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Abstract. In this paper we study the dynamics of the Higgins–Selkov system

ẋ = 1− xyγ , ẏ = αy(xyγ−1 − 1),

where α is a real parameter and γ > 1 is an integer. We classify the phase por-
traits of this system for γ = 3, 4, 5, 6, in the Poincaré disc for all the values of the
parameter α. Moreover, we determine in function of the parameter α the regions
of the phase space with biological meaning.

1. Introduction and statement of the main results

The glycolysis is the first step in the transformation of glucose into energy for
cellular metabolism. Higgins in [9] used a mathematical model for investigating
sustained oscillations in the glycolysis process. But his model did not show any limit
cycle corresponding to sustained oscillations observed in the experiments. For solving
this problem Selkov in [12] introduced another mathematical model for studying the
glycolysis now called the Higgins–Selkov system. This system is

dx

dt
= 1− xyγ, dy

dt
= αy(xyγ−1 − 1), (1)

where x and y are state variables, t is the time variable, α is a real parameter and
γ > 1 is an integer.

The point (1, 1) is the unique singular point of system (1) for all values of parameter
α 6= 0 and γ > 1. It is shown that a supercritical Hopf bifurcation occurs at α =
1/(γ − 1). In 2018, Artés et al. [2] characterized the dynamics of system (1) with
γ = 2 and α ∈ R\(1, 3), and proposed a conjecture about existence and uniqueness of
a limit cycle when α ∈ (1, 3). Chen and Tang in [6] have proved this conjecture which
completes the phase portraits of system (1) with γ = 2. Brechmann and Rendall in
[3] researched the uniqueness of limit cycles, and additionally they proved that there
are no limit cycles when α ∈ (0, 1/(γ−1)) for all γ > 1. Recently, it appears in arXiv
the preprint of Brechmann and Rendall [4] where they show that for α > 0 the top
right hand quarter of each phase portrait is topologically equivalent to that for γ = 2
for any integer γ > 1.
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2 DYNAMICS OF HIGGINS–SELKOV SYSTEMS

In this paper we provide a complete study of the dynamics of system (1) for γ =
3, 4, 5 and 6, and characterize the existence or non–existence of limit cycles in function
of the parameter α. Moreover, we provide the qualitative behaviour of the system in
a neighborhood of the infinity for all values of the integer γ > 1 using the Poincaré
compactification. Finally we classify the phase portraits of system (1) in the Poincaré
disc for γ = 3, 4, 5 and 6.

For a definition of the Poincaré compactification and the Poincaré disc see Chapter
5 of [7], for the notions of separatrix, canonical regions and the concept of topologically
equivalent differential systems see section 1.9 of [7]. Here, the number of separatrices
and canonical region of a phase portrait will be denoted by S and R, respectively.

Our main results are the following two theorems.

Theorem 1. The phase portraits of the Higgins–Selkov system (1) in the Poincaré
disc for γ = 3 and 5 are topologically equivalent to one of the phase portraits in Figure
1 as follows:

(i) Figure 1(a) corresponds to α < 0 with S = 19 and R = 6,

(ii) Figure 1(b) corresponds to α = 0 with S =∞,

(iii) Figure 1(c) corresponds to α ∈ (0, 1/(γ − 1)] with S = 17 and R = 4,

(iv) Figure 1(d) corresponds to α ∈ (1/(γ − 1), α∗γ) where α∗γ ∈ (1/(γ − 1), αγ),

α3 = (1261 + 57
√

57)/686 and α5 = 24(411 + 41
√

41)/3125 with S = 18 and
R = 5,

(v) Figure 1(e) corresponds to α = α∗γ with S = 16 and R = 4,

(vi) Figure 1(f) corresponds to α > α∗γ with S = 17 and R = 4.

Moreover for all odd integer γ > 1 the phase portraits of Figure 1(a) − (c) hold for
α < 0, α = 0 and α ∈ [0, 1/(γ − 1)), respectively; and the qualitative behaviour of
system (1) at infinity is the same for any given α ∈ R.

