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POLYNOMIAL VECTOR FIELDS
ON THE CLIFFORD TORUS

JAUME LLIBRE AND ADRIAN C. MURZA

Abstract. First we characterize all the polynomial vector fields
in R4 which have the Clifford torus as an invariant surface. After
we study the number of invariant meridians and parallels that such
polynomial vector fields can have in function of the degree of these
vector fields.

1. Introduction and statement of the main results

The Clifford torus

T =

{
(x1, x2, x3, x4) ∈ R4 : x2

1 + x2
2 =

1

2
, x2

3 + x2
4 =

1

2

}
in geometric topology is the simplest and most symmetric Euclidean
space embedding of the cartesian product of two circles. It lives in R4,
as opposed to R3.

In MathSciNet at July 22 of 2017 it appears with the keyword “Clif-
ford torus” 430 references. The more recent reference is [7]. In the
reference [6] are studied the meridians of the surfaces of revolution
and some information about the meridians of the Clifford torus can
be found there. In the references [2, 12] are studied the parallels of
the surfaces of revolutions and again contains some information on the
parallels of the Clifford torus.

In this paper first we shall study the polynomial vector fields of arbi-
trary degree in R4 having the Clifford torus invariant by their flow, and
after we shall compute the maximal number of parallels and meridi-
ans that a polynomial vector field of a given degree can exhibit on the
Clifford torus.

The maximum number of invariant hyperplanes that a polynomial
vector field in Rn can have in function of its degree was given in [8]. The
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analogous result for the invariant straight lines of polynomial vector
fields in R2 was provided before in [1]. The study of the maximum
number of meridians and parallels for a torus in R3 were studied in [9],
and for an algebraic torus in [10]. In surfaces of revolution in R3 the
meridians and parallels invariant by polynomial vector fields have been
studied in [5].

As usual we denote by R[x1, x2, x3, x4] the ring of the polynomials
in the variables x1, x2, x3 and x4 with real coefficients. By definition a
polynomial differential system in R4 is a system of the form

(1)
dxi

dt
= Pi(x1, x2, x3, x4), for i = 1, 2, 3, 4,

where Pi(x1, x2, x3, x4) ∈ R[x1, x2, x3, x4]. If mi is the degree of the
polynomial Pi, then m = max{m1,m2,m3,m4} is the degree of the
polynomial differential system (1).

We denote by

(2) X =
4∑

i=1

Pi(x1, x2, x3, x4)
∂

∂xi

,

the polynomial vector field associated to the differential polynomial
system (1) of degree m.

An invariant algebraic hypersurface for the polynomial differential
system (1) or for the polynomial vector field (2) is an algebraic surface
f = f(x1, x2, x3, x4) = 0 with f ∈ R[x1, x2, x3, x4], such that for some
polynomial K ∈ R[x1, x2, x3, x4] we have

(3) X f = Kf.

Therefore if a solution curve of system (1) has a point on the algebraic
hypersurface f = 0, then the whole solution curve is contained in f =
0. The polynomial K is called the cofactor of the invariant algebraic
hypersurface f = 0. We remark that if the polynomial system has
degree m, then any cofactor has at most degree m− 1.

If f = 0 and g = 0 are two invariant algebraic hypersurfaces by the
polynomial vector field X , then S = {f = 0} ∩ {g = 0} is an invariant
algebraic surface by the vector field X , i.e. if an orbit of X has a point
on the algebraic surface S, then the whole orbit is contained in S.

In the next theorem we characterize all the polynomial differential
systems having the Clifford torus T as an invariant algebraic surface.
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Theorem 1. If the polynomial differential system (1) has the Clifford
torus T invariant, then

(4)

P1 = A(x2
1 + x2

2 − 1/2)− 2Cx2,

P2 = B(x2
1 + x2

2 − 1/2) + 2Cx1,

P3 = D(x2
3 + x2

4 − 1/2)− 2Fx4,

P4 = E(x2
3 + x2

4 − 1/2) + 2Fx3,

where A, B, C, D, E and F are arbitrary polynomials in the variables
x1, x2, x3 and x4.

Theorem 1 is proved in section 2.

For all (a, b) ∈ R2 such that a2 + b2 = 1/2 a meridian of the Clifford
torus T is

M(a,b) = {(x1, x2, a, b) ∈ R4 : x2
1 + x2

2 = 1/2},
and a parallel is

P(a,b) = {(a, b, x3, x4) ∈ R4 : x2
3 + x2

4 = 1/2}.
So a meridian is defined by the three equations x2

1 + x2
2 = 1/2, x3 = a,

x4 = b with a2 + b2 = 1/2, and similarly by a parallel.

