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Abstract. In this paper we deal with 3-dimensional discontinuous piecewise

differential systems formed by linear centers and separated by one plane or
two parallel planes. We prove that these systems separated by one plane have

no limit cycles, besides the systems separated by two parallel planes have at
most one limit cycle, and that there are systems having such a limit cycle. So

we solve the extension of the 16th Hilbert problem to this class of differential

systems.

1. Introduction and Statement of the Main Results

One of the main goals in the qualitative theory is to study the number of limit
cycles of the differential systems. In part this problem was motivated by the 16-th
Hilbert problem (1900), see [8, 16] for more details. Limit cycles play a main role
for understanding the dynamics of many systems, see for instance [1, 2, 6, 9, 10].

On the other hand there are many problems that are modeled using discontinu-
ous piecewise differential systems. These systems appear in various situations like
mechanical systems and control theory, see for instance [3, 4]. In particular the
study of discontinuous piecewise linear differential systems in the plane separated
by straight lines is also an important class of differential systems which appear in
models of mechanics and electrical circuits among others, see for instance [5, 13, 15].

Following the Filippov’s convention [7] the discontinuous piecewise linear dif-
ferential systems can have sliding or crossing limit cycles. A sliding limit cycle
contains sliding segments on the line of discontinuity, whereas crossing limit cycles
contain only crossing points. In this paper we work with crossing limit cycles, or
simply limit cycles.

In [11] it was proved that discontinuous piecewise linear differential systems in
the plane separated by one straight line and formed by two linear centers have no
limit cycles, besides discontinuous piecewise linear differential systems in the plane
separated by two parallel straight lines and formed by three linear centers have at
most one limit cycle, and that there are systems having such a limit cycle.

The main goal of this paper is to extend these previous results to 3-dimensional
discontinuous piecewise differential systems in the space separated by one plane or
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two parallel planes and formed by linear centers. More precisely, we consider the
differential system

(1) ẋ = −y, ẏ = x, ż = 0.

This differential system has the z−axis filled of singular points, and at every plane
z = z0, with z0 a constant, there exists a linear center at (0, 0, z0), i.e. all the orbits
in this plane are periodic formed by circles centered at (0, 0, z0), of course with the
exception of the singular point (0, 0, z0).

We shall pass from the coordinates (x, y, z) to (X,Y, Z) through the affine change
of coordinates

X = a0 + a1x+ a2y + a3z,
Y = b0 + b1x+ b2y + b3z,
Z = c0 + c1x+ c2y + c3z,

assuming that the determinant of matrix of the change of coordinates

D = D(a, b, c) = −a1b2c3 + a1b3c2 + a2b1c3 − a2b3c1 − a3b1c2 + a3b2c1 6= 0,

where a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3). In the new coordinates
(X,Y, Z) the differential system (1) writes

(2)

Ẋ = P0 + P1X + P2Y + P3Z,

Ẏ = Q0 +Q1X +Q2Y +Q3Z,

Ż = R0 +R1X +R2Y +R3Z,

where

P0 = −D−1(a1(−a0b1c3 + a0b3c1 − a3b0c1 + a3b1c0)

+a2(−a0b2c3 + a0b3c2 + a2b0c3 − a2b3c0 − a3b0c2 + a3b2c0)

+a21(b0c3 − b3c0)),

P1 = D−1(−a1b1c3 + a1b3c1 − a2b2c3 + a2b3c2),

P2 = D−1(c3
(
a21 + a22

)
− a3(a1c1 + a2c2)),

P3 = −D−1(b3
(
a21 + a22

)
− a3(a1b1 + a2b2)),

Q0 = D−1(c3
(
a0
(
b21 + b22

)
− a1b0b1 − a2b0b2

)
+ b3(−a0(b1c1 + b2c2)

+a1b1c0 + a2b2c0) + a3
(
b0b1c1 + b2(b0c2 − b2c0)− b21c0

)
),

Q1 = −D−1(c3
(
b21 + b22

)
− b3(b1c1 + b2c2)),

Q2 = D−1(c3(a1b1 + a2b2)− a3(b1c1 + b2c2)),

Q3 = −D−1(b3(a1b1 + a2b2)− a3
(
b21 + b22

)
),

R0 = −D−1(−a0b1c1c3 − a0b2c2c3 + a0b3c
2
1 + a0b3c

2
2 + a1c1(b0c3 − b3c0)

+a2b0c2c3 − a2b3c0c2 + a3
(
−b0

(
c21 + c22

)
+ b1c0c1 + b2c0c2

)
),

R1 = −D−1(c3(b1c1 + b2c2)− b3
(
c21 + c22

)
),

R2 = −D−1(a3
(
c21 + c22

)
− c3(a1c1 + a2c2)),

R3 = D−1(−a1b3c1 − a2b3c2 + a3b1c1 + a3b2c2).