Theorem 2. The phase portraits of the Higgins–Selkov system (1) in the Poincaré
disc for γ = 4 and 6 are topologically equivalent to one of the phase portraits in Figure
2 as follows:

(i) Figure 2(a) corresponds to α < 0 with S = 19 and R = 6,

(ii) Figure 2(b) corresponds to α = 0 with S =∞,

(iii) Figure 2(c) corresponds to α ∈ (0, 1/(γ − 1)] with S = 17 and R = 4 ,

(iv) Figure 2(d) corresponds to α ∈ (1/(γ − 1), α∗γ) where α∗γ ∈ (1/(γ − 1), αγ),

α4 = 46875/14641 and α6 = (189384302 + 10121703
√

681)/47045881 with
S = 18 and R = 5,

(v) Figure 2(e) corresponds to α = α∗γ with S = 16 and R = 4,

(vi) Figure 2(f) corresponds to α > α∗γ with S = 17 and R = 4.

Moreover for all even integer γ > 1 the phase portraits of Figure 1(a)− (c) hold for
α < 0, α = 0 and α ∈ [0, 1/(γ − 1)), respectively; and the qualitative behaviour of
system (1) at infinity is the same for any given α ∈ R.
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Figure 1. The phase portraits of system (1) for γ = 3 and 5 in the Poincaré
disc. The shaded areas correspond to the initial conditions of the orbits hav-
ing a final finite evolution, so these are the initial conditions with biological
meaning. In the phase portrait (c) the final behaviour is a stable singular
point, and in the phase portrait (d) is a stable limit cycle.

Figure 2. The phase portraits of system (1) for γ = 4 and 6 in the Poincaré
disc. The shaded areas correspond to the initial conditions of the orbits hav-
ing a final finite evolution, so these are the initial conditions with biological
meaning. In the phase portrait (c) the final behaviour is a stable singular
point, and in the phase portrait (d) is a stable limit cycle.

2. The proof of Theorems 1 and 21

2.1. The local phase portraits of the finite singular points. The Higgins–
Selkov system (1) has a unique singular point (1, 1) and the Jacobian matrix of the
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system at this point is

J =

(
−1 −γ
α α(γ − 1)

)
.

The determinant and trace of the matrix J are equal to α and α(γ−1)−1, respectively.
The eigenvalues of the Jacobian matrix are

1

2

[
α(γ − 1)− 1±

√
[α(γ − 1)− 1]2 − 4α

]
.

Therefore the singular point (1, 1) is

a hyperbolic saddle if α < 0;
a stable hyperbolic node if α ∈

(
0, (γ + 1− 2

√
γ)/(γ − 1)2

]
;

a stable focus if α ∈
(
(γ + 1− 2

√
γ)/(γ − 1)2, 1/(γ − 1)

]
;

a stable weak focus if α = 1/(γ − 1), in this case a Hopf bifurcation occurs;
an unstable hyperbolic focus if α ∈

(
1/(γ − 1), (γ + 1 + 2

√
γ)/(γ − 1)2

]
; and

an unstable hyperbolic node if α ≥ (γ + 1 + 2
√
γ)/(γ − 1)2.

For α = 1/(γ − 1) the Jacobian matrix J has a pair of imaginary eigenvalues. If it
is considered the real part of the eigenvalues as a function of parameter α then the
derivative of this function with respect to α at α = 1/(γ − 1) is nonzero. Therefore,
according to Theorem 3.4.2 of [8] a Hopf bifurcation occurs. Then, by using the
formula (3.4.11) of [8] we obtain the first Lyapunov coefficient which is equal to−1/16.
Hence, we have a supercritical bifurcation for α slightly larger than 1/(γ−1), and the
unique bifurcated limit cycle is stable. Moreover, if α = 0, then all the points on the
curve x = y−γ are singular points of system (1) and all the parallel lines to the x-axis
are invariant, therefore the phase portraits of system (1) are given in Figure 1(b) and
2(b) corresponding to the cases that the integer γ is odd and even, respectively.

2.2. The local phase portraits of the infinite singular points. In order to study
the qualitative behaviour of the solutions of 2–dimensional polynomial differential
systems at infinity, we can use the Poincaré compactification technique. The base of
this technique is projecting a vector field in R2 onto a sphere which is a compact set.
For more details about the Poincaré compactification, see chapter 5 of [7].

