)zm
ℓ
= z. Then, for the map P the origin z = 0 is a fixed

point, and the other periodic points with period a divisor of ℓ are the
roots of the equation

zm
ℓ−1 =

1

a
mℓ−1
m−1

.

Therefore, all the periodic points of f ℓ|Lx are on the circle centered at
the origin of radius (1/a)1/(m−1) contained in Lx, the unique exception
is the fixed point localized at the origin.

Assume that f(Lx) = Lx. Therefore, if y ∈ Lx \ {0}, we have that
f(y) = λ(y)y with λ(y) ̸= 0, and consequently

fk(y) = λ(y)1+m+m2+···+mk−1

y.

Therefore the fixed point 0 at the origin of the invariant straight line
Lx = C is stable for the map f |Lx , its bassin of attraction is the set of
points y ∈ Lx such that |λ(y)| < 1. Note that for the points y in the
circle of radius (1/a)1/(m−1) centered at the origin we have that their
|λ(y)| = 1 because the set of all periodic points of f |Lx is dense in
this circle. Therefore, all the points of Lx in the interior of the region
limited by the circle containing the periodic points of f |Lx tend to the
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origin under the iteration by f |Lx , and the points outside the region
limited by this circle tend to infinity because for them |λ(y)| > 1.
Hence all periodic points of the circle are repelling, and since they are
dense in the circle, its closure (the Julia set) is the circle. In short,
statement (d) is proved.

Applying the formula (1) to the map f |Lx we have that F(ℓ) = mℓ.
Therefore it follows immediately the statement (e) of Theorem 1. □

Remark 8. If f(x) = λ(x)x for some λ(x) ∈ C \ {0}, then for every
y ∈ C we have that f(y) = λ(y)y, where λ(y) = cm−1λ(x) with c =
y/x.

3. Proof of Theorem 2

We denote by R+ the set of all positive real numbers. For each
x ∈ Rn \ {0} we define the ray Lx as

Lx = {λx : for all λ ∈ R+}.

Therefore, clearly f(Lx) = Lf(x).

Lemma 9. Let f : Rn → Rn be a homogeneous polynomial map of
degree m > 1. If Lx = Lf(x), then there is a unique fixed point in the
ray Lx.

Proof. Since the ray Lx is invariant by the map f , working as in the
proof of Theorem 1 we can identify the map f |Lx to the polynomial
map P : R+ → R+ defined by P (z) = azm but now with a > 0.

Since the equation azm = z has a unique real solution, namely z =
(1/a)1/(m−1), it follows that the map f |Lx has a unique fixed point.
Hence, the lemma is proved. □

Under the assumptions of Lemma 9 it is easy to check that the fixed
point y on the ray Lx = R+ = (0,+∞) is unstable. More precisely, the
points smaller than y tends to the origin, and the points larger than y
tends to +∞.

Proof of statement (a) of Theorem 2. We claim that if x ∈ Rn \ {0} is
a k–periodic point of f , then x/||x|| ∈ Sn−1 is a k–periodic point of F .
Now we shall prove the claim.

First we shall see by induction that

(2) F j

(
x

||x||

)
=

f j(x)

||f j(x)||
for all j = 1, 2, . . . and x ̸= 0.
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For j = 1 the equality (2) follows from

F

(
x

||x||

)
=

f
(

x
||x||

)
||f

(
x

||x||

)
||
=

1
||x||mf(x)

|| 1
||x||mf(x)||

=
f(x)

||f(x)||
.

Assume that (2) holds for 1, 2, . . . , j, and we shall prove it for j + 1.
Indeed, we have

F j+1

(
x

||x||

)
= F

(
f j(x)

||f j(x)||

)
=

f
(

fj(x)
||fj(x)||

)
||f

(
fj(x)

||fj(x)||

)
||

=

1
||fj(x)||mf j+1(x)

1
||fj(x)||m ||f j+1(x)||

=
f j+1(x)

||f j+1(x)||
.

Hence (2) is proved.

Now we prove the claim. Let x ∈ Rn \ {0} be a k–periodic point of
f . First, from (2) we have that

F k

(
x

||x||

)
=

fk(x)

||fk(x)||
=

x

||x||
.

Therefore x/||x|| is fixed by F k. It remains to show that

F j

(
x

||x||

)
̸= x

||x||
for all j = 1, . . . , k − 1.

Assume that

F j

(
x

||x||

)
=

x

||x||
for some j ∈ {1, . . . , k − 1}.

Then f j(x) and x are in the ray Lx, and this ray is invariant by fk, i.e.
Lx = Lfk(x). Therefore, f

k has two fixed points in the ray Lx, namely
f j(x) and x, in contradiction with Lemma 9.

In short, we have proved that if x ∈ Per(f) then x ∈ Per(F ). On
the other hand, let O be the origin of Rn, since f(O) = O it follows
that 1 ∈ Per(f). Therefore, we have proved that

Per(f) ⊂ Per(F ) ∪ {1}.
Now we claim that if x ∈ Sn−1 is a k–periodic point of F , then there

exists y ∈ Lx such that y is a k–periodic point of f . We prove the
claim. From (2) we have

x = F k(x) =
fk(x)

||fk(x)||
.
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So fk(x) = ||fk(x)||x. Then Lx = Lfk(x). Therefore, by Lemma 9

there exists y ∈ Lx such that fk(y) = y. From (2) if follows that
Lfj(x) = LF j(x) for j = 1, 2, . . ., then since Lx = Ly the rays Lfj(y) =
Lfj(x) = LF j(x) for j = 1, 2, . . . Since the rays LF j(x) are different for
j = 0, 1, . . . , k − 1, it follows that y is a k–periodic point of f . Hence
the claim is proved. Consequently,

Per(F ) ⊂ Per(f).

This completes the proof. □

4. Continuous maps of the circle S1

The following result is proved in [2].

Theorem 10. Let F : S1 → S1 be a continuous map of degree d. If
d = 1 we denote by [a, b] the rotation interval of F . Then Per(F ) is
equal to

N if d ̸= −2,−1, 0, 1;

N \ {2} or N if d = −2;

S(k) for some k ∈ N ∪ {2∞} if d = 0, 1;

S(a, r) ∪M(a, b) ∪ S(b, s) for some r, s ∈ N ∪ {2∞} if d = 1.

Theorem 3 follows immediately from Theorem 10.

5. Transversal maps on the sphere Sn−1

For a C1 transversal map f : Sn−1 → Sn−1 we define its minimal set
of periods in the class of C1 transversal self–maps of Sn−1 as the set

MPer(f) :=
⋂
g

Per(g),

where g runs over all C1 transversal self–maps of Sn−1 of the same
degree than f .

For C1 transversal self–maps of Sn−1 we have the following result, see
Theorem 3 of [20].

Theorem 11. Let F : Sn−1 → Sn−1 be a transversal map of degree d.

(a) If d = 0 then MPer(F ) = {1}.
(b) If n− 1 is odd and d = 1, then MPer(F ) = ∅.
(c) If n− 1 is even and d = 1, then MPer(F ) = {1}.
(d) If n− 1 is odd and d = −1, then MPer(F ) = {1}.
(e) If n− 1 is even and d = −1, then {1, 2} ∩MPer(F ) ̸= ∅.
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(f) If d ̸∈ {−1, 0, 1}, then MPer(F ) ⊃ {1, 3, 5, 7, . . .}, and for k
even if k ̸∈ MPer(F ), then MPer(F ) ⊃ {k/2, 2k}.

Now Theorem 4 is an easy corollary of Theorem 11.
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