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Abstract. In this paper we characterize the phase portrait of the Ric-
cati quadratic polynomial differential systems

ẋ = α2(x), ẏ = ky2 + β1(x)y + γ2(x),

with (x, y) ∈ R2, γ2(x) non-zero (otherwise the system is a Bernoulli
differential system), k 6= 0 (otherwise the system is a Lienard differen-
tial system), β1(x) a polynomial of degree at most 1, α2(x) and γ2(x)
polynomials of degree at most 2, and the maximum of the degrees of
α2(x) and ky2 +β1(x)y+γ2(x) is 2. We give the complete description of
their phase portraits in the Poincaré disk (i.e. in the compactification of
R2 adding the circle S1 of the infinity) modulo topological equivalence.

1. Introduction and statement of the main results

Numerous problems of applied mathematics are modeled by quadratic
polynomial differential systems, see for instance [?]. Excluding linear sys-
tems, such systems are the ones with the lowest degree of complexity, and the
large bibliography on the subject proves its relevance. We refer for example
to the books of Ye Yanqian et al. [?], Reyn [?], and Artes, Llibre, Schlomiuk,
Vulpe [?], and the surveys of Coppel [?], and Chicone and Jinghuang [?] are
excellent introductory readings to the quadratic polynomial differential sys-
tems.

In this paper we characterize the phase portraits of the Riccati quadratic
differential systems

(1) ẋ = α2(x), ẏ = ky2 + β1(x)y + γ2(x),
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with (x, y) ∈ R2, γ2(x) non-zero (otherwise the system is a Bernoulli dif-
ferential system), k 6= 0 (otherwise the system is a Lienard differential
system), β1(x) a polynomial of degree at most 1, α2(x) and γ2(x) poly-
nomials of degree at most 2, and the maximum of the degrees of α2(x) and
ky2 +β1(x)y+ γ2(x) is 2. In (??) the dot denotes derivative with respect to
the time.

Proposition 1. A Riccati quadratic differential system (??) is topologically
equivalent to one of the following systems:

(i) ẋ = x(x+ 1), ẏ = y2 + (ax+ b)y + cx2 + dx+ e;
(ii) ẋ = x2, ẏ = y2 + (ax+ b)y + cx2 + dx+ e;
(iii) ẋ = x, ẏ = y2 + (ax+ b)y + cx2 + dx+ e;
(iv) ẋ = 1, ẏ = y2 + (ax+ b)y + cx2 + dx+ e;
(v) ẋ = x2 + 1, ẏ = y2 + (ax+ b)y + cx2 + dx+ e.

with c2 + d2 + e2 6= 0 in all these systems.

We note that the Riccati systems have no periodic orbits. In fact, the
equilibrium points of systems (i), (ii) and (iii) are on invariant straight lines
and systems (iv) and (v) do not have equilibrium points, and consequently
they do not have limit cycles, because it is well known that a periodic orbit
in the plane must surrounds at least one equilibrium point.

The objective of this work is to classify the phase portraits of the Riccati
quadratic polynomial differential systems (??) in the Poincaré disk modulo
topological equivalence. As any polynomial differential system, system (??)
can be extended to an analytic system on a closed disk of radius one, whose
interior is diffeomorphic to R2 and its boundary, the circle S1, plays the role
of the infinity. This closed disk is denoted by D2 and called the Poincaré
disk, because the technique for doing such an extension is precisely the
Poincaré compactification for a polynomial differential system in R2, which is
described in details in chapter 5 of [?]. In this paper we shall use the notation
of that chapter. By using this compactification technique the dynamics of
system (??) in a neighborhood of the infinity can be studied and we have
the following result.

Theorem 2. The phase portraits of the Riccati system (??) in the Poincaré
disk are topologically equivalent to one of the 74 phase portraits presented in
Figures 1, 2 and 3. The phase portraits of the systems of Proposition 1 are
provided in Tables 1, 2, 3, 4 and 5 where

(2)
∆F1 = b2 − 4e, ∆F2 = (b− a)2 − 4(c− d+ e),
∆I1 = (a− 1)2 − 4c, ∆I2 = a2 − 4c.

Three papers on generalizations of Riccati differential equations can be
found in [?, ?, ?].