In the local chart U1 system (1) becomes

u̇ = −uvγ+1 + uγ+1 + αuγ − αuvγ, v̇ = −v(vγ+1 − uγ). (2)

Let α 6= 0, then the infinite singular points of system (1) in local chart U1 are (0, 0)
and (−α, 0). The Jacobian matrix of system (2) at point (0, 0) is identically zero. The
blow up technique is used for studying the dynamics of the system in a neighborhood
of the linearly zero singular points. For more details about the blow up, see [1]. Here
we shall apply the blow up technique separately when the integer γ is odd and even.

If γ is odd, for desingularizing the origin of system (2), we use two vertical blow
ups. First we do a vertical blow up (u, v) 7→ (w1v, v) where w1 is the new variable.
Therefore system (2) in the new variables and after cancelling the common factor
vγ−1 becomes

ẇ1 = −αw1(v − wγ−11 ), v̇ = −v2(v − wγ1 ), (3)

where the origin is the unique singular point on the line v = 0, and the Jacobian
matrix of the system at (0,0) is again identically zero. Hence, we use another vertical
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blow up (w1, v) 7→ (w2v, v) where w2 is the new variable. Thus system (3) in the new
variables and after eliminating the common factor v is

ẇ2 = w2(v − α− vγwγ2 + αvγ−2wγ−12 ), v̇ = v2(−1 + vγ−1wγ2 ). (4)

The origin is the unique singular point of system (4) on the line v = 0, it is semi-
hyperbolic and its local phase portrait is determined using Theorem 2.19 of [7]. By
going back from (w2, v) to (w1, v) and from (w1, v) to (u, v), we get that the point
(0, 0) of the original system (2) is the union of one parabolic and four hyperbolic
sectors when α > 0, see Figure 1(c)-(f); and the origin is a stable node when α < 0,
see Figure 1(a).

If γ is even we do a horizontal blow up (u, v) 7→ (u, uw) where w is the new variable.
Then system (2) in the new variables writes

u̇ = u(u− u2wγ+1 + α− αuwγ), ẇ = αw(−1 + uwγ). (5)

where by rescaling of time, the common factor uγ−1 has been eliminated. The point
(0, 0) is the unique singular point of system (5) on u = 0, it is a hyperbolic saddle
when α 6= 0. Now by performing a blowing down and returning from (u,w) to (u, v),
we obtain that the origin of local chart U1 is formed by two hyperbolic and two
parabolic sectors, see Figure 2(a) and 2(c)-(f).

Now we consider the singular point (−α, 0) of system (2) in the local chart U1. If
γ is odd then the Jacobian matrix at this point has two positive eigenvalues when
α < 0. Therefore (−α, 0) is a hyperbolic unstable node, see Figure 1(a). Also, when
α > 0, the eigenvalues of the Jacobian matrix are negative and this implies that the
point (−α, 0) is a hyperbolic stable node, see Figure 1(c)-(f).
If γ is even, then the Jacobian matrix of system (2) at the point (−α, 0) has two
positive eigenvalues when α 6= 0. It implies that (−α, 0) is a hyperbolic unstable
node, see Figure 2(a) and 2(c)-(f).

In the local chart U2 system (1) becomes

u̇ = vγ+1 − u− αu2 + αuvγ, v̇ = −αv(u− vγ). (6)

The origin is a singular point of system (6) and the Jacobian matrix at this point has
a unique zero eigenvalue. Therefore the origin is a semi-hyperbolic singular point and
for determining the local behaviour of system (6) in the neighborhood of the origin
we use Theorem 2.19 of [7] and we obtain that if γ is odd, then the origin is union of
one parabolic and two hyperbolic sectors when α 6= 0, see Figure 1. In the case γ is
even, the origin is a saddle when α > 0 and a stable node when α < 0, see Figure 2.

2.3. The periodic orbits. According to Corollary 2 of section 3.12 of [11], we know
that the region limited by a periodic orbit of a C1 planar differential system contains
at least one singular point and if there are a finite number of singular points in this
region, then the sum of the topological indices of these singular points is equal to
one.