For simplicity we rename the variables X,Y and Z by x, y and z, respectively. Thus
system (2) writes

(ẋ, ẏ, ż)T = V +M · (x, y, z)T ,
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where

V (a, b, c) = (P0, Q0, R0)T and M(a, b, c) =

P1 P2 P3

Q1 Q2 Q3

R1 R2 R3

 .

Now we consider the 3-dimensional discontinuous piecewise differential system
separated by plane x = 0

(3)
(ẋ, ẏ, ż)T = V (a, b, c) +M(a, b, c) · (x, y, z)T , in x > 0,

(ẋ, ẏ, ż)T = V (α, β, γ) +M(α, β, γ) · (x, y, z)T , in x < 0,

and the one separated by the parallel planes x = −1 and x = 1

(4)

(ẋ, ẏ, ż)T = V (a, b, c) +M(a, b, c) · (x, y, z)T , in x > 1,

(ẋ, ẏ, ż)T = V (A,B,C) +M(A,B,C) · (x, y, z)T , in |x| < 1,

(ẋ, ẏ, ż)T = V (α, β, γ) +M(α, β, γ) · (x, y, z)T , in x < −1,

where we assume that D(a, b, c) 6= 0, D(α, β, γ) 6= 0 and D(A,B,C) 6= 0.

In what follows we state the main results of this paper.

Theorem 1. The discontinuous piecewise linear differential systems (3) have no
limit cycles.

Theorem 2. The discontinuous piecewise linear differential systems (4) have at
most one limit cycle. Moreover there are systems in this class having one limit
cycle.

Theorems 1 and 2 are proved in sections 2 and 3, respectively. The main tool
for proving these theorems is the use of the first integrals of the differential sys-
tems which form the discontinuous piecewise differential systems, this technique for
studying the limit cycles already was used in [12].

Proposition 1. The discontinuous piecewise linear differential system separated
by the two parallel planes x = −1 and x = 1

(5)

ẋ = p0, ẏ = y − z, ż = p0, in x > 1,

ẋ = p1, ẏ = p2, ż = p3, in |x| < 1,

ẋ = −x+ 2y − 2z, ẏ = −x+ 2y − 2z, ż = −x+ 2y − z, in x < −1,

where

p0 = −1

2
− x

2
+ 2y − z

2
, p1 = −13x

16
+

11y

8
− 21z

8
+

5

16
,

p2 =
5x

8
+
y

4
− 3z

4
+

3

8
, p3 =

33x

32
− 7y

16
+

9z

16
+

7

32
,

has one limit cycle, the one of Figure 1. Moreover this limit cycle is stable.

Proposition 1 is proved at the end of section 3.
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Figure 1. The limit cycle of discontinuous piecewise linear differential
system (5).

2. Proof of Theorem 1

The differential system in x > 0 of the discontinuous linear piecewise differential
system (3) has the two independent first integrals

h1(x, y, z) = (−a3b1c0 + a1b3c0 + a3b0c1 − a0b3c1 − a1b0c3 + a0b1c3

+b3c1x− b1c3x− a3c1y + a1c3y + a3b1z − a1b3z)2

+(a3b2c0 − a2b3c0 − a3b0c2 + a0b3c2 + a2b0c3 − a0b2c3
−b3c2x+ b2c3x+ a3c2y − a2c3y − a3b2z + a2b3z)

2,

h2(x, y, z) = −a2b1c0 + a1b2c0 + a2b0c1 − a0b2c1 − a1b0c2 + a0b1c2

+(b2c1 − b1c2)x+ (−a2c1 + a1c2)y + (a2b1 − a1b2)z,

and the differential system in x < 0 has the two independent first integrals f1 and
f2 obtained respectively from h1 and h2, changing the parameters ai, bi and ci by
αi, βi and γi respectively, for i = 0, 1, 2, 3.

A limit cycle for discontinuous piecewise differential system (3) must intersect
the plane x = 0 in two distinct points, denoted by (0, y1, z1) and (0, y2, z2), and
such two points must satisfy the system of equations

e1 = h1(0, y2, z2)− h1(0, y1, z1) = 0,

e2 = h2(0, y2, z2)− h2(0, y1, z1) = 0,

e3 = f1(0, y2, z2)− f1(0, y1, z1) = 0,

e4 = f2(0, y2, z2)− f2(0, y1, z1) = 0.
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Taking the change of variables y1 = y + y2 and z1 = z + z2 we obtain

e2 = (a2c1 − a1c2)y + (−a2b1 + a1b2)z,

e4 = (α2γ1 − α1γ2)y + (−α2β1 + α1β2)z.