This paper is organized as follows. In section ?? we prove Proposition ??,
and study the finite equilibria. In section ?? we study the infinite equilibria.
Finally in section ?? we prove Theorem ??.
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Phase Portraits of systems (i) conditions

P1, P2, P3, P4, P5 ∆I1 > 0,∆F1 > 0,∆F2 > 0

P6, P7, P8, P9 ∆I1 > 0,∆F1 > 0,∆F2 = 0

P10 ∆I1 > 0,∆F1 > 0,∆F2 < 0

P11, P12, P13, P14 ∆I1 > 0,∆F1
= 0,∆F2

> 0

P15, P16 ∆I1 > 0,∆F1
= 0,∆F2

= 0

P17 ∆I1 > 0,∆F1
= 0,∆F2

< 0

P18 ∆I1 > 0,∆F1
< 0,∆F2

> 0

P19 ∆I1 > 0,∆F1
< 0,∆F2

= 0

P20 ∆I1 > 0,∆F1
< 0,∆F2

< 0

P21, P22, P23 ∆I1 = 0,∆F1
> 0,∆F2

> 0

P24, P25 ∆I1 = 0,∆F1
> 0,∆F2

= 0

P26 ∆I1 = 0,∆F1
> 0,∆F2

< 0

P27 ∆I1 = 0,∆F1
= 0,∆F2

> 0

P28 ∆I1 = 0,∆F1 = 0,∆F2 = 0

P29 ∆I1 = 0,∆F1 = 0,∆F2 < 0

P30 ∆I1 = 0,∆F1 < 0,∆F2 > 0

P31 ∆I1 = 0,∆F1 < 0,∆F2 = 0

P32 ∆I1 = 0,∆F1 < 0,∆F2 < 0

P33 ∆I1 < 0,∆F1
> 0,∆F2

> 0

P34 ∆I1 < 0,∆F1
> 0,∆F2

= 0

P35 ∆I1 < 0,∆F1
> 0,∆F2

< 0

P36 ∆I1 < 0,∆F1
= 0,∆F2

> 0

P37 ∆I1 < 0,∆F1
= 0,∆F2

= 0

P38 ∆I1 < 0,∆F2
= 0,∆I1 < 0

P39 ∆I1 < 0,∆F1
< 0,∆F2

> 0

P40 ∆I1 < 0,∆F1
< 0,∆F2

= 0

P41 ∆I1 < 0,∆F1
< 0,∆F2

< 0

Table 1. The phase portraits of systems (i).
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Phase Portraits of systems (ii) conditions

P42, P43, P44 ∆I1 > 0,∆F1 > 0

P45, P46, P47 ∆I1 > 0,∆F1 = 0

P48 ∆I1 > 0,∆F1 < 0

P49, P50, P51 ∆I1 = 0,∆F1
> 0

P52, P53, P54 ∆I1 = 0,∆F1
= 0

P55 ∆I1 = 0,∆F1
< 0

P56 ∆I1 < 0,∆F1
> 0

P57, P58 ∆I1 < 0,∆F1
= 0

P41 ∆I1 < 0,∆F1
< 0

Table 2. The phase portraits of systems (ii).

Phase Portraits of systems (iii) conditions

P59, P60, P61 ∆I2 > 0,∆F1
> 0

P62, P63, P64 ∆I2 > 0,∆F1
= 0

P65 ∆I2 > 0,∆F1
< 0

P66, P67 ∆I2 = 0,∆F1
> 0

P68, P69 ∆I2 = 0,∆F1
= 0

P32 ∆I2 = 0,∆F1
< 0

P35 ∆I2 < 0,∆F1
> 0

P38 ∆I2 < 0,∆F1
= 0

P41 ∆I2 < 0,∆F1
< 0

Table 3. The phase portraits of systems (iii).

Phase Portrait of systems (iv) conditions

P70, P71 ∆I2 > 0

P72, P73, P74 ∆I2 = 0

P41 ∆I2 < 0

Table 4. The phase portraits of systems (iv).

Phase Portraits of systems (v) conditions

P70, P71 ∆I1 > 0

P72, P73, P74 ∆I1 = 0

P41 ∆I1 < 0

Table 5. The phase portraits of systems (v).

2. Finite equilibrium points

We start this section with the proof of Proposition ??.
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Figure 1. Phase portraits of systems (1) the Poicaré disk.

Proof of Proposition ??. Since α2(x) is a polynomial of degree at most 2,
we have, using a rescaling of the time if necessary,

ẋ = (x− r)(x− s) with r 6= s,
ẋ = (x− r)2,
ẋ = (x− r),
ẋ = 1,
ẋ = (x− r)2 + s2 with s 6= 0.

If ẋ = (x− r)(x− s), r 6= s, considering the change of coordinates

x1 =
x− r
r − s

, y1 = cy and T = (r − s)t,

we get a system (i). If ẋ = (x − r)n, n = 1, 2, considering the change of
coordinates x1 = x− r, y1 = cy, we get systems (ii) for n = 2 and systems
(iii) for n = 1. If ẋ = 1, considering the change of coordinates x1 = x and
y1 = cy, we get a systems (iv). If ẋ = (x− r)2 + s2, considering the change
of coordinates x1 = (x− r)/s, y1 = cy and T = st, we get a system (v).

Proposition 3. The finite equilibrium points of the Riccati quadratic poly-
nomial differential system (??) are described below.