Since system (1) for α < 0 has only one finite singular point (a saddle point) and
the index of this point is −1 (see Theorem 7 of section 3.12 of [11]), then system (1)
for α < 0 has no periodic orbits. Moreover if α = 0 then ẏ = 0, and in this case
system (1) has no periodic solutions.
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Lemma 3. The Higgins–Selkov system (1) for γ = 3, 4, 5 and 6, has no periodic
solutions if α > αγ, where α3 = (1261 + 57

√
57)/686, α4 = 46875/14641, α5 =

24(411 + 41
√

41)/3125 and α6 = (189384302 + 10121703
√

681)/47045881.

Proof. For system (1) we have

ẋ|x=0 = 1 > 0 and ẏ|y=0 = 0,

and also if there exists a periodic orbit, it must surround the singular point (1, 1).
Therefore if system (1) has a periodic solution, then it must be contained in the
quadrant Q = {(x, y) ∈ R2 : x > 0, y > 0} for all γ > 1. The divergence of system
(1) is

f(x, y) = −yγ + αγxyγ−1 − α.
The curve f(x, y) = 0 separates the quadrant Q into two open components f(x, y) > 0
and f(x, y) < 0. We prove that for γ = 3, 4, 5, 6, this curve {(x, y) : f(x, y) = 0} ∩Q
is transversal to the flow of system (1) if α > (1261 + 57

√
57)/686, 46875/14641,

24(411+41
√

41)/3125 and (189384302+10121703
√

681)/47045881, respectively. There-
fore a periodic orbit cannot intersect the curve f(x, y) = 0, and it must be contained
in a simple connected region either {f(x, y) > 0} ∩ Q, or {f(x, y) < 0} ∩ Q. Then
the existence of a such periodic solution is impossible by the Bendixson criterion, see
Theorem 7.10 of [7].

By solving f(x, y) = 0 we obtain x = (yγ + α)/αγyγ−1. Consider the function

Tα(x, y) =

(
∂f

∂x
ẋ+

∂f

∂y
ẏ

) ∣∣∣
x= yγ+α

αγyγ−1

:=
1

γ
Pα(y)

=
−(1 + γ)y2γ + α(γ − 2)yγ + αγ2yγ−1 − α2(γ − 1)2

γ
.

Hence for all positive integer γ, Pα is a polynomial of degree 2γ. In order to prove
that Tα(x, y) in the first quadrant does not change sign, it is sufficient to verify
that polynomial Pα has no real roots. Here, we use the notions of discrimination
matrix, discriminant sequence and Theorem 8 in the Appendix to prove that Pα for
γ = 3, 4, 5, 6 does not have real roots.

First we consider γ = 3 and prove that the polynomial Pα of degree 6 for α >
(1261 + 57

√
57)/686 has no real roots. The elements of the discriminant sequence of

polynomial Pα are

D1 = d2 = 96,

D2 = d4 = 0,

D3 = d6 = −13824α2,

D4 = d8 = 186624α3(−1536 + 7α),

D5 = d10 = 30233088α5(−1024 + 621α),

D6 = d12 = −2176782336α8(1024− 1261α + 343α2).

Therefore, according to the Appendix for α > (1261 + 57
√

57)/686 the sign list
of sequence {D1, D2, ..., D6} is [1, 0,−1, sign (D4), 1,−1], so we have the following
revised sign list

[1,−1,−1, 1 or− 1, 1,−1].
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Then for any sign of the fourth element in the above list, the number of the sign
changes in the revised list is 3. Hence, according to Theorem 8, Pα(y) has 3 pairs of
distinct conjugate imaginary roots. Hence it has no real roots and this implies that
Tα(x, y) < 0 in Q. This concludes the proof of the lemma for γ = 3.

Now we consider γ = 4. Again by using discrimination matrix and Theorem 8 we
show that the polynomial Pα of degree 8 for α > 46875/14641 has no real roots. The
elements of the discriminant sequence of polynomial Pα are

D1 = d2 = 200,

D2 = d4 = 0,

D3 = d6 = 0,

D4 = d8 = −12800000α3,

D5 = d10 = 409600000α4(12500 + 11α),

D6 = d12 = 39321600000α6(62500 + 4387α),

D7 = d14 = −11324620800000α9(−15625 + 48257α),

D8 = d16 = 9784472371200000α12(1 + α)(−46875 + 14641α).