In order that the system e2 = e4 = 0 has non-trivial solutions we need that the
following determinant be zero

∆ = −a2α2β1c1 + α1a2β2c1 + a2α2b1γ1 − a1α2b2γ1 + a1α2β1c2

−a1α1β2c2 − α1a2b1γ2 + a1α1b2γ2.

However now there are only three independent equations e1 = e2 = e3 = 0 and four
unknowns variables y1, y2, z1 and z2. Thus always we have a continuum of periodic
solutions and no limit cycles. Therefore Theorem 1 is proved.

3. Proof of Theorem 2

We note that the differential system in x > 1 of the discontinuous piecewise
differential system (4) has the same two independent first integrals h1 and h2 given
in the proof of Theorem 1. The differential system in |x| < 1 has the two inde-
pendent first integrals f1 and f2 obtained respectively from h1 and h2 replacing
the parameters ai, bi and ci by Ai, Bi and Ci, respectively for i = 0, 1, 2, 3, and
the differential system in x < −1 has the two independent first integrals g1 and g2
obtained respectively from h1 and h2, changing the parameters ai, bi and ci by αi,
βi and γi respectively for i = 0, 1, 2, 3.

A limit cycle of the discontinuous piecewise differential system (4) must intersect
each plane x = 1 and x = −1 in two distinct points, denoted by (1, y1, z1) and
(1, y2, z2), and (−1, y3, z3) and (−1, y4, z4), respectively. Such four points must
satisfy the system of equations
(6)

E1 = h1(1, y2, z2) − h1(1, y1, z1) = 0, E2 = h2(1, y2, z2) − h2(1, y1, z1) = 0,
E3 = f1(1, y2, z2) − f1(−1, y3, z3) = 0, E4 = f2(1, y2, z2) − f2(−1, y3, z3) = 0,
E5 = g1(−1, y3, z3) − g1(−1, y4, z4) = 0, E6 = g2(−1, y3, z3) − g2(−1, y4, z4) = 0,
E7 = f1(−1, y4, z4) − f1(1, y1, z1) = 0, E8 = f2(−1, y4, z4) − f2(1, y1, z1) = 0.

Applying the change of parameters

K0 = b3c1 − b1c3, K1 = a3c1 − a1c3, K2 = a3b1 − a1b3,
K3 = b3c2 − b2c3, K4 = a3c2 − a2c3, K5 = a3b2 − a2b3,
K6 = a2c1 − a1c2, K7 = a2b1 − a1b2, K8 = B3C1 −B1C3,
K9 = A3C1 −A1C3, K10 = A3B1 −A1B3, K11 = B3C2 −B2C3,
K12 = A3C2 −A2C3, K13 = A3B2 −A2B3, K14 = B2C1 −B1C2,
K15 = A2C1 −A1C2, K16 = A2B1 −A1B2, K17 = α3β1 − α1β,
K18 = α3γ1 − α1γ3, K19 = α3β2 − α2β3, K20 = β1γ3 − β3γ1,
K21 = α3γ2 − α2γ3, K22 = β2γ3 − β3γ2, K23 = α2β1 − α1β2,
K24 = α2γ1 − α1γ2,
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the polynomials Ei for i = 1, ..., 8 write

E1 = −((a0 − 1)K0 +K1(y1 − b0) +K2(c0 − z1))2 + ((a0 − 1)K0

+K1(y2 − b0) +K2(c0 − z2))2 − ((a0 − 1)K3 +K4(y1 − b0)

+K5(c0 − z1))2 + ((a0 − 1)K3 +K4(y2 − b0) +K5(c0 − z2))2,

E2 = K6(y1 − y2)−K7(z1 − z2),

E3 = ((A0 − 1)K8 +K9(y2 −B0) +K10(C0 − z2))2 − ((A0 + 1)K8

+K9(y3 −B0) +K10(C0 − z3))2 + ((A0 − 1)K11 +K12(y2 −B0)

+K13(C0 − z2))2 − ((A0 + 1)K11 +K12(y3 −B0) +K13(C0 − z3))2,

E4 = 2K14 −K15(y2 − y3) +K16(z2 − z3),

E5 = (K17(z3 − γ0) +K18(β0 − y3) + (α0 + 1)K20)2 − (K17(z4 − γ0)

+K18(β0 − y4) + (α0 + 1)K20)2 + (K19(z3 − γ0) +K21(β0 − y3)