(a) Systems (i) have at most 4 equilibria which can be either a saddle,
or a stable or an unstable node, or a saddle–node.

(b) Systems (ii) have at most 2 equilibria which can be either a saddle–
node either semi–hyperbolic or nilpotent.

(c) Systems (iii) have at most 2 equilibria which can be either a saddle
or an unstable node, or a saddle-node.

(d) Systems (iv) and (v) have no finite equilibria.

Proof. Systems (i): Consider the Riccati quadratic polynomial differential
systems

(3) ẋ = x(x+ 1), ẏ = y2 + (ax+ b)y + cx2 + dx+ e.
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Figure 2. Continuation of phase portraits of systems (1) in the
Poicaré disk.

The equilibrium points of system (??) are

(x1, y1) =

(
0,−

b+
√

∆F1

2

)
, (x2, y2) =

(
0,−

b−
√

∆F1

2

)
,
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Figure 3. Continuation of the phase portraits of systems (1) in
the Poicaré disk.

(x3, y3) =

(
−1,−

−a+ b+
√

∆F2

2

)
, (x4, y4) =

(
−1,−

−a+ b−
√

∆F2

2

)
,

where ∆F1 and ∆F2 are given by (??).
The eigenvalues of the Jacobian matrix of system (??) evaluated at (xi, yi)

are (1, (−1)i
√

∆F1) for i = 1, 2, and (−1, (−1)i
√

∆F2) for i = 3, 4, when they
exist.
From the classification of the hyperbolic and semi-hyperbolic equilibrium
points (see for instance Theorems 2.18 and 2.19 of [?]), we have the fol-
lowing (when the equilibrium point is not hyperbolic we mention this fact
explicitly).

(i) If ∆F1 > 0 and ∆F2 > 0, system (??) has two saddles, a stable node
and an unstable node.

(ii) If ∆F1 > 0 and ∆F2 = 0, system (??) has a saddle, a stable node
and a semi–hyperbolic saddle–node.

(iii) If ∆F1 > 0 and ∆F2 < 0, system (??) has a saddle and a stable node.
(iv) If ∆F1 = 0 and ∆F2 > 0, system (??) has a saddle, an unstable node

and a semi–hyperbolic saddle–node.
(v) If ∆F1 = 0 and ∆F2 = 0, system (??) has two semi–hyperbolic

saddle–nodes.
(vi) If ∆F1 = 0 and ∆F2 < 0 system (??) has one semi–hyperbolic saddle–

node.
(vii) If ∆F1 < 0 and ∆F2 > 0, system (??) has a saddle and an unstable

node.
(viii) If ∆F1 < 0 and ∆F2 = 0, system (??) has one semi–hyperbolic

saddle–node.
(ix) If ∆F1 < 0 and ∆F2 < 0, system (??) has not equilibria.
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Systems (ii): Consider the Riccati quadratic polynomial differential systems

(4) ẋ = x2, ẏ = y2 + (ax+ b)y + cx2 + dx+ e.

We have that the finite equilibrium points of system (??) are

(5) (x1, y1) =

(
0,−

b+
√

∆F1

2

)
, (x2, y2) =

(
0,−

b−
√

∆F1

2

)
,

where ∆F1 is given by (??).
The eigenvalues of the Jacobian matrix of system (??) evaluated at (xi, yi)

for all i = 1, 2 are 0 and (−1)i
√

∆F1 . Then we have

(i) If ∆F1 > 0 systems (??) have two semi–hyperbolic saddle–nodes.
(ii) If ∆F1 = 0 then systems (??) have one nilpotent saddle–node equi-

librium point.
(iii) If ∆F1 < 0 system (??) has not equilibrium points.

Systems (iii): Consider the Riccati quadratic polynomial differential sys-
tems

(6) ẋ = x, ẏ = y2 + (ax+ b)y + cx2 + dx+ e.

The equilibrium points of systems (??) are given by (??). Then system (??)
has 0, 1 or 2 equilibrium points if ∆F1 is negative, zero or positive, respec-
tively. The eigenvalues of the Jacobian matrix of system (??) evaluated at
(xi, yi) for i = 1, 2 are 1 and (−1)i

√
∆F1 . Thus we have:

(i) If ∆F1 > 0 systems (??) have a saddle and an unstable node.
(ii) If ∆F1 = 0 systems (??) have a semi–hyperbolic saddle–node.
(iii) If ∆F1 < 0 system (??) has no equilibria.

Systems (iv) and (v): These systems are chordal quadratic systems, or qua-
dratic system without finite singularities.

�

3. Infinite equilibrium points

For a complete description of the Poincaré compactification method we
refer to chapter 5 of [?]. In what follows we remember some formulas.

Consider a polynomial differential system in R2 with degree 2.