For α > 46875/14641 the sign list of sequence {D1, D2, ..., D8} is [1, 0, 0,−1, 1, 1,−1, 1],
Therefore the corresponding revised sign list is

[1,−1,−1,−1, 1, 1,−1, 1].

The number of the sign changes in this revised list is 4. Thus Pα(y) has 4 pairs of
distinct conjugate imaginary roots and no real roots. It implies that Tα(x, y) < 0 in
Q. This concludes the proof of the lemma for γ = 4.

If γ = 5 in a similar way to the previous cases, we show that the polynomial Pα of
degree 10 for α > 24(411 + 41

√
41)/3125 has only imaginary roots. The elements of

the discriminant sequence of the polynomial Pα are

D1 = d2 = 360,

D2 = d4 = 0,

D3 = d6 = 0,

D4 = d8 = 0,

D5 = d10 = 23619600000α4,

D6 = d12 = −22143375000000α5(−9600 + α),

D7 = d14 = −6643012500000000α7(−48000 + 343α),

D8 = d16 = −326517350400000000000000α10,

D9 = d18 = 26572050000000000000000α13(−20352 + 8575α),

D10 = d20 = −70858800000000000000000000α16(1 + α)(18432− 19728α + 3125α2).

For α > 24(411 + 41
√

41)/3125 the sign list of sequence {D1, D2, ..., D10} is

[1, 0, 0, 0, 1, sign (D6), sign (D7),−1, 1,−1],

so the corresponding revised sign list is

[1,−1,−1, 1, 1, 1 or− 1, 1 or− 1,−1, 1,−1].
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The case that sign (D6) = −1 and sign (D7) = 1 is impossible, in the other cases the
number of the sign changes in this revised list is 5. Therefore Pα(y) has 5 pairs of
distinct conjugate imaginary roots and no real roots. It implies that Tα(x, y) < 0 in
Q. This completes the proof of the lemma for γ = 5.

For γ = 6 the elements of discriminant sequence of the polynomial Pα of degree 12
are

D1 = d2 = 588,

D2 = d4 = 0,

D3 = d6 = 0,

D4 = d8 = 0,

D5 = d10 = 0,

D6 = d12 = 78690759081984α5,

D7 = d14 = −265581311901696α6(66706983 + 608α),

D8 = d16 = −430241725280747520α8(155649627 + 93272α),

D9 = d18 = −15944515252329719468851200000α11,

D10 = d20 = 408976816222257304376033280000000α14,

D11 = d22 = −753691861204384855818240000000α17(−1647086 + 898529α),

D12 = d24 = 38108015454154290462720000000000α20(−720600125− 378768604α

+ 47045881α2).

For α > (189384302+10121703
√

681)/47045881 the sign list of sequence {D1, D2, ..., D12}
is [1, 0, 0, 0, 0, 1,−1,−1,−1, 1,−1, 1], then the corresponding revised sign list is

[1,−1,−1, 1, 1, 1,−1,−1,−1, 1,−1, 1].

The number of the sign changes in this revised list is 6. According to Theorem 8,
Pα(y) has 6 pairs of distinct conjugate imaginary roots. It implies that Tα(x, y) < 0
in Q. This completes the proof of the lemma for γ = 6. �

To simplify the investigation about the limit cycles of the Higgins–Selkov system
(1), it is introduced the following change of variables

x =
α−X − Y

α
, y = 1 +X,

dt

dτ
=

1

yγ
.

By performing this change of variables and again denoting X, Y and τ by x, y and
t, respectively, system (1) transforms into the following Liénard differential system

dx

dt
= −y + α− x− α

(1 + x)γ−1
,

dy

dt
=

αx

(1 + x)γ
. (7)

In [3] by considering Liénard system (7) for x > −1, it was proved that if the unique
singular point of system (1) is unstable for a given value of parameter α, then there
is at most one periodic orbit and if such a solution exists, it must be asymptotically
stable. Moreover the authors of [3], by means of Theorem 2.1 of [10], have shown
if α ∈ (0, 1/(γ − 1)) then system (7) has no limit cycles. This implies that when
the unique singular point of the Higgins–Selkov system (1) is stable, then there is no
limit cycles (see Theorem 7 of [3]).



