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Abstract. In this paper we classify the central configurations of the circu-
lar restricted 4-body problem with three primaries with equal masses at the

collinear configuration of the 3-body problem and an infinitisimal mass.

1. Introduction and results

The well-known Newtonian n-body problem concerns with the motion of n mass
points with positive mass mi moving under their mutual attraction in Rd in accor-
dance with Newton’s law of gravitation.

The equations of the motion of the n-body problem are :

r̈i = −
n∑

j=1,j 6=i

mj(ri − rj)
r3ij

, 1 ≤ i ≤ n,

where we have taken the unit of time in such a way that the Newtonian gravitational
constant be one, and ri ∈ Rd (i = 1, . . . , n) denotes the position vector of the i-body,
rij = |ri − rj | is the Euclidean distance between the i-body and the j-body.

The solutions of the 2-body problem (also called the Kepler problem) has been
completely solved. Unfortunately the solutions for the n-body for n > 2 is still an
open problem.

For the Newtonian n-body problem the simplest possible motions are such that
the configuration formed by the n-bodies is constant up to rotations and scaling,
such motions are called the homographic solutions of the n-body problem, and are
the unique known explicit solutions of the n-body problem when n > 2. Only some
special configurations of particles are allowed in the homographic solutions of the
n-body problem, called by Wintner [64] central configurations. Also, central config-
urations are of utmost importance when studying bifurcations of the hypersurfaces
of constant energy and angular momentum, for more details see Meyer [47] and
Smale [60].

More precisely, let

M = m1 + · · ·+mn, c =
m1r1 + · · ·+mnrn

M
,
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be the total mass and the center of masses of the n bodies, respectively.

A configuration r = (r1, . . . , rn) is called a central configuration if the accelera-
tion vectors of the n bodies are proportional to their positions with respect to the
center of masses with the same constant λ of proportionality, i.e.

(1)

n∑
j=1,j 6=i

mj(ri − rj)
r3ij

= λ(rj − c), 1 ≤ j ≤ n,

where λ is the constant of proportionality.

Equations (1) are strongly nonlinear and to find the explicit central configura-
tions (r1, . . . , rn) in function of the masses m1, . . . ,mn when n > 3 is an unsolved
problem.

Equations (1) are invariant under rotations, dilatations and translations on the
plane. Two central configurations are related if we can pass from one to the other
doing some of the mentioned transformations. This relation is of equivalence. When
we talk about the number of central configurations we will talk about the number
of classes of equivalence of central configurations.

There is an extensive literature on the study of central configurations, see for
instance Euler [28], Lagrange [37], Hagihara [33], Llibre [40, 41], Meyer [47], Moeckel
[49], Moulton [49], Saari [56], Smale [60], . . . , and the papers quoted in these
references.

In this paper we are interested in the planar central configurations of a circular
restricted 4-body problem. Of course, for the central configurations of the 4-body
problem there are many partial results, see for instance the papers [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31,
32, 34, 35, 36, 38, 39, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 57, 58, 59, 63, 65, 66].

We note that the set of central configurations is invariant under translations,
rotations, and homothecies with respect their center of mass. It is said that two
central configurations are equivalent if after having the same center of mass (doing
a translation if necessary) we can pass from one to the other through a rotation
around its common center of mass and a homothecy. This defines a relation of
equivalence in the set of central configurations. From now on when we talk about a
central configuration, we are talking on a class of central configurations under this
relation of equivalence.

The objective of the present article is to study the central configurations of the
circular restricted 4-body problem with three equal primaries in the collinear central
configuration of the 3-body problem. We recall that for the 3-body problem when
the three masses are equal there is a unique collinear central configuration, where
the mass in the middle equidistant from the other two, of course the equal masses
can be permuted in the positions of this configuration.

Of course as in any circular restricted problem the objective is to describe the
motion of the infinitesimal mass with respect to the primaries. Usually this problem
is studied in a rotating system of coordinates where the positions of the primaries
remain fixed, see for more details on the restricted problems the book of Szebehely
[62].
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More precisely, taking the unit of mass equal to the masses of the three pri-
maries and since a central configuration is invarinat under rotations and homoth-
ecies through its center of mass without loss of generality we can assume that the
position vector rj of the three primaries with masses m1 = m2 = m3 = 1 are

(2) r1 = (x1, y1) = (−1, 0), r2 = (x2, y2) = (0, 0), r3 = (x3, y3) = (1, 0).

