
RATIONAL FIRST INTEGRALS OF THE LIÉNARD
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Abstract. Poincaré in 1891 asked about the necessary and suf-
ficient conditions in order to characterize when a polynomial dif-
ferential system in the plane has a rational first integral. Here we
solve this question for the class of Liénard differential equations
ẍ + f(x)ẋ + x = 0, being f(x) a polynomial of arbitrary degree.
As far as we know it is the first time that all rational first integrals
of a relevant class of polynomial differential equations of arbitrary
degree has been classified.

1. The Poincaré problem on the rational first integrals
of the polynomial differential systems

A rational function f(x, y)/g(x, y) has degree m if the polynomials
f(x, y) and g(x, y) are coprime in the ring R[x, y], and the maximum
of the degrees of f(x, y) and g(x, y) is m.

A polynomial differential system is a differential system of the form

(1)
dx

dt
= ẋ = P (x, y),

dy

dt
= ẋ = Q(x, y),

where P (x, y) and Q(x, y) are real polynomials in the variables x and
y, and t is the independent variable usually called the time. The poly-
nomial vector field associated to the polynomial differential system (1)
is

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

Let U be an open subset of R2. Here a first integral is a C1 non–
locally constant function H : U → R such that it is constant on the
solutions (x(t), y(t)) of the polynomial differential system (1) contained
in U , i.e. if X (H)|U ≡ 0.
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If the function H is rational then we say that H is a rational first
integral.

The problem of providing necessary and sufficient conditions in order
that a polynomial differential system in the plane has a rational first
integral was stated by Poincaré in 1891 in [12]. This problem is of a
global nature involving whole classes of polynomial differential systems
and this is one of the reasons for being so hard.

If X is a polynomial vector field on R2 the n-th extactic curve of X ,
En(X ), is defined by the polynomial equation

det


v1 v2 · · · vl
X (v1) X (v2) · · · X (vl)

...
... · · · ...

X l−1(v1) X l−1(v2) · · · X l−1(vl)

 = 0,

where v1, v2, · · · , vl is a basis of Rn[x, y], the R–vector space formed
by all polynomials in R[x, y] of degree at most n, and so l = (n +
1)(n+ 2)/2, and X j(vi) = X j−1(X (vi)). Observe that the definition of
extactic curve is independent of the chosen basis of the R–vector space
of polynomials of degree at most n.

As far as we know the first solution of this problem was given in the
next result.

Theorem 1. Let X be a polynomial vector field. Then the polynomial
En(X ) is identically zero and the polynomial En−1(X ) is not identically
zero if, and only if, X admits a rational first integral of degree n.

This result is Theorem 4.3 of the paper [2]. But in general Theorem
1 is difficult to apply because if the degree of the rational first integral
is higher, then the computation of the determinant which appears in
the definition of En(X ) is not easy.

2. The solution to the Poincaré problem for the Liénard
equations

One of the more studied classes of polynomial differential equations
are the Liénard differential equations, or simply Liénard equations

(2) ẍ+ f(x)ẋ+ x = 0,

where f(x) is a polynomial. The first in considering the differential
equations of the form (2) was Liénard [7] during the development of
radio and vacuum tube technology. Later on these equations were
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intensely studied as they can be used to model oscillating circuits, see
for instance the classical books [1, 13, 14, 15].

Passing to the Liénard plane the second order differential equation
(2) is equivalent to the first order polynomial differential system

(3) ẋ = y − F (x), ẏ = −x,

where F (x) =

∫ x

0

f(s)ds.

Another way to write the second order differential equation (2) as a
planar differential system of first order is

(4) ẋ = y, ẏ = −f(x)y − x.

The objective of this paper is to solve the problem stated by Poincaré
on the existence of rational first integrals for the class of polynomial
Liénard differential systems (3), and consequently also for the equiva-
lent classes of differential equations (2) and (4).

Consider the polynomial differential systems (3) in R2 where F (x) =
Fn(x) is polynomial in x of degree n ≥ 1. These differential systems
are called simply Liénard systems.