In the next theorem we provide the maximum number of invariant
meridians or parallels that a polynomial vector field X on T can have in
function of its degree. See section 3 for the definition of the multiplicity
of a meridian and of a parallel.

Theorem 2. Let X be a polynomial vector field on the Clifford torus
T of degree m = (m1,m2,m3,m4) with m1 > m2 > m3 > m4 > 0.

(a) The number of invariant meridians of X is at most m4−2 taking
into account their multiplicities if m4 > 3, and 4 if m4 = 3.
These upper bounds are reached.

(b) The number of invariant parallels of X is at most m2−2 taking
into account their multiplicities if m2 > 3, and 4 if m2 = 3.
These upper bounds are reached.

Theorem 2 is proved in section 3.

2. Proof of Theorem 1

For proving Theorem 1 we shall need some definitions and results for
the polynomial differential systems in R2.
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Consider the following polynomial differential system in R2

(5)
ẋ = P (x, y),

ẏ = Q(x, y),

and let

Y = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
,

its associated polynomial vector field.

Let f(x, y) a polynomial. Then the algebraic curve f(x, y) = 0 is
invariant by system (5) if there exists a polynomial k = k(x, y) such
that Yf = kf .

The next result is proved in Lemma 6 of [4].

Lemma 3. Assume that the polynomial system (5) has an invariant
algebraic curve f(x, y) = 0 without singularities (i.e. there are no
points at which f and its first derivatives are all vanish). If (fx, fy) = 1
(i.e. the polynomials fx and fy has no common factors), then

P = Af − Cfy,

Q = Bf +Dfx,

where A,B and C are arbitrary polynomials in the variables x and y.

Proof of Theorem 1. We consider polynomial vector fields X given in
(2) of degree m in R4 having the Clifford torus T as an invariant alge-
braic surface, i.e. both hypersurfaces x2

1 + x2
2 = 1/2 and x2

3 + x2
4 = 1/2

are invariant by X .

Let f = x2
1 + x2

2 − 1/2 = 0 and g = x2
3 + x2

4 − 1/2 = 0. By Lemma
3 and from the definition of the invariant algebraic hypersurface f = 0
given in (3) it follows that

(6)
P1 = A(x2

1 + x2
2 − 1/2)− 2Cx2,

P2 = B(x2
1 + x2

2 − 1/2) + 2Cx1,

where A, B and C arbitrary polynomials in the variables x1, x2, x3 and
x4. In a similar way, from Lemma 3 and the definition of the invariant
algebraic hypersurface g = 0 we get

(7)
P3 = D(x2

3 + x2
4 − 1/2)− 2Fx4,

P4 = E(x2
3 + x2

4 − 1/2) + 2Fx3,

where D, E and F arbitrary polynomials in the variables x1, x2, x3

and x4. In short from (6) and (7) the theorem follows. �
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3. Proof of Theorem 2

One of the best tools for working with invariant algebraic hypersur-
faces is the extactic polynomial of X associated to a finite vector space
of polynomials generated by W . To our knowledge the extactic polyno-
mial was introduced by Lagutinskii, see [11]. We recall its definition for
a polynomial vector field in R4. Let W be a finitely generated vector
subspace of the vector space C[x1, x2, x3, xd] generated by the basis {v1,
. . . , vl}. The extactic polynomial of X associated to W is

EW (X ) = E{v1,...,vl}(X ) = det


v1 v2 . . . vl

X (v1) X (v2) . . . X (vl)
...

... . . .
...

X l−1(v1) X l−1(v2) . . . X l−1(vl)

 ,

where X j(vi) = X j−1(X (vi)). The extactic polynomial does not de-
pendent of the chosen basis of W .

The extactic polynomial EW (X ) has two good properties. First, it
allows to detect invarian algebraic hypersurfaces f = 0 with f ∈ W
by the polynomial vector field X , see the following proposition proved
in [3]. Second, it allows to compute the multiplicity of the invariant
algebraic hypersurfaces.

Even if the next proposition is stated for complex polynomial vector
fields, it is very useful for our later considerations. This is so, because
we deal with real polynomial vector fields, which are particular cases
of complex ones.