(7) ẋ = P (x, y), ẏ = Q(x, y)

or equivalently its associated polynomial vector field X = (P,Q). As we said
before, any polynomial differential system can be extended to an analytic
differential system on a closed disk of radius one centered at their origin
of coordinates, whose interior is diffeomorphic to R2 and its boundary, the
circle S1, plays the role of the infinity.
We consider 4 open charts covering the disk D:
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φ1 : R2 −→ U1, φ1(x, y) = (1/v, u/v),

φ2 : R2 −→ U2, φ1(x, y) = (u/v, 1/v)

and

ψk : R2 −→ Vk, ψk(x, y) = −φk(x, y), k = 1, 2

with

U1 = {(u, v) ∈ D : u2 + v2 ≤ 1 and u > 0},
U2 = {(u, v) ∈ D : u2 + v2 ≤ 1 and v > 0},
V1 = {(u, v) ∈ D : u2 + v2 ≤ 1 and u < 0},
V2 = {(u, v) ∈ D : u2 + v2 ≤ 1 and v < 0}.

The Poincaré compactification is denoted by p(X). The expression of
p(X) in the chart U1 is

(8) u̇ = v2(−uP +Q), v̇ = −v3P,
where P and Q are evaluated at (1/v, u/v).

The expression of p(X) in the chart U2 is

(9) u̇ = v2(P − uQ), v̇ = −v3Q,
where P and Q are evaluated at (u/v, 1/v). Moreover in all these local
charts the points (u, v) of the infinity have its coordinate v = 0.

The expression for the extend differential system in the local chart Vi,
i = 1, 2 is the same as in Ui multiplied by −1.

Proposition 4. On the circle of the infinity, for any systems of Proposition
?? the origin of U2, denoted by n, is an attracting node and the origin of
V2, denoted by s, is a repelling node of the Riccati quadratic polynomial
differential system (??). Moreover, the remaining infinite equilibrium points
are described below.

(a) For systems (i), (ii) and (v) three situations can occur.
– 4 equilibrium points being 2 saddles, 1 attracting node and 1

repelling node;
– 2 equilibrium points being 2 saddle-nodes;
– The only equilibria are n and s.

(b) For systems (iii) three situations can occur.
– 4 equilibrium points being 4 nilpotent saddle-nodes;
– 2 equilibrium points being 2 semi–hyperbolic saddle-nodes;
– The only equilibria are n and s.

(c) For systems (iv) three situations can occur.
– 4 equilibrium points being 2 semi-hyperbolic saddles, 1 semi-

hyperbolic attracting node and 1 semi-hyperbolic repelling node;
– 2 equilibrium points being 2 semi-hyperbolic saddle-nodes;
– The only equilibria are n and s.
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Proof. Systems (i): First we analyze the phase portrait in the local chart
U1. The expression of the system in this chart is

(10) u̇ = v((b− 1)u+ d) + ev2 + p(u), v̇ = −(v + v2),

where p(u) = u2 + (a− 1)u+ c.
Note that (u0, 0) is an infinite equilibrium point of (??) if, and only if,

p(u0) = 0. System (??) has 0, 1 or 2 two infinite equilibrium points:

(11) Si =

(
1− a+ (−1)i

√
∆I1

2
, 0

)
,

for i = 1, 2, where ∆I1 is given (??).
The eigenvalues of the Jacobian matrix of system (??) are−1 and (−1)i

√
∆I1 .

Thus we have:

(i) If ∆I1 > 0 systems (??) have a saddle and a stable node.
(ii) If ∆I1 = 0 systems (??) have a semi–hiperbolic saddle–node.
(iii) If ∆I1 < 0 systems (??) have no equilibrium points.

Now we analyze the phase portrait in the local chart U2, we need to
the study the origin of U2, the others infinite singularity ahead, have been
studied in the local chart U1. The expression of the system in this chart is

(12)
u̇ = v(vue− u(du+ b− 1)) + q(u),
v̇ = −v

(
1 + au+ cu2

)
− v2(b+ du)− ev3,

where q(u) = −u(1 + (a− 1)u+ cu2).
The eigenvalues of the Jacobian matrix at the origin of U2 of system (??)

are −1 and −1. Therefore system (??) has a stable node at (0, 0).
Thus, the equilibrium points of system (??), system (i), on the circle S1

are classified as follows.

q1
p1

n

u1

u2

s

v1

v2

q2p2

Figure 4. Finite and infinite equilibrium of system (??),
systems (i).

(a) If ∆I1 > 0 system (??) has 6 equilibrium points.
– 2 saddles: u1 and v1 diametrically opposed to u1;
– 2 attracting nodes: u2 and n the origin of U2);
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– 2 repelling nodes: v2 diametrically opposed to u2 and s the
origin of V2 diametrically opposed to n.

(b) If ∆I1 = 0 system (??) has 4 equilibrium points.
– 2 saddle-node: u12 and v12 (diametrically opposed to u12;
– 1 attracting node: n;
– 1 repelling node: s.