We denote the position of the infinitesimal mass m4 = 0 by r4 = (x4, y4) = (x, y).
Then our main result is the following one.

Figure 1. The six central configurations of the circular restricted
4-body problem with three equal primaries in the collinear central
configuration of the 3-body problem. The three primaries are in-
dicated with the big circles, and the position of the infinitesimal
mass in the corresponding six central configurations is indicated
with a small circle.

Theorem 1. The circular restricted 4-body problem with three primaries of equal
masses m1 = m2 = m3 = 1 with position vectors given in (2), and one infinitessimal
mass m4 = 0 with position vector r4 = (x4, y4) = (x, y) have the following six central
configurations with r4 = pj for j = 1, . . . , 6 being:

(i) p1 = (x, y) = (0, 1.1394282249562009..), where the value of the coordinate
y is a root of the polynomial −16 − 48y2 + 40y3 − 48y4 + 120y5 + 23y6 +
120y7 − 75y8 + 40y9 − 75y10 − 25y12;

(ii) p2 = (x, y) = (0,−1.1394282249562009..);
(iii) p3 = (x, y) = (1.7576799791694022.., 0), where the value of the coordinate

y is a root of the polynomial −4 + 5x3 − 12x4 − 10x5 + 5x7;
(iv) p4 = (x, y) = (0.49466649101736443.., 0), where the value of the coordinate

y is a root of the polynomial −4 + 8x2 + 21x3 − 4x4 − 10x5 + 5x7;
(v) p5 = (x, y) = (−0.49466649101736443.., 0);
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(vi) p6 = (x, y) = (−1.7576799791694022.., 0).

See Figure 1.

The proof of Theorem 1 in given in the next section.

2. Proof of Theorem 1

From (1) we obtain the following eight equations for the central configurations
of the 4-body problem in the plane

(3)

ej =

4∑
j=1,j 6=i

mj(xi − xj)
r3ij

= λ(xj − c1), 1 ≤ j ≤ 4,

ej+5 =

4∑
j=1,j 6=i

mj(yi − yj)
r3ij

= λ(yj − c2), 1 ≤ j ≤ 4,

where c = (c1, c2). Substituting in (3) the expressions (2), m1 = m2 = m3 = 1,
m4 = 0 and r4 = (x4, y4) = (x, y), corresponding to our circular restricted 4-body
problem these eight equations reduce to

e1 = −e3 =
5

4
+ λ = 0,

e2 = e5 = e6 = e7 = 0,

e4 = −λx− x

(x2 + y2)
3/2
− 1 + x

((x+ 1)2 + y2)
3/2

+
1− x

((x− 1)2 + y2)
3/2

= 0,

e8 = y

(
−λ− 1

(x2 + y2)
3/2
− 1

((x− 1)2 + y2)
3/2
− 1

((x+ 1)2 + y2)
3/2

)
= 0.

Therefore λ = −5/4, and the position vector of r4 = (x, y) in order to have a central
configuration of the circular restricted 4-body problem must be a real solution of
the system

e4 =
5

4
x− x

(x2 + y2)
3/2
− 1 + x

((x+ 1)2 + y2)
3/2

+
1− x

((x− 1)2 + y2)
3/2

= 0,

e8 = y

(
5

4
− 1

(x2 + y2)
3/2
− 1

((x− 1)2 + y2)
3/2
− 1

((x+ 1)2 + y2)
3/2

)
= 0.

In Figure 2 we have shwon the curves e4(x, y) = 0 and e8(x, y) = 0, and in Figure
3 the intersection of these two curves. We see that these two curves intersect
in six points inside the rectangle R = {(x, y) ∈ R2 : −2.2 ≤ x ≤ 2.2,−2.2 ≤
y ≤ 2.2}. Computing the coordenates of these six points numerically using the
Newton method (see for instance [61]), we get the six points pj which appear in
the statement of Theorem 1. Of course we have omitted the three points where are
located the the three primaries in the intersections of the two curves e4(x, y) = 0
and e8(x, y) = 0, because there really these two curves are not defined. Now we
shall prove that these six points obtained numerically really are solutions of the
system e4(x, y) = e8(x, y) = 0.
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(a) The curve e4(x, y) = 0 (b) The curve e8(x, y) = 0

Figure 2. The curves e4(x, y) = 0 and e8(x, y) = 0 in the rectan-
gle (x, y) ∈ [−2.2, 2.2]× [−2.2, 2.2].