+(α0 + 1)K22)2 − (K19(z4 − γ0) +K21(β0 − y4) + (α0 + 1)K22)2,

E6 = K23(z3 − z4)−K24(y3 − y4),

E7 = −((A0 − 1)K8 +K9(y1 −B0) +K10(C0 − z1))2 + ((A0 + 1)K8

+K9(y4 −B0) +K10(C0 − z4))2 − ((A0 − 1)K11 +K12(y1 −B0)

+K13(C0 − z1))2 + ((A0 + 1)K11 +K12(y4 −B0) +K13(C0 − z4))2,

E8 = −2K14 +K15(y1 − y4)−K16(z1 − z4).

Remark 1. If (y1, y2, y3, y4, z1, z2, z3, z4) is a solution of system (6), then (y2, y1, y4,
y3, z2, z1, z4, z3) is also a solution.

In what follows we provide 14 lemmas.

Lemma 1. If K6 6= 0, K24 6= 0, K15 6= 0 and K16K6 −K15K7 6= 0, then system
(4) has at most one limit cycle.

Proof. Since K6 6= 0 and K24 6= 0, we solve E2 = 0 in the variable y1 and E6 = 0
in the variable y3, and we obtain

y1 = y2 +
K7

K6
(z1 − z2),(7)

y3 = y4 +
K23

K24
(z3 − z4).(8)

Replacing y1 and y3 in each equation Ei = 0 for i ∈ {1, 3, 4, 5, 7, 8}, in particular
we obtain that

(9) E4 = 2K14 +K16(z2 − z3) +K15(y4 − y2) +
K15K23

K24
(z3 − z4) = 0.

Since K15 6= 0 we solve E4 = 0 in the variable y2 and we substitute it in each
Ei = 0 for i ∈ {1, 3, 5, 7, 8}. Thus E8 becomes

E8 = K16(−z1 + z2 − z3 + z4) +
K7K15

K6
(z1 − z2) +

K15K23

K24
(z3 − z4) = 0.

Since K16K6−K15K7 6= 0 we solve E8 = 0 in the variable z1 and we substitute it in
each equation Ei = 0 for i ∈ {1, 3, 5, 7}. Now we have the following four polynomial
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equations in the variables z2, z3, z4 and y4:

E1 =
(K15K23 −K16K24)

K15K2
24(K16K6 −K15K7)2

(z3 − z4)T1 = 0,

E3 = − 1

K2
15K24

T2 = 0,

E5 = − 1

K2
24

(z3 − z4)T3 = 0,

E7 =
1

K2
15K

2
24(K16K6 −K15K7)2

T4 = 0,

where T1 and T3 are polynomials of degree 1 and T2 and T4 are polynomials of
degree 2. We do not explicit them here due to their lengths. If z3 = z4 then from
(8) we get y3 = y4 and we have no limit cycles. Thus we must study the zeros of the
system T1 = T2 = T3 = T4 = 0. Taking E3,7 = E3 + E7 we get the new equation

E3,7 =
1

K15K2
24(K16K6 −K15K7)2

(z3 − z4)T5 = 0,

such that T5 is a polynomial of degree 1. In short, we have four polynomials and
the product of their degrees is 2.

Thus if system (6) has finitely many solutions by Bezout Theorem (see for in-
stance [14]) it has at most 2 solutions. By Remark 1 these two solutions correspond
to the same limit cycle. So the discontinuous piecewise linear differential system
(4) has at most one limit cycle. �

Lemma 2. If K6 6= 0, K24 = 0, K15 6= 0 and K16K6 −K15K7 6= 0, then system
(4) has at most one limit cycle.

Proof. Since K6 6= 0 we solve E2 = 0 in the variable y1 and we obtain (7). Taking
K24 = 0 and replacing y1 given in (7) in each Ei = 0, for i ∈ {1, 3, .., 8}, in particular
we get E6 = K23(z3 − z4) = 0. So z3 = z4, otherwise K23 = 0 and we do not have
finitely many solutions and therefore we have no limit cycles. Then we have that

E8 = −2K14 +K16z4 +K15(y2 − y4)− 1

K6

(
(K16K6 −K15K7)z1 +K15K7z2

)
.

Solving E8 = 0 in the variable y2 we obtain

y2 = y4 +
2K14K6 +K16K6z1 −K15K7z1 +K15K7z2 −K16K6z4

K15K6
.