We denote by

X = (y − Fn(x))
∂

∂x
− x ∂

∂y
,

the polynomial vector field associated to system (3).

Our main results are the following three theorems.

Theorem 2. Liénard systems (3) of degree 1 has no rational first in-
tegral of degree 1.

The Totiente Euler function φ(x) is such that for each x ∈ N =
{1, 2, 3, . . .}, φ(x) is the quantity of numbers k ∈ {1, 2, . . . , x} such
that (k, x) = 1, that is x and k are relatively prime.

φ(x) = #{n ∈ N : n ≤ x ∧ (n, x) = 1}.

The fundamental theorem of arithmetic states that if x > 1 there is a
unique expression for x = pk11 p

k2
2 · · · pkrr , where 1 < p1 < p2 < · · · < pr

are prime numbers and each integer ki > 1. Then the function φ(x)
has following expression

φ(x) = x
∏
p|x

(
1− 1

p

)
,
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where the product is over the distinct prime numbers dividing x, for
more details on the Totiente Euler function see Theorem 62 of [8].

Theorem 3. For all m ≥ 2 there are 2φ(m) Liénard systems (3) of
degree 1 with a rational first integral of degree m.

Theorem 4. There are not Liénard systems (3) of degree > 1 having
rational first integrals.

The proofs of Theorems 2, 3 and 4 are proved in the next section.

We note that Theorems 2, 3 and 4 characterize all the Liénard equa-
tions (2) which have rational first integrals. As far as we know it is the
first time that all rational first integrals of a relevant class of polynomial
differential equations of arbitrary degree has been classified.

We remark that the limit cycles of the Liénard equations (2) has
been intensively studied, see for instance [3, 4, 5, 6, 10, 11]. But it
remains many open questions about these limit cycles.

3. Proof of the results

Proof of Theorem 2. Consider system (3) with n = 1 and X its asso-
ciated vector field. Then the 1-th extactic polynomial of X , E1(X ),
is

det

 1 x y
0 X (x) X (y)
0 X 2(x) X 2(y)

 = −x2 − (a0 − y)(a0 − y + a1x).

Since the polynomial E1(X ) is not identically zero, by Theorem 1, the
Liénard systems (3) of degree 1 have no rational first integrals of degree
1. �

Proof of Theorem 3. We consider the Liénard system of degree 1 given
by

(5) ẋ = y − a0 − a1x, ẏ = −x.

It is easy to check that system (5) is integrable with the first integral

H =

(
a1

(√
a21 − 4

a21
− 1

)
(a0 + a1x− y) + 2x

)1−
a21
2


√√√√1−

4

a21
+1



(
a1

(√
a21 − 4

a21
+ 1

)
(a0 + a1x− y)− 2x

)
.
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So in order that from the expression of the function H we can obtain
rational first integrals of degree m we must have

(6) 1− a21
2

(√
1− 4

a21
+ 1

)
= −m

r
,

withe r ∈ {1, . . . ,m − 1} and (r,m) = 1. Solving equations (6) with
respect to a1 we get

a1 = ±m+ r√
mr

.

So, for a given positive integer m > 1 we have φ(m) good numbers
m/r for which from the expression of H we can obtain φ(m) different
Liénard systems of degree 1 with a rational first integral of degree m.
This completes the proof of the theorem. �

From Theorem 3 we provide the explicit Liénard systems with a
rational first integral H of degree 2, 3 and 4.

Example 5. Consider m = 2. From Theorem 3 there are two Liénard
systems of degree 1 with H a rational first integral of degree 2, which
are given by:

For r = 1,

ẋ = y − a0 + 3x/
√

2, ẏ = −x, with H =
−
√

2a0 + 2x+
√

2y(
−
√

2a0 + x+
√

2y
)2 ,

ẋ = y − a0 − 3x/
√

2, ẏ = −x, with H =

√
2a0 + 2x−

√
2y(√

2a0 + x−
√

2y
)2 .