DYNAMICS OF HIGGINS–SELKOV SYSTEMS 9

In the following result we show that system (7) and consequently the Higgins–
Selkov (1) in the case γ = 3, 4, 5, 6 has no limit cycle when α = 1/(γ − 1).

Lemma 4. If α = 1/(γ − 1) then system (7) for γ = 3, 4, 5, 6 has no limit cycles.

Proof. By doing the change of variable y → −y on system (7), we can use Corollary
10 of [5] such that

F̄ (x) = α− x− α

(1 + x)γ−1
, ḡ(x) =

αx

(1 + x)γ
,

and x ∈ (−1,∞). If α = 1/(γ − 1), it can be easily checked that the conditions
(i)-(iii) of Proposition 9 of [5] hold. To complete this proof, it suffices to show that
there is no solution for the system

F̄ (x1) = F̄ (x2), λ̄(x1) = λ̄(x2), (8)

where F̄ ′(x) = f̄(x), λ̄(x) = ḡ(x)/f̄(x), and −1 < x2 < 0 < x1. From λ̄(x1) = λ̄(x2)
and α = 1/(γ − 1), the following equation is obtained

(x2 − x1) + x1(1 + x2)
γ − x2(1 + x1)

γ = 0,

by using the binomial expansion and after simplifying, we can rewrite the above
equation as

x1x2

[(
γ

2

)
(x2 − x1) +

(
γ

3

)
(x22 − x21) + ...+

(
γ

γ

)
(xγ−12 − xγ−11 )

]
= 0, (9)

where
(
γ
n

)
= γ!

(γ−n)!n! and n < γ is a positive integer. Now for γ = 3, 4, 5, 6, we show

that there is no solution for equation (9) such that −1 < x2 < 0 < x1, thus there is
no solution for system (8).

By substituting γ = 3, 4, 5, 6 into (9), we obtain

• x1x2(x2 − x1)(3 + x1 + x2) = 0 for γ = 3,

• x1x2(x2 − x1)
[
(6 + 4x2 + x22) + x1(4 + x2) + x21

]
= 0 for γ = 4,

• x1x2(x2−x1)
[
10 +x31 +x2(10 + 5x2 +x22) +x21(5 +x2) +x1(10 + 5x2 +x22)

]
= 0

for γ = 5,

• x1x2(x2−x1)
[
(15 + 20x2 + 15x22 + 6x32) +x42 +x31(6 +x2) +x21(15 + 6x2 +x22) +

x1(20 + 15x2 + 6x22 + x32) + x41
]

= 0 for γ = 6.

In all four equations listed above, the condition −1 < x2 < 0 < x1 implies that
there is no solution for these equations. Therefore system (8) has no solutions and
by using Corollary 10 of [5] we conclude that system (7) for γ = 3, 4, 5, 6 and α =
1/(γ − 1) has no limit cycles. �

Now we study the existence of limit cycle of system (1) when α > 1/(γ − 1). For
this purpose we perform the linear change of variables (x, y, t)→ (x,

√
αy,−1/

√
αt)

in system (7) when α > 0, and we obtain the following system

dx

dt
= y +

√
α− 1√

α
x−

√
α

(1 + x)γ−1
,

dy

dt
=

−x
(1 + x)γ

. (10)

Then we show that the vector field of system (10) is a generalized rotated vector field
(see Definition 3.3 of [14]).
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Lemma 5. If γ > 1 is a fixed integer, then the vector field of system (10) for all real
α > 0 is a generalized rotated vector field.

Proof. The unique singular point of system (10) at the origin for all values of the
parameter α remains unchanged and also the value of the following determinant∣∣∣∣∣∣∣∣

y +
√
α1 −

1
√
α1

x−
√
α1

(1 + x)γ−1
−x

(1 + x)γ

y +
√
α2 −

1
√
α2

x−
√
α2

(1 + x)γ−1
−x

(1 + x)γ

∣∣∣∣∣∣∣∣ ,

for all x > −1 and y ∈ R, is equal to

(
√
α2 −

√
α1)

(
x((x+ 1)γ−1 − 1)

(1 + x)2γ−1
+

1
√
α1α2

x2

(1 + x)γ

)
> 0,

where α1 < α2 and α1, α2 > 0. The value of this determinant can only be zero for
x = 0. Therefore, according to Definition 3.3 of [14], the vector field of system (10)
is a generalized rotated vector field. �

Remark 6. Since system (10) has been obtained from system (7) by a linear change
of variables, hence all facts about existence and number of limit cycles of the both
systems are the same.