(c) If ∆I1 < 0 system (??) has 2 equilibrium points.
– 1 attracting node: n;
– 1 repelling node: s.

Systems (ii): The expression of the system in the local chart U1 is

(13) u̇ = v((d+ bu) + ev) + p(u), v̇ = −v,
where p(u) = u2 + (a− 1)u+ c, and in the local chart U2 is

(14)
u̇ = −v(u(d+ bu) + vue) + q(u),
v̇ = −v

(
c+ du+ cu2

)
− v2(b+ du)− ev3,

where q(u) = −u(1 + (a− 1)u+ cu2). The equilibrium point at infinity and
their classification are exactly the same of system (i).
Systems (iii): The expression of this system in the local chart U1 is

(15)
u̇ = v(u(b− 1) + d+ ev) + p(u),
v̇ = −v2,

where p(u) = u2 + au+ c. System (??) has 0, 1 or 2 equilibrium points.

Si =

(
−a+ (−1)i

√
∆I2

2
, 0

)
for i = 1, 2, where ∆I2 is given by (??). The eigenvalues of the Jacobian
matrix of system (??) are 0 and (−1)i

√
∆I2 . Thus we have:

(i) If ∆I2 > 0 systems (??) have two nilpotent saddle–nodes.
(ii) If ∆I2 = 0 systems (??) have a saddle–node with both eigenvalues

being zero.
(iii) If ∆I2 < 0 systems (??) have no equilibrium points.

The expression of the system in the local chart U2 is

(16)
u̇ = v(−v(eu)− u(−1 + b+ du)) + q(u),
v̇ = −v

(
1 + au+ cu2

)
− v2(b+ du)− ev3,

where q(u) = −u(1 + (a− 1)u+ cu2). The equilibrium points at infinity and
their classification are exactly the same of systems (i).

In summay, the equilibrium points of system (??), system (iii), on the
circle S1 are classified as follows.

(a) If ∆I2 > 0 system (??) has 6 equilibrium points.
– 4 saddle-nodes: u1 , v1 diametrically opposed to u1, u2 and v2

diametrically opposed to u2;
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– 1 attracting node: n ;
– 1 repelling node: s diametrically opposed to n.

(b) If ∆I2 = 0 system (??) has 4 equilibrium points.
– 2 saddle-node: u12 and v12 diametrically opposed to u12;
– 1 attracting node: n;
– 1 repelling node: s.

(c) If ∆I2 < 0 system (??) has 2 equilibrium points.
– 1 attracting node: n;
– 1 repelling node: s.

Systems (iv): The expression of the system in the local chart U1 is

(17) u̇ = v(d+ bu+ (e− u)v) + p(u), v̇ = −v3,
where p(u) = u2 + au+ c. System (??) has 0, 1 or 2 equilibrium points.

Si =

(
−a+ (−1)i

√
∆I2

2
, 0

)
for i = 1, 2, where ∆I2 is given by (??). The eigenvalues of the Jacobian
matrix of system (??) are 0 and (−1)i

√
∆I2 . Thus we have:

(i) If ∆I2 > 0 systems (??) have a semi-hyperbolic stable node and a
semi-hyperbolic saddle.

(ii) If ∆I2 = 0 systems (??) have a semi-hyperbolic saddle-node.
(iii) If ∆I2 < 0 systems (??) have no equilibrium points.

The expression of the system in the local chart U2 is

(18)
u̇ = v(v(1− eu)− u(b+ du)) + q(u),
v̇ = −v

(
1 + au+ cu2

)
− v2(b+ du)− ev3,

where q(u) = −u(1 + (a− 1)u+ cu2). The equilibrium points at infinity and
their classification are exactly the same of systems (i).
In short, the equilibrium points of system (??), systems (iv), on the circle
S1 are classified as follows.

(a) If ∆I2 > 0 system (??) has 6 equilibrium points.
– 2 semi-hyperbolic saddles: u1 and v1 diametrically opposed to
u1;

– 1 semi-hyperbolic attracting node: u2;
– 1 attracting node: n ;
– 1 semi-hyperbolic repelling node: v2 diametrically opposed to
u2;

– 1 repelling node: s diametrically opposed to n.
(b) If ∆I2 = 0 system (??) has 4 equilibrium points.

– 2 semi-hyperbolic saddle-nodes: u12 and v12 diametrically op-
posed to u12;

– 1 attracting node: n ;
– 1repelling node: s diametrically opposed to n.

(c) If ∆I2 < 0 system (??) has 2 equilibrium points.
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– 1 attracting node: n;
– 1 repelling node: s.

