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Abstract. We study the dynamics of the circular restricted 4-body problem
with three primaries with equal masses at the collinear configuration of the

3-body problem with an infinitesimal mass. We calculate the equilibrium

points and study their linear stability. By applying the Lyapunov
theorem, we prove the existence of periodic orbits bifurcating from

the equilibrium points and further, prove that they continue in the

full 4-body problem. Moreover, we prove analyticallythe existence
of Hill and of comet-like periodic orbits.

1. Introduction

The planar Newtonian n-body problem concerns with the motion of
n points of mass mi > 0 moving in a plane under their mutual attraction
in accordance with Newton’s law of gravitation.

The equations of the motion of the n-body problem are

r̈i = −
n∑

j=1,j ̸=i

mj(ri − rj)

r3ij
, 1 ≤ i ≤ n,

where we have taken the unit of time in such a way that the Newtonian gravitational
constant be one, and ri ∈ R2 (i = 1, . . . , n) denotes the position vector of the i-body,
rij = |ri − rj | is the Euclidean distance between the i-body and the j-body.

It is well-known that the 2-body problem has been completely solved
(see for instance [9]), whereas the n-body for n > 2 is still open and
non-integrable, see for instance [3, 10].

For the Newtonian n-body problem the simplest possible motions, are
the so called the homographic solutions. In these solutions the configu-
ration formed by the n-bodies is constant up to rotations and scaling.
Only some special configurations of particles are allowed in the homo-
graphic solutions of the n-body problem, called by Wintner [11] central
configurations.
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It is well-known that for the 3-body problem when the three masses
are equal there is a unique collinear central configuration, where the
mass in the middle is equidistant from the other two.

The main objective of this paper is to study the circular restricted
4-body problem with three equal primaries in the collinear central con-
figuration of the 3-body problem, that is to describe the motion of the
infinitesimal mass with respect to the primaries under the Newtonian
gravitational force.

In [4] the authors determine the ejection-collision orbits of this circular
restricted 4-body problem. Here we determine the equilibria, and study
aspects of the dynamics mainly about its periodic orbits.

The paper is organized as follows: in section 2 we obtain the equa-
tions of motion in a rotating system of coordinates while in section 3
we calculate the equilibrium points. In section 4 we calculate the Ja-
cobian integral and Hill’s regions . Further, in Section 5 we study the
linear stability of the equilibrium points. We mention that the results
in sections 3, 4 and 5 have been considered previously in [7] and also the
content of these sections can be seen as a special case of results given
in [1], see also [2, 8]. In section 6 we determine some periodic orbits:
first we calculate the linear expression of the periodic orbits bifurcating
from the equilibrium points Li, i = 1, 2, 3, 4; next we prove the existence
of these periodic orbits using the Lyapunov center theorem. We also
prove the existence of Hill’s and comets orbits. In the last subsection
we prove that any elementary periodic solution of the circular collinear
restricted 4-body problem whose period is not a multiple of 2π can be
continued into the full 4-body problem with one small mass.

2. Equations of motion

Taking the unit of mass equal to the masses of the three primaries and since a
central configuration is invariant under rotations and homotheties through its center
of mass without loss of generality in a convenient rotating system with angular
velocity ω =

√
5/2 the position vectors qi’s for i = 1, 2, 3 of the three primaries are

q1 = (−1, 0), q2 = (0, 0), q3 = (1, 0).

See for more details [6, 12, 13]. Denoting the position of the infinitesimal mass by
q4 = (x, y), then the Hamiltonian of the infinitesimal mass in the rotating system
of coordinates for the circular restricted collinear 4-body problem is

(1) H =
1

2
(p2x + p2y) + ω(pxy − pyx)−

1

r14
− 1

r24
− 1

r34
,

where

r214 = (x+ 1)2 + y2, r224 = x2 + y2, r234 = (x− 1)2 + y2.

For more details on how to obtain this Hamiltonian see [6, 12, 13].
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The equations of motion are

(2)

ẋ = px + ωy,

ẏ = py − ωx,

ṗx =
∂

∂x

(
1

r14
+

1

r24
+

1

r34

)
+ ωpy,

ṗy =
∂

∂y

(
1

r14
+

1

r24
+

1

r34

)
− ωpx.