Substituting y2 in each Ei = 0 for i ∈ {1, 3, 4, 5, 7}, in particular we have

E4 = K15(y3 − y4)− 1

K6
(K16K6 −K15K7)(z1 − z2) = 0.
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Solving E4 = 0 in the variable y3 and substituting it in each Ei = 0 for i ∈ {1, 3, 5, 7}
we obtain the following four polynomial equations in the variables z1, z2, y4 and z4

E1 = − 1

K15K2
6

(z2 − z1)T1 = 0,

E3 = − 1

K2
15K6

T2 = 0,

E5 =
(K16K6 −K15K7)

K2
15K

2
6

(z2 − z1)T3 = 0,

E7 =
1

K2
15

T4 = 0,

where T1 and T3 are polynomials of degree 1 and T2 and T4 are polynomials of
degree 2. If z1 = z2 then from (7) we have y1 = y2 and we have no limit cycles.
Thus we must study the number of the zeros of the system T1 = T2 = T3 = T4 = 0.
Taking E3,7 = E3 + E7 we get the new equation

E3,7 =
1

K2
15K6

(z1 − z2)T5 = 0,

such that T5 is a polynomial of degree 1. In short we have four polynomials and
the product of their degrees is 2. Thus as in the proof of the previous lemma we
conclude that the discontinuous piecewise differential system (4) has at most one
limit cycle. �

Lemma 3. If K6 6= 0, K24 6= 0, K15 = 0 and K16K6 −K15K7 6= 0, then system
(4) has at most one limit cycle.

Proof. Consider K15 = 0. So K16 6= 0. Since K6 6= 0 and K24 6= 0 we substituted
y1 and y3 given in (7) and (8) respectively, in each equation Ei = 0 for i = 1, ..., 8.
Thus E4 and E8 become respectively

E4 = 2K14 +K16z2 −K16z3, E8 = −2K14 −K16z1 +K16z4.

Solving E4 = 0 and E8 = 0 in the variables z2 and z1 respectively, we obtain

z1 = (−2K14 +K16z4)/K16, z2 = (−2K14 +K16z3)/K16.

Substituting them in each equation Ei = 0 for i ∈ {1, 3, 5, 7}, we obtain the follow-
ing four polynomial equations in the variables y2, y3, z3 and z4:

E1 =
1

K16K2
6

(z3 − z4)T1 = 0,

E3 = − 1

K2
16K

2
24

T2 = 0,

E5 = − 1

K2
24

(z3 − z4)T3 = 0,

E7 =
1

K2
16K

2
6

T4 = 0,

where T1 and T3 are polynomials of degree 1 and T2 and T4 are polynomials of
degree 2. As in the proof of Lemma 1 we conclude that the discontinuous piecewise
differential system (4) has at most one limit cycle. �
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Lemma 4. If K6 = 0, K24 6= 0, K15 6= 0 and K16K6 −K15K7 6= 0, then system
(4) has at most one limit cycle.

Proof. Consider K6 = 0. So we have E2 = −K7(z1 − z2) = 0. Since K7 6= 0, we
have that z1 = z2. Taking z1 = z2 and solving E6 = 0 in the variable y3 we obtain
(8). Substituting it in each equation Ei = 0 for i ∈ {1, 3, 4, 5, 7, 8}, in particular we
obtain E4 = 0 given in (9). Solving E4 = 0 in the variable y2 and substituting it
in each equation Ei = 0 for i ∈ {1, 3, 5, 7, 8}, E8 becomes

E8 = −2K14 +K15(y1 − y4) +K16(z4 − z2).

Solving E8 = 0 in the variable y1 and substituting it in each equation Ei = 0 for
i ∈ {1, 3, 5, 7}, we obtain the following four polynomial equations in the variables
y4, z2, z3 and z4:

E1 =
K15K23 −K16K24

K2
15K

2
24

(z3 − z4)T1 = 0,

E3 = − 1

K2
15K24

T2 = 0,

E5 = − 1

K2
24

(z3 − z4)T3 = 0,

E7 =
1

K2
15

T4 = 0,

where T1 and T3 are polynomials of degree 1 and T2 and T4 are polynomials of
degree 2. As in the proof of Lemma 1 we conclude that the discontinuous piecewise
differential system (4) has at most one limit cycle. �

Lemma 5. If K6 = 0, K24 = 0, K15 6= 0 and K16K6 −K15K7 6= 0, then system
(4) has at most one limit cycle.