Systems (v): The expression of the system in the local chart U1 is

(19)
u̇ = v((d+ bu) + v(e− u)) + p(u)
v̇ = −(v + v3).

where p(u) = u2 + (a− 1)u+ c. The equilibrium points at infinity and their
classification are exactly the same than of systems (i).

The expression of the system in the local chart U2 is

(20)
u̇ = v(v(1− eu)− u(b+ du)) + q(u),
v̇ = −v

(
1 + au+ cu2

)
− v2(b+ du)− ev3,

where q(u) = −u(1 + (a− 1)u+ cu2− u). The origin and its classification is
exactly the same than of systems (i).

�

4. Proof of Theorem ??

We start this section considering the Tables 1, ..., 5, one for each of the
possible Riccati systems. In each table, we list the conditions about the
parameters and indicate the possible phase portraits.

4.1. Proof of Theorem ??. We remember the notation introduced in pre-
vious sections

∆F1 = b2 − 4e, ∆F2 = (b− a)2 − 4(c− d+ e),

∆I1 = (a− 1)2 − 4c and ∆I2 = a2 − 4c.

4.1.1. Proof of Theorem ?? – System (i). We begin the proof considering the
assumptions of the first row of Table ??. These systems have 4 finite equi-
librium p1, p2, q1, q2 and 6 infinite equilibrium n, s, u1, u2, v1, v2, according
to sections ?? and ??, see Figure (??).

Let r1 be the straight line joining v1, p1 and u1, and r2 be the straight
line joining v1, q2 and u1:

r1 = y − u1x− k1 = 0, r2 = y − u1x− k2 = 0,

where

k1 =
1

2
(1− b+

√
(a− 1)2 − 4c+

√
(a− b)2 − 4(c− d+ e))

and

k2 =
1

2
(−b−

√
b2 − 4c).

We analyze the position of q1 with respect to r1 and the position of p2
with respect to r2. We have four possibilities.

Assume the first possibility. By Lemma ?? (see Appendix) the vector
field X(x, y) = (α2(x), ky2 + β1(x)y + γ2(x)) has only the equilibrium p1 as
a contact point with r1, and the equilibrium q2 as a contact point with r2.
Thus p1 divides r1 into two semi-straight lines and we have the direction of
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Figure 5. Straight lines r1 and r2 and the directions of the vector
field X(x, y) = (α2(x), ky2 + β1(x)y + γ2(x)).

the field downward between v2 and p1 and upward between p1 and u1. In
fact this is due to the fact that the repelling node is below the line r1, and
there is a trajectory with α-limit q1 and ω-limit n. Similarly we concluded
that q2 divides r2 into two semi-straight lines and we have the direction of
the vector field downward between v2 and q2 and upward between q2 and
u1. Thus the only way to complete the phase portrait is shown in figure P1.

In the second case and in an analogous way, we conclude that the phase
portrait is shown in figure P2. The third case does not occur, because the
conditions r1(q1) > 0 and r2(p2) < 0 will never be satisfied at the same time.
In the fourth case we concluded that p1 divides r1 into two semi-straight lines
and the direction of the field is downward between v2 and p1 and upward
between p1 and u1. Moreover q2 divides r2 into two semi-straight lines and
the direction of the field is upward between v2 and q2 and downward between
q2 and u1. There are three possibilities to complete the phase portrait. To
analyze this case we consider the straight line S : y = mx+n joining p1 and
q2. The coeficients are

m =
π2(q2)− π2(p1)
π1(q2)− π1(p1)

= (−a−
√

∆F1−
√

∆F2)/2 and n = (−b−
√

∆I1)/2

where π1(x, y) = x and π2(x, y) = y. We analyze how the straight line S
reaches the infinite. If −a−

√
∆F1−

√
∆F2 < 1−a−

√
∆I1 , then u2 is above

S, and the only possibility to complete the phase portrait is shown in figure
P3. If −a−

√
∆F1−

√
∆F2 > 1−a−

√
∆I1 then u2 is below S, and the phase

portrait is shown in figure P5. Finally, if −a−
√

∆F1−
√

∆F2 = 1−a−
√

∆I1

then u2 belong to S, the phase portrait is shown in figure P4.
Now we explicit the parameter values for each phase portrait.

• P1: (a, b, c, d, e) = (0, 0, 0, 3.75,−0.25).
• P2: (a, b, c, d, e) = (0, 0, 0,−3.75,−4).
• P3: (a, b, c, d, e) = (0, 0,−0, 75,−0.75,−0.25).
• P4: (a, b, c, d, e) = (0, 0,−2,−2,−0.25).
• P5: (a, b, c, d, e) = (0, 0,−3.75,−3.75,−0.25).