The Newtonian equations of motion are obtained by eliminating the momenta from
equations (2)

(3) ẍ− 2ωẏ =
∂Ω

∂x
, ÿ + 2ωẋ =

∂Ω

∂y
,

where

Ω =
1

2
ω2(x2 + y2) +

1

r14
+

1

r24
+

1

r34
,

3. Equilibrium points

We now compute the equilibrium points of equations (3). Calculating
the derivatives of Ω and equal them to zero the equilibrium points coordinates are
determined by

(4)

∂Ω

∂x
= ω2x− x+ 1

r314
− x

r324
− x− 1

r334
= 0,

∂Ω

∂y
= y

(
ω2 − 1

r314
− 1

r324
− 1

r334

)
= 0.

From the second equation we have two cases.

The first case is when y = 0. Substituting this into the first equation we get:

(5)
5

4
x− x+ 1

|x+ 1|3
− x

|x|3
− x− 1

|x− 1|3
= 0

and we obtain the following four equations:

(6)

5x7 − 10x5 + 12x4 + 5x3 + 4 = 0, if x < −1,
5x7 − 10x5 + 4x4 + 21x3 − 8x2 + 4 = 0, if − 1 < x < 0,
5x7 − 10x5 − 4x4 + 21x3 + 8x2 − 4 = 0, if 0 < x < 1,
5x7 − 10x5 − 12x4 + 5x3 − 4 = 0, if x > 1.

The first equation in (6) has the single real root x1 = −1.7576799791694022.., the
second equation in (6) has the single real root x2 = −0.4946664910173645.., the
third equation in (6) has the single real root x3 = 0.4946664910173645.., and the
fourth equation in (6) has the single real root x4 = 1.7576799791694022... These
roots have been computed using the Newton method, and their existence
is guaranteed by the bisection method.

The second case y ̸= 0 reduces to the equation

(7) ω2 − 1

r314
− 1

r324
− 1

r334
= 0.
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Multiplying this equation by −x and adding it to the first equation of (4) we obtain

r14 = r34 =
√

y2 + 1, r24 = ±y, x = 0.

Then from (7) we have the following equations for y

2

(y2 + 1)3/2
± 1

y3
=

5

4

with the real roots y5,6 = ±1.1394282249562009...

In summary we have obtained six equilibrium points Li = (xi, 0) for i = 1, 2, 3, 4,
and Lj = (0, yj) for j = 5, 6.

If we calculate the Hessian of the function Ω at these equilibria we get

H(L1) = H(L4) = H(±1.7576799791694022.., 0) =

(
6.31171.. 0

0 −1.28086..

)
,

so L1 and L4 are saddles of Ω;

H(L2) = H(L3) = H(±0.4946664910173645.., 0) =

(
33.8708.. 0

0 −15.0604..

)
,

so L2 and L3 are also saddles of Ω;

H(L5) = H(L6) = H(0,±1.1394282249562009..) =

(
0.749266.. 0

0 3.00073..

)
,

so L5 and L6 are minima of Ω.

Figure 1. Plot of the surface z = Ω(x, y). In the base of the
parallelepiped we have the (x, y)-plane and in the height we have
the z-axis.
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4. Jacobian integral and Hill’s regions

As in the circular restricted three body problem, a direct calculation
leads for our circular restricted four body problem to the Jacobian first
integral

C = 2Ω− v2,

where v =
√
ẋ2 + ẏ2 is the velocity of the infinitesimal mass, and C is a constant.

Since the square of the velocity cannot be negative we have that

Ω(x, y) =
5

8
(x2 + y2) +

1√
(x+ 1)2 + y2

+
1√

x2 + y2
+

1√
(x− 1)2 + y2

≥ C

2
.

-4 -2 0 2 4

-4

-2

0

2

4

Figure 2. The curves of zero velocity for different values of C in
the (x, y)-plane.

