

Research Article

Central configurations of the circular restricted 4-body problem with three equal primaries in the collinear central configuration of the-3 body problem

Jaume Llibre*
Department of Mathematics, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona Catalonia, Spain

Received: 05 December, 2020
Accepted: 29 December, 2020
Published: 04 January, 2021
*Corresponding author: Jaume Llibre, Department of Mathematics, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain,
E-mail: jllibre@mat.uab.cat
Keywords: Central configuration; Circular restricted 4-body problem
https://www.peertechz.com

Check for updates

Abstract

In this paper we classify the central configurations of the circular restricted 4-body problem with three primaries with equal masses at the collinear configuration of the 3-body problem and an infinitisimal mass

Introduction and results

The well-known Newtonian n-body problem concerns with the motion of n mass points with positive mass m_{i} moving under their mutual attraction in R^{d} in accordance with Newton's law of gravitation.

The equations of the motion of the n-body problem are

$$
\ddot{r}_{i}=-\sum_{j=1, j \neq i}^{n} \frac{m_{j}\left(r_{i}-r_{j}\right)}{r_{i j}^{3}}, \quad 1 \leq i \leq n
$$

where we have taken the unit of time in such a way that the Newtonian gravitational constant be one, and $r_{\text {ieR }}{ }^{d}(i=1 \ldots, n)$ denotes the position vector of the i-body, $r_{i j}=\left|r_{i}-r_{j}\right|$ is the Euclidean distance between the i-body and the j-body.

The solutions of the 2-body problem (also called the Kepler problem) has been completely solved, but the solutions for the n-body for $n>2$, is still an open problem.

For the Newtonian n-body problem the simplest possible motions are such that the configuration formed by the n-bodies is constant up to rotations and scaling, such motions are called the homographic solutions of the n-body problem, and are the unique known explicit solutions of the n-body problem when $n>2$. Only some special configurations of particles are allowed in the homographic solutions of the n-body problem, called by Wintner [1] central configurations. Also, central configurations are of utmost importance when studying bifurcations of the hypersurfaces of constant energy and angular momentum, for more details see Meyer [2] and Smale [3]. These last years some central configurations have been used for different missions of the spacecrafts in the solar system, see for instance $[4,5]$.

More precisely, let

$$
M=m_{1}+\cdots+m_{n}, \quad c=\frac{m_{1} r_{1}+\cdots+m_{n} r_{n}}{M},
$$

be the total mass and the center of masses of the n bodies, respectively.

