Contents lists available at ScienceDirect

Nonlinear Analysis: Hybrid Systems

iournal homepage: www.elsevier.com/locate/nahs

On the indices of singular points for planar bounded piecewise smooth polynomial vector field

Shimin Li^{a,*}, Jaume Llibre^b, Xianbo Sun^a

^a School of Mathematics. Hangzhou Normal University. Hangzhou, 311121. PR China ^b Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain

ARTICLE INFO

Article history: Received 10 June 2022 Received in revised form 1 December 2022 Accepted 4 March 2023 Available online xxxx

MSC: 34C37 34C07 37G15

Keywords. Bounded vector field Index of singular points Piecewise smooth polynomial vector field Stereographic projection

1. Introduction and statement of the main result

A planar polynomial differential system of the form

$$\begin{cases} \frac{dx}{dt} = P(x, y), \\ \frac{dy}{dt} = Q(x, y), \end{cases}$$

where P(x, y) and Q(x, y) are polynomials in the variables x and y. System (1) is called a polynomial system of degree m if m is the maximum degree of the polynomials P(x, y) and Q(x, y). We denote Z(x, y) = (P(x, y), Q(x, y)) the associated vector field of system (1).

In the qualitative theory of planar polynomial differential systems [1,2], one of the most important problems is the determination and distribution of limit cycles, which is known as the famous Hilbert's 16th problem. Since this problem is very difficult, mathematicians pay attention to the special forms of system (1), for Liénard systems see [3-5], for Z_2 -equivariant systems see [6–9], for Hamiltonian systems see [10,11].

Definition 1. A vector field (1) is said bounded when all its orbits are bounded for $t \ge 0$.

https://doi.org/10.1016/j.nahs.2023.101350 1751-570X/© 2023 Elsevier Ltd. All rights reserved.

(1)

ABSTRACT

We prove that for any piecewise-smooth bounded polynomial vector field in \mathbb{R}^2 with finitely many finite \mathcal{H} -singular points (which include singular points, hyperbolic pseudoequilibria and two fold singularities), the sum of the indices of all its finite \mathcal{H} -singular points is 1.

© 2023 Elsevier Ltd. All rights reserved.

Corresponding author. E-mail address: lishimin@hznu.edu.cn (S. Li).