Example 6. Consider m = 3. From Theorem 3 there are four Liénard
systems of degree 1 with H a rational first integral of degree 3, which
are given by:

For r = 1,

ẋ = y − a0 + 4x/
√

3, ẏ = −x, with H = − −
√

3a0 + 3x+
√

3y(
−
√

3a0 + x+
√

3y
)3 ,

ẋ = y − a0 − 4x/
√

3, ẏ = −x, with H = −
√

3a0 + 3x−
√

3y(√
3a0 + x−

√
3y
)3 .

For r = 2,

ẋ = y − a0 + 5x/
√

6, ẏ = −x, with H =

(
−2a0 +

√
6x+ 2y

)2(√
6a0 − 2x−

√
6y
)3 ,
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ẋ = y − a0 − 5x/
√

6, ẏ = −x, with H =

(
2a0 +

√
6x− 2y

)2(
−
√

6a0 − 2x+
√

6y
)3 .

Example 7. Consider m = 4. From Theorem 3 there are four Liénard
systems of degree 1 with H a rational first integral of degree 4, which
are given by:

For r = 1,

ẋ = y − a0 + 5x/2, ẏ = −x, with H =
−a0 + 2x+ y

(−2a0 + x+ 2y)4
,

ẋ = y − a0 − 5x/2, ẏ = −x, with H =
a0 + 2x− y

(2a0 + x− 2y)4
.

For r = 3,

ẋ = y − a0 + 7x/
√

12, ẏ = −x, with H =

(
−
√

3a0 + 2x+
√

3y
)3(

2
√

3a0 − 3x− 2
√

3y
)4 ,

ẋ = y − a0 − 7x/
√

12, ẏ = −x, with H =

(√
3a0 + 2x−

√
3y
)3(

−2
√

3a0 − 3x+ 2
√

3y
)4 .

To prove Theorem 4 we use the following result. In 1996 Hayashi [9]
studied the invariant algebraic curves for the Liénard system

(7) ẋ = y, ẏ = −f(x)y − g(x),

where f and g are polynomials of degree M and N respectively and
obtained the following result.

Theorem 8. Under the conditions f(x) 6= 0, and M + 1 ≥ N the
Liénard system (7) has an invariant algebraic curve if and only if there
is an invariant curve y = P (x) satisfying

g(x) = − [f(x) + P ′(x)]P (x),

where P (x) or P (x) +
∫
f(x)dx is a polynomial of degree at most one.

Proof of Theorem 4. Consider system (3) of degree n > 1, with F (x) =∑n
i=0 aix

i and an 6= 0.

System (3) is equivalent to system (7) if f(x) = F ′(x) and g(x) = x.
Therefore by Theorem 8 system (3) has an invariant algebraic curve if
and only if
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(i) P (x) = d0 + d1x, and

(8) g(x) = − [f(x) + P ′(x)]P (x) ⇔ x = − [f(x) + d1] (d0+d1x).

Then from last equation we obtain that −nand1xn = 0, a con-
tradiction if d1 6= 0. If d1 = 0 then get −nand0xn−1 = 0, a
contradiction d0 6= 0. If d1 = d0 = 0 then we obtain a contra-
diction in the last equation of (8).

(ii) P (x) = d0 + d1x− F (x), and

(9) g(x) = − [f(x) + P ′(x)]P (x) = ⇔ x = −d1(d0 +d1x−F (x)).

From the last equation we have thet d1anx
n = 0, a contradiction

if d1 6= 0. If d1 = 0 then again we have a contradiction in the
last equation (9).

Therefore system (3) with n > 1 has no invariant algebraic curves, so
systems (3) cannot have rational first integrals. �
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mier ordre et du premier degré I and II, Rendiconti del Circolo Matematico di
Palermo 5 (1891), 161–191; 11 (1897), 193–239.

[13] S. Lefschetz, Differential equations: geometric theory, Interscience, 1957.
[14] R. Reissig, G. Sansone and R. Conti, Nichtlineare Differentialgleichungen
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