Lemma 7. For each γ = 3, 4, 5 and 6, there exists a real number α∗γ ∈ (1/(γ−1), αγ]
such that system (10) has a unique limit cycle when α ∈ (1/(γ − 1), α∗γ) and no
periodic solution when α ∈ (α∗γ, αγ] where αγ for γ = 3, 4, 5, 6, has been introduced in
Lemma 3.

Proof. According to Lemma 5 the vector field of system (10) is a generalized rotated
vector field. Hence, if this system has a limit cycle for a given values of α, then by
Theorem 3.5 of [6] this limit cycle can neither split nor disappear when parameter
α changes monotonically and also the amplitude of the limit cycle will increase or
decrease monotonically.

As we know when α = 1/(γ− 1) a Hopf bifurcation occurs, therefore for α slightly
larger than 1/(γ−1) system (10) has a unique limit cycle. Theorem 3.5 of [6] implies
that the amplitude of the limit cycle increases when parameter α increases. Moreover
system (10) has no periodic orbit when α ∈ (−∞, 1/(γ − 1)] ∪ (αγ,+∞). Thus for
each γ = 3, 4, 5, 6, there exists α∗γ ∈ (1/(γ − 1), αγ] such that when α tends to α∗,
the amplitude of the limit cycle tends to infinity. This completes the proof of the
lemma. �

2.4. Phase portraits in the Poincaré disc. By considering all information of
system (1) which have been obtained until now, and taking into account that the
straight line y = 0 is invariant, we get the phase portraits of Figures 1 and 2 described
in Theorems 1 and 2, respectively. Therefore the proofs of Theorems 1 and 2 are
completed.
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3. Appendix

In this appendix we state the definitions of the discrimination matrix and discrim-
inant sequence which have been introduced in [13] and some notations and result
related to them. For more details, see [13].

Definition 1. Consider a general polynomial of degree n,

f(x) = a0x
n + a1x

n−1 + ...+ an,

the following (2n + 1) × (2n + 1) matrix that is formed by the coefficients of the
polynomial, 

a0 a1 a2 ... an
0 na0 (n− 1)a1 ... an−1

a0 a1 ... an−1 an
na0 ... 2an−2 an−1

... ...

... ...
a0 a1 ... an
0 na0 ... an−1

a0 a1 ... an


where there are zeros in the blank spaces, is called the discrimination matrix of f(x),
and denoted by Discr(f).

The determinant of the submatrix Discr(f), formed by the first k rows and the
first k columns, is denoted by dk, for k = 1, .., 2n+ 1.

Definition 2. The sequence {D1, ..., Dk} is called the discriminant sequence of poly-
nomial f , where Dk = d2k, for k = 1, ..., n.

Definition 3. The list [sign(D1), ..., sign(Dn)] is called the sign list of a given se-
quence {D1, ..., Dk}, where

sign (x) =

 −1 if x < 0,
0 if x = 0,

+1 if x > 0.

Definition 4. Let [s1, s2, ....sn] be a sign list. The revised sign list [ε1, ε1, ..., εn] is
constructed according of the following rules:

• If [si, si+1, ..., si+j] is a part of the given list, where

si 6= 0, si+1 = si+2 = ... = si+j−1 = 0, si+j 6= 0;

then, we replace the subsection [si+1, si+2, ..., si+j−1] with

[−si,−si, si, si,−si,−si, si, si, ...],
keeping the number of terms.

• Otherwise, let εk = sk, i.e. no changes for other terms.

Theorem 8. [13] Consider a polynomial f(x) which has real coefficients,

f(x) = a0x
n + a1x

n−1 + ...+ an.

Let ν be the number of the sign changes of the revised sign list of {D1, D2, ..., Dk}.
Then the number of the pairs of distinct conjugate imaginary roots of polynomial f(x)
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is equal to ν. Moreover, if the number of non-zero members of the revised sign list is
l, then, l − 2ν is the number of the distinct real roots of polynomial f(x).
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