Now we study the curves of zero velocity. If v = 0 the Jacobian first integral
reduces to 2Ω = C. When the Jacobi constant varies we obtain different curves of
zero velocity. These curves of zero velocity are the boundaries of the Hill’s regions,
i.e. the set of points (x, y) of the plane where Ω(x, y) ≥ C/2, i.e. the regions of
the plane where the motion is possible for the value C of the Jacobi constant. This
means that the motion cannot take place in the regions where Ω(x, y) < C/2.

If we compute the values of the function Ω at the equilibrium points we get

Ω(±1.7576799791694022.., 0) = 4.18227..,

Ω(±0.4946664910173645.., 0) = 4.82244..,

Ω(0,±1.1394282249562009..) = 3.00832...
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This means that no level curves exist when Ω < 3.00832.., and consequently no
motion exists for the values of Ω < 3.00832... The equilibrium points are located
at critical values where the curves of zero velocity change their topology. In Figure
3 the Hill’s regions where the motion is allowed are the white regions.

(a) C = 3.00832..

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

(b) C ∈ (3.00832.., 4.18227..).
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(c) C = 4.18227..
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(d) C ∈ (4.18227.., 4.82244..)
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(e) C = 4.82244..
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(f) C > 4.82244..

Figure 3. The curves of zero velocity and their Hill’s regions.
The motion is allowed in the white regions.

5. Stability of the equilibrium points

At the equilibrium points the linearized system corresponding to system (2) has
the matrix

(8)



0 ω 1 0

−ω 0 0 1

Ωxx − ω2 Ωxy 0 ω

Ωxy Ωyy − ω2 −ω 0


.
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For the equilibrium points Li = (xi, 0) for i = 1, 2, 3, 4 on the x-axis, the above
matrix becomes 

0
√
5/2 1 0

−
√
5/2 0 0 1

2α 0 0
√
5/2

0 −α −
√
5/2 0


,

where

α =
1

|xi + 1|3
+

1

|xi|3
+

1

|xi − 1|3
, for i = 1, 2, 3, 4.

The eigenvalues of this matrix at the equilibrium points L1 and L4 are

−1.68164..i, 1.68164..i, −1.69079.., 1.69079..,

and the eigenvalues at the equilibrium points L2 and L3 are

−4.08808..i, 4.08808..i, −5.52474.., 5.52474...

Since for each one of these equilibrium points one eigenvalue is real positive, all
these equilibrium points are unstable.

For the equilibrium points Lj = (0, yj) for j = 5, 6 on the y-axis, the matrix (8)
becomes 

0
√
5/2 1 0

−
√
5/2 0 0 1

β 0 0
√
5/2

0 γ −
√
5/2 0


,

where

β =
6− 2(1 + y2i )

(1 + y2i )
5
2

− 1

|yi|3
, for i = 5, 6,

and

γ =
6y2i − 2(1 + y2i )

(1 + y2i )
5
2

+
2

|yi|3
, for i = 5, 6.

The eigenvalues of this matrix at the equilibrium points L5 and L6 are

0.661228..+ 1.03064..i, 0.661228..− 1.03064..i,

and

−0.661228..+ 1.03064..i, −0.661228..− 1.03064..i,

respectively. Hence the equilibrium points L5 and L6 are unstable.

In summary we have proved the next result.

Theorem 1. The six equilibrium points of the circular restricted 4-body problem
with three equal primaries in the collinear central configuration of the 3-body problem
are unstable.
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6. Periodic orbits

The study of the periodic orbits of the circular restricted 4-body problem with
three equal primaries in the collinear central configuration of the 3-body problem
of the subsections 6.2 to 6.5 are follow the methodology presented for the study of
the periodic orbits of the circular restricted 3-body problem in the book of Meyer,
Hall and Offin [6].