Proof. Consider K6 = 0, K24 = 0 and K15 6= 0. So we have that K7 6= 0. From
E2 = 0 and E6 = 0 we obtain that z1 = z2 and z3 = z4. Solving E4 = 0 and
E8 = 0 in the variables y2 and y1, respectively and substituting them in each
Ei = 0 for i ∈ {1, 3, 5, 7} we get the following four polynomial equations in the
variables y3, y4, z2 and z4:

E1 =
1

K15
(y3 − y4)T1 = 0,

E3 = − 1

K2
15

T2 = 0,

E5 = (y4 − y3)T3 = 0,

E7 =
1

K2
15

T4 = 0,

where T1 and T3 are polynomials of degree 1 and T2 and T4 are polynomials of
degree 2. Again as in the proof of Lemma 1 we conclude that the discontinuous
piecewise differential system (4) has at most one limit cycle. �

Lemma 6. If K6 6= 0, K24 = 0, K15 = 0 and K16K6 −K15K7 6= 0, then system
(4) has no limit cycles.
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Proof. Take K24 = 0 and K15 = 0. So we have that K16 6= 0, E6 = K23(z3 − z4)
and E8 = −2K14 − K16z1 + K16z4. As in the proof of Lemma 2 we have that
z3 = z4. Solving E2 = 0 in the variable y1 we obtain (7). Solving E8 = 0 in the
variable z4 and substituting it in E4 = 0 we get E4 = −K16(z1−z2) = 0. If z1 = z2
we have from (7) that y1 = y2 and we have no limit cycles. Therefore system (4)
has no limit cycles. �

Lemma 7. If K6 6= 0, K24 6= 0, K15 6= 0 and K16K6 −K15K7 = 0, then system
(4) has no limit cycles.

Proof. Consider K6 6= 0, K24 6= 0, K15 6= 0 and K16K6 − K15K7 = 0. Solving
E2 = 0 and E6 = 0 in the variables y1 and y3 respectively, we obtain y1 and y3
given in (7) and (8). Substituting y1, y3 and K16 = K15K7/K6 in E4 = 0 and
E8 = 0 in particular we obtain

E4 = 2K14 +K15(y4 − y2) +
K15K7

K6
(z2 − z3) +

K15K23

K24
(z3 − z4) = 0.

Solving E4 = 0 in the variable y2 and substituting it in E8 = 0 we obtain

E8 =
K15(K23K6 −K24K7)(z3 − z4)

K24K6
= 0.

If z3 = z4, then from (8) we get y3 = y4 and we have no limit cycles. If K23K6 −
K24K7 = 0, then there are more unknown variables than equations in system (6)
and therefore there are no limit cycles. �

Lemma 8. If K6 6= 0 and K24 6= 0, K15 = 0 and K16K6−K15K7 = 0, then system
(4) has no limit cycles.

Proof. Consider K6 6= 0 and K24 6= 0. Taking K15 = 0 we have that K16 = 0. So
we obtain E4 = −E8 = 2K14. Therefore there are more unknown variables than
equations in system (6) and therefore there are no limit cycles. �

Lemma 9. If K6 6= 0 and K24 = 0, K15 = 0 and K16K6−K15K7 = 0, then system
(4) has no limit cycles.

Proof. The proof of this lemma is analogous to the one of the previous lemma. �

Lemma 10. If K6 = 0, K24 = 0 and K15 = 0, then system (4) has no limit cycles.

Proof. Considering K6 = 0, K24 = 0 and K15 = 0 we have E2 = −K7(z1 − z2)
and E6 = K23(z3 − z4). So for having limit cycles it is necessary that z1 = z2 and
z3 = z4. However in this case E4 = −E8 = 2K14 + K16z2 −K16z4 and therefore
there are no limit cycles. �

Lemma 11. If K6 6= 0, K24 = 0, K15 6= 0 and K16K6 −K15K7 = 0, then system
(4) has no limit cycles.

Proof. Consider K6 6= 0, K24 = 0, K15 6= 0 and K16 = K15K7/K6. Thus we have
that E6 = K23(z3 − z4) = 0. It is necessary that z3 = z4 for having limit cycles.
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Solving E2 = 0 in the variable y1 we get y1 given in (7). Substituting it in E4 = 0
and E8 = 0 we obtain

E4 =
2K14K6 −K15K6y2 +K15K6y3 +K15K7z2 −K15K7z4

K6
= 0,

E8 = −2K14K6 −K15K6y2 +K15K6y4 +K15K7z2 −K15K7z4
K6

= 0.

Solving E8 = 0 in the variable y2 and substituting it in E4 = 0 we have that
E4 = K15(y3 − y4) = 0. If y3 = y4 we have no limit cycles because z3 = z4. �

Lemma 12. If K6 = 0, K24 = 0, K15 6= 0 and K16K6 −K15K7 = 0, then system
(4) has no limit cycles.