Assume the conditions in the second row of Table ??. systems (i) have
3 finite equilbria p1,2, q1, q2 and 6 infinite equilibria n, s, u1, u2, v1, v2. Note



RICCATI QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEM 15

that p1,2 comes from the collision of p1 and p2 (these equilibria exist when
we assume the conditions of the first row of Table ??) when ∆F2 → 0. Con-
sequently systems (i) have at most five phase portraits which are obtained
from the 5 possible phase portraits of row 1 of Table ??. Applying Lemma 7,
we can see that effectively only the 4 phase portraits listed in row 2 of Table
?? occur. Next we explicit the parameter values for each phase portrait.

• P6: (a, b, c, d, e) = (0, 0, 0,−3,−3).
• P7: (a, b, c, d, e) = (0, 0,−1,−2,−1).
• P9: (a, b, c, d, e) = (0, 0,−29,−30,−1).
• P8: We cannot explicit a choice of (a, b, c, d, e). However its existence

follows from continuity when we pass from the phase portraits P7 to
P9.

The analysis of the phase portraits for the conditions listed in the other
rows of Table ?? is analogous to the one that we did above. We will only
give an example for each phase portrait.

• P10: (a, b, c, d, e) = (0, 0, 0,−1,−0.25).
• P11: (a, b, c, d, e) = (0, 0,−1, 10, 0).
• P12: (a, b, c, d, e) = (2, 0,−1,−1, 0).
• P13: (a, b, c, d, e) = (1, 0,−1,−1, 0).
• P14: (a, b, c, d, e) = (−2, 0,−1,−1, 0).
• P15: (a, b, c, d, e) = (4, 0, 2,−2, 0).
• P16: (a, b, c, d, e) = (1, 0,−1,−1.25, 0).
• P17: (a, b, c, d, e) = (0, 0,−1,−10, 0).
• P18: (a, b, c, d, e) = (0, 1, 0, 1, 0.75).
• P19: (a, b, c, d, e) = (0, 0,−0.75, 0.25, 1).
• P20: (a, b, c, d, e) = (1, 0,−1,−1.25, 1).
• P21: (a, b, c, d, e) = (1, 2, 0, 4.75, 0).
• P22: (a, b, c, d, e) = (2, 0, 0.25,−9.75,−10).
• P23: (a, b, c, d, e) = (2, 0, 0.25,−0.75,−1).
• P24: (a, b, c, d, e) = (0, 0, 0.25,−0.75,−1).
• P25: (a, b, c, d, e) = (1, 1, 0, 0.2, 0.2).
• P26: (a, b, c, d, e) = (0, 0, 0.25,−1.75,−1).
• P27: (a, b, c, d, e) = (0, 0, 0.25, 1.25, 0).
• P28: (a, b, c, d, e) = (1, 1, 0, 0.25, 0.25).
• P29: (a, b, c, d, e) = (1, 0, 0,−1, 0).
• P30: (a, b, c, d, e) = (0, 0, 0.25, 2.25, 1).
• P31: (a, b, c, d, e) = (0, 0, 0.25, 1.25, 1).
• P32: (a, b, c, d, e) = (0, 0, 0.25, 0.25, 1).
• P33: (a, b, c, d, e) = (0, 0, 1.25, 1.25,−1).
• P34: (a, b, c, d, e) = (1, 1, 1, 1.2, 0.2).
• P35: (a, b, c, d, e) = (1, 1, 2, 0, 0.2).
• P36: (a, b, c, d, e) = (1, 2, 1, 2, 1).
• P37: (a, b, c, d, e) = (2, 0, 2, 1, 0).
• P38: (a, b, c, d, e) = (1, 0, 1,−1, 0).
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• P39: (a, b, c, d, e) = (1, 0, 1, 2, 1).
• P40: (a, b, c, d, e) = (1, 0, 1, 1.75, 1).
• P41: (a, b, c, d, e) = (0, 0, 1.25, 1.25, 1).

4.1.2. Proof of Theorem ?? –System (ii). The phase portraits listed in row
1 of Table ?? are obtained from row 1 of Table ??. Note that system (ii) has
only x = 0 as an invariant vertical line, which comes when the two straight
lines x = 0, x = −1 of system (i) collide at x = 0. Thus we consider the
phase portraits represented in the figures P1, P2, P3, P4 and P5, excluding
what occurs in the strip −1 ≤ x ≤ 0. This reduces the possible phase por-
traits to P42, P43 and P44 obtained from P1, P2 and P3 respectively. Note
that no new configurations can be obtained from P4 and P5 because the
phase portraits are equal in the complement of the strip −1 ≤ x ≤ 0. The
possibilities listed in the other rows of Table ?? are obtained in a similar
way. Below we list values of the parameters that realize each one of the
possible phase portraits.