6.1. The linear expression of the periodic orbits bifurcating from the
equilibrium points Li, i = 1, 2, 3, 4. At these four equilibrium points we have
Ωxx > 0, Ωxy = 0 and Ωyy < 0 and we denote by ±λ their two real eigenvalues, and
by ±βi their two purely imaginary eigenvalues. The linearised equations of motion
(3), called the linear variational equations, are

(9) ẍ− 2ωẏ = xΩxx + yΩxy, ÿ + 2ωẋ = xΩxy + yΩyy,

where the second order partial derivatives of Ω are calculated at the equilibrium
points Li for i = 1, 2, 3, 4. The solution of these linear variational equations is

(10)
x(t) = A1e

λt +A2e
−λt +A3e

βti +A4e
−βti,

y(t) = B1e
λt +B2e

−λt +B3e
βti +B4e

−βti.

The coefficients A1, . . . , A4, B1, . . . , B4 are not independent because from the first
equation of (9) we have

(11)

B1 =
λ2 − Ωxx|L1−L4

2ωλ
A1 = α1A1,

B2 = −λ2 − Ωxx|L1−L4

2ωλ
A2 = −α1A2,

B3 =
β2 +Ωxx|L1−L4

2ωβ
A3i = α3A3i,

B4 = −β2 +Ωxx|L1−L4

2ωβ
A4i = −α3A4i,

taking into account that Ωxy = 0 at the equilibrium points Li for i = 1, 2, 3, 4. As
in [12] we can see that the four initial conditions of (9) will completely determine
the coefficients A1, . . . , A4, B1, . . . , B4. Thus we have

(12)

x0 = x(t0) = A1e
λt0 +A2e

−λt0 +A3e
βt0i +A4e

−βt0i,

ẋ0 = ẋ(t0) = λA1e
λt0 − λA2e

−λt0 + βA3e
βt0ii− βA4e

−βt0ii,

y0 = y(t0) = α1A1e
λt0 − α1A2e

−λt0 + α3A3e
βt0ii− α3A4e

−βt0ii,

ẏ0 = ẏ(t0) = α1λA1e
λt0 + α1λA2e

−λt0 − α3βA3e
βt0i − α3βA4e

−βt0i.
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Taking into account (11) the determinant of this system is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

λ −λ βi −βi

α1 −α1 α3i −α3i

α1λ α1λ −α3β −α3β

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

Ωxx|L1−L4
(λ2 + β2)2

ω2λβ
i ̸= 0.

Therefore the solution of system (12) is

(13)

A1 =
e−λt0

2

[ α3βx0

α3β + α1λ
− α3ẋ0

α1β − λα3
+

βy0
α1β − λα3

+
ẏ0

α3β + α1λ

]
,

A2 =
eλt0

2

[ α3βx0

α3β + α1λ
+

α3ẋ0

α1β − λα3
− βy0

α1β − λα3
+

ẏ0
α3β + α1λ

]
,

A3 =
e−iβt0

2

[ α1λx0

α3β + α1λ
− i

α1ẋ0

α1β − λα3
+ i

λy0
α1β − λα3

− ẏ0
α3β + α1λ

]
,

A4 =
eiβt0

2

[ α1λx0

α3β + α1λ
+ i

α1ẋ0

α1β − λα3
− i

λ1y0
α1β − λα3

− ẏ0
α3β + α1λ

]
.

Since we are looking for a periodic solution, we must have A1 = A2 = 0. If
we choose the initial conditions so that A1 = A2 = 0, then from the first two
relations of (13) we get that, if x0, y0 are arbitrarily selected, then ẋ0 = βy0/α3

and ẏ0 = −α3βx0. Evaluating A3 and A4 from (13) and substituting them into
equations (10) we obtain the periodic orbit

(14)
x(t) = x0 cos

(
β(t− t0)

)
+ (y0/α3) sin

(
β(t− t0)

)
,

y(t) = y0 cos
(
β(t− t0)

)
− x0α3 sin

(
β(t− t0)

)
.

This orbit is the ellipse

(15) x2 +
y2

α2
3

= x2
0 +

y20
α2
3

,

where α2
3 = 5.90773.. at the equilibrium points L1 and L4, and α2

3 = 30.6199.. at
the equilibrium points L2 and L3.

Taking into account that at the equilibrium points L5 and L6 all the eigenvalues
are complex with real part different than zero, we conclude that there are no periodic
orbits bifurcating from these equilibrium points.