Proposition 4. Let X be a polynomial vector field in C4 and let W be a
finitely generated vector subspace of C[x1, x2, x3, x4] with dim(W ) > 1.
Then every algebraic invariant hypersurface f = 0 for the vector field
X , with f ∈ W , is a factor of the polynomial EW (X ).

From Proposition 4 it follows that f = 0 is an invariant hyperplane
of the polynomial vector field X if the polynomial f is a factor of the
polynomial EW (X ), where W is generated by {1, x1, x2, x3, x4}.

From [3] the invariant hypersurface f = 0, with f ∈ W , has multi-
plicity k if k is the greatest positive integer such that fk divides the
polynomial EW (X ). In [3] it is proved that if we have that f = 0 is an
invariante hypersurface of multiplicity k, then in a neighborhood of X
in the topology of the coefficients there are polynomial vector fields Yε,
being ε a small parameter, having k invariant algebraic hypersurfaces
such that all of them tend to the hypersurface f = 0 when ε → 0.



6 J. LLIBRE AND A.C. MURZA

We say that the meridian M(ai,bi) with a2i + b2i = 1/2 has multiplicity
k if both invariant hyperplanes x3 − ai = 0 and x4 − bi = 0 of the
differential system (1) with the polynomials Pi given by (4) have mul-
tiplicities k1 and k2 respectively, and min{k1, k2} = k. In a similar way
is defined the multiplicity of a parallel P(ai,bi).

Proof of Theorem 2. A meridian of the Clifford torus T is obtained by
intersecting T with the hyperplanes x3 = a and x4 = b with a2 + b2 =
1/2. So the hyperplanes x3 − a = 0 and x4 − b = 0 must be invariant
by the polynomial vector field X . In other words x3 − a must divide
the extactic polynomial

E1,x3(X ) =

∣∣∣∣ 1 x3

0 P3

∣∣∣∣ = P3,

i.e. x3 − a must divide the polynomial P3(x1, x2, x3, x4). In a similar
way x4 − b must divide the polynomial P4(x1, x2, x3, x4). Since the
degrees of Pi is mi for i = 3, 4, it follows that the polynomials x3 − ai
at most divide m3 times the polynomial P3. This is only possible if

(8) P3 = k3

m3∏
i=1

(x3 − ai), and P4 = k4

m4∏
i=1

(x4 − bi),

with k3, k4 ∈ R \ {0}. But taking into account the expressions of P3

and P4 given in (4) we only can obtain the expressions of (8) if and
only if

(9) D = 2kx3, E = −2kx4, and F = kx3x4,

with k ∈ R \ {0}. Then
P3 = 2kx3(x

2
3 + x2

4 − 1/2)− 2kx3x
2
4 = 2kx3(x

2
3 − 1/2),

P4 = −2kx4(x
2
3 + x2

4 − 1/2) + 2kx2
3x4 = 2kx4(x

2
4 − 1/2).

So in this casem3 = m4 = 3 and we have 4 meridians, namelyM(0,1/
√
2),

M(0,−1/
√
2), M(1/

√
2,0) and M(−1/

√
2,0).

Expect this exceptional case (9) that we can obtain for the polyno-
mials P3 and P4 the expressions (8), we have that there are at most
m3−2 invariant hyperplanes of the form x3−bi taking into account their
multiplicities, and at most we have m4−2 invariant hyperplanes of the
form x4 − bi taking into account their multiplicities. These invariants
hyperplanes are obtained when

D = k3

m3−2∏
i=1

(x3 − ai), E = k4

m4−2∏
i1

(x4 − bi), F = 0,
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with k3, k4 ∈ R \ {0}. Therefore the differential system (1) with the
polynomials Pi given by (4) has the invariant meridians M(ai,bi) if a

2
i +

b2i = 1/2 for i = 1, . . . ,m4 − 2. Eventually some of these invariant
meridians can have multiplicity larger than one if the ai and bi appears
repeated in the expressions of the polynomials D and E.

In short, if m4 > 3 an upper bound for the maximum number of
invariant meridians is m4 − 2 taking into account their multiplicities,
because m3 ≥ m4; or if m4 = 3 that upper bound is 4. Note from this
proof that these upper bounds are reached. This proves statement (a)
of Theorem 2.

In an analogous way we obtain that the maximum number of invari-
ant parallels is m2−2 taking into account their multiplicities if m2 > 3,
or 4 if m2 = 3. This proves statement (b) of Theorem 2. �
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