• P42: (a, b, c, d, e) = (1, 1,−1, 4,−1).
• P43: (a, b, c, d, e) = (1, 1,−1,−4,−1).
• P44: (a, b, c, d, e) = (1, 1,−1, 0,−1).
• P45: (a, b, c, d, e) = (1, 1,−1, 4, 0.25).
• P46: (a, b, c, d, e) = (1, 1,−1, 0, 0.25).
• P47: (a, b, c, d, e) = (2, 1,−1, 1, 0.25).
• P48: (a, b, c, d, e) = (1, 2,−1, 0, 2).
• P49: (a, b, c, d, e) = (1, 1, 0, 4,−1).
• P50: (a, b, c, d, e) = (1, 1, 0,−2,−1).
• P51: (a, b, c, d, e) = (1, 1, 0, 0,−1).
• P52: (a, b, c, d, e) = (1, 1, 0, 4, 0.25).
• P53: (a, b, c, d, e) = (2, 1, 0.25, 1, 0.25).
• P54: (a, b, c, d, e) = (1, 1, 0,−2, 0.25).
• P55: (a, b, c, d, e) = (1, 1, 0, 0, 1).
• P56: (a, b, c, d, e) = (1, 1, 1, 0, 0.2).
• P57: (a, b, c, d, e) = (1, 1, 1, 0, 0.25).
• P58: (a, b, c, d, e) = (2, 1, 0.3, 1, 0.25).

4.1.3. Proof of Theorem ?? –System (iii). If ∆I2 > 0 and ∆FI
> 0, corre-

sponding to the case considered in the first row of Table ??, systems (iii)
have 2 finite equilibria q1, q2 and 6 infinite equilibria n, s, u1, u2, v1, v2, ac-
cording to sections ?? and ??.

We consider the straight line r joining v2, q1 and u2. Applying Lemma
(??) we can prove that the following configurations cannot occur:

(a) both unstable separatrix of q2 have ω-limit n;
(b) the left hand side of unstable separatrix of q2 has ω-limit n and the

right hand side separatrix of q2 has ω-limit u1;
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(c) the left hand side of unstable separatrix of q2 has ω-limit v2 and the
right hand side separatrix of q2 has ω-limit n;

(d) the left hand side of unstable separatrix of q2 has ω-limit v2 and the
right hand side separatrix of q2 has ω-limit u1;

(e) the left hand side of unstable separatrix of q2 has ω-limit u1 and the
right hand side separatrix of q2 has ω-limit v2.

Taking into account this previous informative the only possible phase por-
traits are P59, P60 and P60 remain. The other lines of Table ?? are similarly
analyzed. Below we list the parameter values that realize each one of the
possible phase portraits.

• P59: (a, b, c, d, e) = (1, 2, 0.2, 1, 0.2).
• P60: (a, b, c, d, e) = (1, 1, 0.2, 2, 0.2).
• P61: (a, b, c, d, e) = (1, 1, 0.2, ∗∗, 0.2).
• P62: (a, b, c, d, e) = (2, 2, 0.2, 1, 1).
• P63: (a, b, c, d, e) = (1, 2, 0.2, 1, 1).
• P64: (a, b, c, d, e) = (∗∗, 2, 0.2, 1, 1.
• P65: (a, b, c, d, e) = (8, 2, 2, 1, 5).
• P66: (a, b, c, d, e) = (2, 2, 1, 1, 0.2).
• P67: (a, b, c, d, e) = (2, 1, 1, 1, 0.2).
• P68: (a, b, c, d, e) = (2, 2, 1, 1, 1).
• P69: (a, b, c, d, e) = (1, 2, 0.25, 1, 1).

4.1.4. Proof of Theorem ?? –Systems (iv) and (v). The classification given
in Tables 4 and 5 follows directly from the analysis of singularities at infinity.
We list a parameter value that realize each phase portrait.

• P70: (a, b, c, d, e) = (1, 1, 0, 0, 0).
• P71: (a, b, c, d, e) = (1, 1, 0, 0, 1).
• P72: (a, b, c, d, e) = (1, 1, 0, 0, 0).
• P73: (a, b, c, d, e) = (1, 1, 0, 0, 1).
• P74: (a, b, c, d, e) = (1, 1, 0, 0,−1).

5. Appendix: Semi-hyperbolic equilibrium points

The following two lemmas are very useful in the proofs and they proved
in Chapter 11 of [?].

Lemma 5. If the straight line passing through two singular points S1 and S2
of a quadratic system is not an integral line, then it must be formed by three
open line segments without contact points ∞S1, S1S2 and S2∞. Moreover
the trajectories cross ∞S1 and S2∞ in one direction, and cross S1S2 in the
opposite direction.

Lemma 6. The straight line connecting one finite singular point and a
pair of infinite singular points in a quadratic system is either formed by
trajectories or it is a line with exactly one contact point. This contact point
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is the finite singular point. For the latter case the flow goes in different
directions on each half–line.
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Bellaterra, Barcelona, Catalonia, Spain.

2 IMECC–UNICAMP, CEP 13081–970, Campinas, São Paulo, Brazil.
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