We note that equations e4(x, y) = e8(x, y) = 0 are invariant if we change x by
−x, and y by −y, so if (x, y) is a solution of the system e4(x, y) = e8(x, y) = 0 also
(−x, y), (x,−y) and (−x,−y) are solutions. So in order to prove Theorem 1 we
only need to study the solutions of system e4(x, y) = e8(x, y) = 0 satisfying x ≥ 0
and y ≥ 0. Moreover, from Figure 3 we see that all the are of the form (x, 0) or
(0, y), and since in the the origin (0, 0) there is one primary, we must look only for
the solutions (x, 0) or (0, y) with x > 0 and y > 0.

First we look for the solutions (0, y) with y > 0, then system e4(x, y) = e8(x, y) =
0 reduce to

(4)
5y

4
− 2y

(y2 + 1)
3/2
− 1

y2
= 0,

or equivalently to

8y3 = (1 + y2)3/2(−4 + 5y3).

Squaring the both sides of the this equation we get the equation

−16−48y2 + 40y3−48y4 + 120y5 + 23y6 + 120y7−75y8 + 40y9−75y10−25y12 = 0.

This polynomial equation has only two real roots

0.7625005146027564.. and 1.1394282249562009..,

but only the second root satisfies equation (4). This provides the solution p1 of
Theorem 1, and consequently also the solution p2.

Now we look for the solutions (x, 0) with x > 0 of the system e4(x, y) = e8(x, y) =
0. For these solutions the system reduce to

(5)
5x

4
− 1

x2
+

1− x
|1− x|3/2

=
1 + x

|1 + x|3/2
,
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Figure 3. In this picture we can see the six intersection points
between the two curves e4(x, y) = 0 and e8(x, y) = 0 different
from the positions of the primaries, which provide the six central
configurations of the circular restricted 4-body problem with three
primaries of equal masses at the collinear configuration of the 3-
body problem and an infinitisimal mass

squaring the both sides of the previous equality we obtain

1

x4
− 5

2x
+

25x2

16
+

1

(x− 1)4
− 1

(x+ 1)4
− (x− 1)(5x3 − 4)

2x2|x− 1|3
= 0.

Writting this equation with a common denominator, which only vanishes at the
positions of the primeries, its numerator equal zero can be written as

8(x− 1)5x2(x+ 1)4(5x3 − 4) = |x− 1|3(16− 64x2 − 40x3 + 96x4 + 288x5

−39x6 − 112x7 − 84x8 + 160x9 + 150x10 − 40x11 − 100x12 + 25x14).

Squaring again the both sides of the this equality we get

(x− 1)6(−4 + 5x3 − 12x4 − 10x5 + 5x7)(−4 + 8x2 − 11x3 − 4x4 − 10x5 + 5x7)
(−4 + 8x2 + 21x3 − 4x4 − 10x5 + 5x7)(−4 + 16x2 + 5x3 + 4x4 − 10x5 + 5x7) = 0.

The real zero x = 1 is not good because it correspond to the position of a pri-
mary. The unique real root of the polynomial −4 + 5x3 − 12x4 − 10x5 + 5x7 is
1.7576799791694022.. which also is a zero of equation (5), and consequently pro-
vides the central configuration p3, and by the symmetries of the equations of the
central configurations also provides the central configuration p6.

The unique real root of the polynomial −4 + 8x2 + 21x3 − 4x4 − 10x5 + 5x7

is 0.4946664910173645.. which also is a zero of equation (5), and consequently
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provides the central configuration p4, and due to the symmetries of the equations
of the central configurations also provides the central configuration p5.

The real roots of the polynomials −4 + 8x2 − 11x3 − 4x4 − 10x5 + 5x7 and
4 + 16x2 + 5x3 + 4x4− 10x5 + 5x7 are not zeros of the equation (5). This completes
the proof of Theorem 1.
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[7] Álvarez-Ramı́rez M. and Llibre J., The symmetric central configurations of the 4–body prob-

lem with masses m1 = m2 6= m3 = m4, Appl. Math. Comp. 219 (2013), 5996–6001.
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