6.2. Lyapunov families at the equilibrium points Li, i = 1, 2, 3, 4. A first
integral F is called nondegenerate on a point x0 if its gradient ∇F (x0) ̸= 0.

We note that the Hamiltonian (1) is always a nondegenerate first integral on a
nonequilibrium solution because ∇H(x0) = 0 implies that x0 is an equilibrium.

Theorem 2 (Lyapunov Center Theorem). Assume that the differential system
ẋ = f(x) admits a nondegenerate integral and has an equilibrium point with expo-
nents ±ωi, λ3, . . . , λm, where iω ̸= 0 is pure imaginary. If λj/ω is never an integer
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for j = 3, . . . ,m, then there exists an one-parameter family of periodic orbits em-
anating from the equilibrium point. Moreover, when approaching the equilibrium
point along the family, the periods tend to 2π/ω and the nontrivial multipliers tend
to exp(2πλj/ω) for j = 3, . . . ,m.

For a proof of Theorem 2 see Theorem 9.2.1 of [6].

Theorem 3. The existence of the periodic orbits near the linear approximated pe-
riodic orbits closed to the equilibrium points Li for i = 1, 2, 3, 4 of the circular
restricted 4-body problem with three equal primaries in the collinear central configu-
ration of the 3-body problem studied in subsection 6.1 is proved using the Lyapunov
center theorem.

Proof. At the equilibrium points L1 and L4 we have a pair of purely imaginary
eigenvalues ±1.68164..i and a pair of real eigenvalues ±1.42144.., so the Lyapunov
center theorem implies that there is a one-parameter family of periodic solutions
emanating from each of these equilibrium points, points whose linear approxima-
tions are given in (14) and (15).

At the equilibrium points L2 and L3 we have a pair of purely imaginary eigenval-
ues ±4.08808..i and a pair of real eigenvalues ±5.52474.., so the Lyapunov center
theorem implies that there is an one-parameter family of periodic solutions ema-
nating from each of these equilibrium points, points whose linear approximations
are given in (14) and (15). □

6.3. Hill’s Orbits. In this subsection we consider the case when the infinitesimal
particle moves very close to one of the primaries. This is the Hill’s problem. By
symmetry, it is sufficient to study the motion of the infinitesimal mass near the
masses m1 and m2.

Theorem 4. For each primary there exist two one-parameter families of nearly
circular periodic solutions of the circular restricted 4-body problem with three equal
primaries in the collinear central configuration of the 3-body problem that encircle
the corresponding primary.

Proof. We introduce a small parameter considered the infinitesimal particle to be
very close to one of the primaries. We start with the primary situated at the origin
of the coordinates system, i.e. the primary of mass m2. We introduce a scale
parameter ε by changing coordinates by (x, y) = ε2(ξ1, ξ2), (px, py) = ε−1(η1, η2)
which is a symplectic change of coordinates with multiplier ε−1. The Hamiltonian
(1) becomes

H = ε−3
[∥η∥2

2
− 1

∥ξ∥

]
− ωξTKη +O(ε),

where we have dropped the constant terms because they do not affect the equations
of motion and

K =

[
0 1
−1 0

]
, ∥ξ∥2 = ξ21 + ξ22 , ∥η∥2 = η21 + η22 .

We scaled the time by t → ε−3t and H → ε3H, and the Hamiltonian becomes

H =
∥η∥2

2
− 1

∥ξ∥
− ε3ωξTKη +O(ε4).
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For the other case when the infinitesimal particle is very close to one of the primaries
which are symmetric with respect the origin, if we translate first the origin in one
of these primaries and we apply the same change of coordinates as above we get
the same Hamiltonian up to the terms of order three in ε.