Proof. Consider K6 = 0, K24 = 0 and K15 6= 0. Since K16K6 − K15K7 = 0 we
have K7 = 0. Thus we vanish E2 and system (6) has seven equations and eight
unknown variables y1, .., y4, z1, ..., z4. So there are no limit cycles. �

Lemma 13. If K6 = 0, K24 6= 0, K15 6= 0 and K16K6 −K15K7 = 0, then system
(4) has no limit cycles.

Proof. The proof of this lemma is analogous to the one of the previous lemma. �

Lemma 14. If K6 = 0, K24 6= 0 and K15 = 0, then system (4) has no limit cycles.

Proof. Consider K6 = 0, K24 6= 0 and K15 = 0. We have that E2 = −K7(z1−z2) =
0. So for having limit cycles it is necessary that z1 = z2. Thus we obtain

E8 = −2K14 −K16z2 +K16z4 = 0.

Note that if K16 = 0 we have no limit cycles. Solving E6 = 0 and E8 = 0 in the
variables y3 and z2, respectively and substituting them in E4 = 0 and E5 = 0 in
particular we obtain E4 = −K16(z3 − z4) = 0. Taking z3 = z4 we vanish E4 and
E5. So there are no limit cycles because system (6) has more unknown variables
than equations. �

Lemmas 1–14 show that if K16K6−K15K7 = 0, then the discontinuous piecewise
differential system (4) has no limit cycles; and if K16K6 −K15K7 6= 0, then it has
at most one limit cycle, except when K6 6= 0, K24 = 0 and K15 = 0 (in this case
there are no limit cycles).

In short, we conclude that the discontinuous piecewise differential system (4)
has at most one limit cycle. In order to complete the proof of Theorem 2 we must
prove Proposition 1.

Proof of Proposition 1. We shall prove that discontinuous piecewise linear differen-
tial system (5) has one limit cycle.
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The first integrals f1, f2, g1, g2, h1 and h2 for the discontinuous linear piecewise
differential system (5) are

f1 =
2

9
(5 + 6x+ 53x2 + 16y − 80xy + 52y2 − 36z + 132xz − 192yz + 180z2),

f2 =
1

6
(−5− 3x+ 6y − 6z),

g1 = (−x+ 2y − z)2 + z2,

g2 = −x+ y,

h1 = (−1− x+ 2y + z)2 + (−2y + 2z)2.

h2 = −1− x+ z.

So system (6) becomes

0 = −8y21 + 8y22 + 4z1 − 5z21 + 4y1(2 + z1)− 4z2 + 5z22 − 4y2(2 + z2),

0 = −z1 + z2,

0 =
8

9
(3 + 13y22 − 13y23 + 24z2 + 45z22 − 16y2(1 + 3z2) + 42z3 − 45z23 ,

+24y3(−1 + 2z3)),

0 = −1 + y2 − y3 − z2 + z3,

0 = z23 + (−1− 2y3 + z3)2 − z24 − (−1− 2y4 + z4)2,

0 = y3 − y4,

0 = −8

9
(3 + 13y21 − 13y24 + 24z1 + 45z21 − 16y1(1 + 3z1) + 42z4 − 45z24 ,

+24y4(−1 + 2z4)),

0 = 1− y1 + y4 + z1 − z4.

The unique isolated solution of the previous system satisfying (y1, z1) 6= (y2, z2)
and (y3, z3) 6= (y4, z4) is

(y∗1 , y
∗
2 , y

∗
3 , y

∗
4 , z

∗
1 , z

∗
2 , z

∗
3 , z

∗
4) = (1, 0, 0, 0, 0, 0, 1, 0).

The solution (x1(t), y1(t), z1(t)) of system (5) in x > 1 such that (x1(0), y1(0), z1(0)) =
(1, y∗1 , z

∗
1) is

x(t) = 2− cos t+ sin t,

y(t) = 1 + sin t,

z(t) = 1− cos t+ sin t.

The solution (x2(t), y2(t), z2(t)) of system (5) in |x| < 1 such that (x2(0), y2(0), z2(0)) =
(1, y∗2 , z

∗
2) is

x(t) =
1

2
(−1 + 3 cos t− sin t),

y(t) = −1 + cos t+ sin t,

z(t) =
1

4
(−1 + cos t+ 5 sin t).
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The solution (x3(t), y3(t), z3(t)) of system (5) in x < −1 such that (x3(0), y3(0), z3(0)) =
(−1, y∗3 , z

∗
3) is

x(t) = −2 + cos t− sin t,

y(t) = −1 + cos t− sin t,

z(t) = cos t.

