$1916 \cdot 2021$

Rational first integrals of the Liénard equations: The solution to the Poincaré problem for the Liénard equations

JAUME LLIBRE, CLAUDIO PESSOA \& JARNE D. RIBEIRO

Abstract

Poincaré in 1891 asked about the necessary and sufficient conditions in order to characterize when a polynomial differential system in the plane has a rational first integral. Here we solve this question for the class of Liénard differential equations $\ddot{x}+$ $f(x) \dot{x}+x=0$, being $f(x)$ a polynomial of arbitrary degree. As far as we know it is the first time that all rational first integrals of a relevant class of polynomial differential equations of arbitrary degree has been classified.

Key words: Liénard equation, rational first integral, Poincaré problem, polinomial differential equation.

1 - THE POINCARÉ PROBLEM ON THE RATIONAL FIRST INTEGRALS OF THE POLYNOMIAL DIFFERENTIAL SYSTEMS

A rational function $f(x, y) / g(x, y)$ has degree m if the polynomials $f(x, y)$ and $g(x, y)$ are coprime in the ring $\mathbb{R}[x, y]$, and the maximum of the degrees of $f(x, y)$ and $g(x, y)$ is m.

A polynomial differential system is a differential system of the form

$$
\begin{equation*}
\frac{d x}{d t}=\dot{x}=P(x, y), \quad \frac{d y}{d t}=\dot{x}=Q(x, y), \tag{1}
\end{equation*}
$$

where $P(x, y)$ and $Q(x, y)$ are real polynomials in the variables x and y, and t is the independent variable usually called the time. The polynomial vector field associated to the polynomial differential system (1) is

$$
\mathcal{X}=P(x, y) \frac{\partial}{\partial x}+Q(x, y) \frac{\partial}{\partial y} .
$$

Let U be an open subset of \mathbb{R}^{2}. Here a first integral is a \mathcal{C}^{1} non-locally constant function $H: U \rightarrow \mathbb{R}$ such that it is constant on the solutions $(x(t), y(t))$ of the polynomial differential system (1) contained in U, i.e. if $\left.\mathcal{X}(H)\right|_{U} \equiv 0$.

If the function H is rational then we say that H is a rational first integral.
The problem of providing necessary and sufficient conditions in order that a polynomial differential system in the plane has a rational first integral was stated by Poincaré (1891). This problem

2010 Mathematics Subject Classification: 34C05, 34D30.