If we introduce the polar symplectic coordinates (r, θ,R,Θ) as follows

ξ1 = r cos θ, ξ2 = r sin θ,

η1 = R cos θ − Θ

r
sin θ, η2 = R sin θ +

Θ

r
cos θ,

we get the Hamiltonian

H =
1

2

(
R2 +

Θ2

r2

)
− 1

r
− ε3ωΘ+O(ε4),

and its Hamiltonian equations are

ṙ = R, Ṙ =
Θ2

r3
− 1

r2
,

θ̇ =
Θ

r2
− ε3ω, Θ̇ = 0,

where the terms of order ε4 have been omitted. We have two solutions Θ = ±c,R =
0, r = c2, where c is a constant, which are periodic solutions for the above system, of
period 2πc3/(ωc3ε3±1). If we linearize the r and R equations about these solutions
we get

ṙ = R, Ṙ = − r

c6
.

These linear equations have solutions of the form exp(±it/c3), and so the nontriv-
ial multipliers of the circular orbits of the system are exp(∓2πi/(ωc3ε3 ± 1)) =
1+2πiωc3ε3+O(ε6). Using the Poincaré continuation method, as in section 9.4 of
[6], we can conclude that for each primary there exist two one-parameter families
of nearly circular elliptic periodic solutions of the circular restricted 4-body prob-
lem with three equal primaries in the collinear central configuration of the 3-body
problem that encircle the corresponding primary. □

6.4. Orbits close to infinity. Now we study the orbits that are close to infinity.

Theorem 5. There exist two one-parameter families of nearly circular periodic
solutions of the circular restricted 4-body problem with three equal primaries in the
collinear central configuration of the 3-body problem which tend to infinity.

Proof. We scale the variables by (x, y) = ε−2(ξ1, ξ2), (px, py) = ε1(η1, η2) which is
a symplectic change of coordinates with multiplier ε. The Hamiltonian (1) becomes

H = −ωξTKη + ε3
[∥η∥2

2
− 1

∥ξ∥

]
+O(ε5).

When ε is small the infinitesimal body is near infinity and the Hamiltonian shows
that near infinity the Coriolis force dominates, and the next important force looks
like a Kepler problem with all three primaries at the origin. If we change to polar
coordinates we get the Hamiltonian

H = −ωΘ+ ε3
[1
2

(
R2 +

Θ2

r2

)
− 1

r

]
+O(ε5),
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and its Hamiltonian equations are

(16)
ṙ = ε3R, Ṙ = ε3

(Θ

r3
− 1

r2

)
,

θ̇ = −ω + ε3
Θ

r2
, Θ̇ = 0,

where the terms of order ε5 have been omitted. We get Θ = ±1, R = 0, r = 1 are
periodic solutions with period 2π/(ω ∓ ε3) of (16). The linearized equations for r

and R around these solutions are ṙ = ε3R, Ṙ = −ε3r. These linear equations have
solutions of the form exp(±iε3t), and so the nontrivial multipliers of the circular
orbits of the system are

exp(∓iε32π/(ω ∓ ε3)).

Using the Poincaré continuation method we can conclude that there exist two one-
parameter families of nearly circular periodic solutions of the circular restricted
4-body problem with three equal primaries in the collinear central configuration of
the 3-body problem which tend to infinity. □

6.5. From the restricted to the full problem. We now use the result in [5, 11]
to show that the periodic solutions found above persist in the 4 body problem
with one small mass. Recall that a periodic solution of a conservative Hamiltonian
system always has the characteristic multiplier +1 with algebraic multiplicity at
least 2. Thus we have the following definition: a periodic solution of a Hamiltonian
conservative systems with no continuous symmetries is called non-degenerate or
elementary periodic solution if the characteristic multiplier +1 has the algebraic
multiplicity exactly equal to 2 [5]. If the system is symmetric under the symplectic
action of a continuous group (e.g. admits rotational symmetry), then the same
definition applies for the reduced Hamiltonian system on a fixed symplectic reduced
space [11].

Theorem 6. Any periodic solution of the circular restricted 4-body problem with
three equal primaries in the collinear central configuration of the 3-body problem
whose period is not a multiple of 2π can be continued into the full 4-body problem
with one small mass and the other three masses equal.

Taking into account the values of the multipliers found in this section, the pe-
riodic orbits at all equilibria are non-degenerate, and the proof of Theorem 6 is a
particular case of Proposition 3 of [11].
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