Finally the solution (x4(t), y4(t), z4(t)) of system of (5) in |x| < 1 such that
(x4(0), y4(0), z4(0)) = (−1, y∗4 , z

∗
4) is

x(t) =
1

8
(−1− 7 cos t+ 9 sin t),

y(t) =
1

4
(5− 5 cos t− sin t),

z(t) = −13

16
(−1 + cos t+ sin t).

The time that the solution (x1(t), y1(t), z1(t)) contained in x > 1 needs to reach
the point (1, y∗2 , z

∗
2) is t1 = 3π/2. The time that the solution (x2(t), y2(t), z2(t))

contained in −1 < x < 1 needs to reach the point (−1, y∗3 , z
∗
3) is t2 = π/2. The

time that the solution (x3(t), y3(t), z3(t)) contained in x < −1 needs to reach the
point (−1, y∗4 , z

∗
4) is t3 = 3π/2. Lastly the time that the solution (x4(t), y4(t), z4(t))

contained in −1 < x < 1 needs to reach the point (1, y∗1 , z
∗
1) is t4 = π/2. The limit

cycle of Figure 1 is obtained drawing the orbits (xk(t), yk(t), zk(t)), for t ∈ [0, tk]
and k = 1, 2, 3, 4.

Now we shall prove that this limit cycle is stable. This limit cycle starts at the
point (1, 0, 0) of the plane x = 1, cross the region |x| < 1 until the point (−1, 0, 1)
of the plane x = −1, after travels in the region x < 1 until the point (−1, 0, 0) of
the plane x = −1, cross again the region |x| < 1 until the point (1, 1, 0) of the plane
x = 1, and finally it travels in the region x > 1 until the initial point (1, 0, 0).

Let ε and δ be two small real numbers, then the point (1, ε, δ) is close to the point
(1, 0, 0) of the limit cycle. Using the first integrals f1 and f2 we compute where the
orbit through the point (1, ε, δ) intersect the plane x = −1 near the point (−1, 0, 1),
this intersection takes place at the point (−1, y1, z1) where

y1 =
1

10

(√
441δ2 + 66δ(4− 7ε) + 121ε2 − 184ε+ 144− 21δ + 21ε− 12

)
,

z1 =
1

10

(√
441δ2 + 66δ(4− 7ε) + 121ε2 − 184ε+ 144− 11δ + 11ε− 2

)
.

Now with the first integrals g1 and g2 we compute where the orbit through the
point (−1, y1, z1) travels in the region x < −1 until intersecting the plane x = −1
at the point (−1, y2, z2) near the point (−1, 0, 0), where

y2 =
1

10

(√
441δ2 + 66δ(4− 7ε) + ε(121ε− 184) + 144− 21δ + 21ε− 12

)
,

z2 =
1

10

(√
441δ2 + 66δ(4− 7ε) + ε(121ε− 184) + 144− 31δ + 31ε− 12

)
.

Using again the first integrals f1 and f2 we compute where the orbit through the
point (−1, y2, z2) travels in the region |x| < 1 until intersecting the plane x = 1 at
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the point (1, y3, z3) near the point (1, 1, 0), where

y3 =
1

10
(21δ − T − 21ε+ 17) , z3 =

1

10
(11δ − T − 11ε+ 7) ,

here

T =
√

2205δ2 + 6δ(354− 665ε)− 42R(2δ − 2ε+ 1) + ε(1885ε− 2044) + 553,

R =
√

441δ2 + 66δ(4− 7ε) + ε(121ε− 184) + 144.

Finally with the first integrals h1 and h2 we compute where the orbit through the
point (1, y3, z3) travels in the region x > 1 until intersecting the plane x = 1 at the
point (1, y4, z4) near the point (1, 0, 0), where

y4 =
1

20
(−31δ + S + 31ε− 7), z4 =

1

10
(11δ − S − 11ε+ 7),

where S =
√

2205δ2 + 6δ(354− 665ε)− 42R(2δ − 2ε+ 1) + ε(1885ε− 2044) + 553.

In summary, the Poincaré map F near the point (1, 0, 0) and the limit cycle is
f(1, ε, δ) = (1, y4, z4). Therefore

Df(1, 0, 0) =

 −1
11

14

4 −25

7

 ,

and their eigenvalues are
1

7

(
−16±

√
235
)
, both negative. Hence the limit cycles is

stable. This completes the proof of the proposition. �

Remark 2. We note that for the piecewise differential system of Proposition 1 we
have that K6 = 0, K7 = 1, K15 = K16 = −2 and K24 = 1. So this piecewise
differential system only satisfies Lemma 4.
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