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Abstract. In this paper we study the maximum number of limit cycles bifurcating from

the periodic solutions of the period annulus of the center ẋ = −y((x2 + y2)/2)m, ẏ =

x((x2 + y2)/2)m with m ≥ 0 under discontinuous piecewise polynomial perturbations of
degree n with four zones separated by the discontinuity set Σ = {(x, y) ∈ R2 : xy = 0}.
For such perturbations of degree n we provide an upper bound for the maximum number of

the bifurcated limit cycles using the averaging theory up to an arbitrary order N , and this
upper bound is reached at least for orders one and two. In particular, if m = 0, namely the

center is linear, we improve the result of [Nonlinear Analysis: Real World Applications 41
(2018), 384–400] providing more limit cycles that bifurcate from the unperturbed periodic

orbits of the period annulus of the center.

1. Introduction and statement of main result

Hilbert’s 16th problem, an important subject in the qualitative theory of differential sys-
tems, asks for the maximum number of limit cycles that planar polynomial differential systems
with a fixed degree can have. Since David Hilbert [15] proposed it in 1900, a large number of
works were devoted to the study of this problem, see the survey paper [19]. But it is still an
open problem up to now, even for quadratic differential systems. As Hilbert’s 16th problem
turns out to be extremely difficult, some researchers have particularized it to identify the
maximum number of limit cycles bifurcating from a periodic annulus, when we perturb it
inside the class of all planar polynomial differential systems with a fixed degree n ≥ 1. In
essence, this is the weak Hilbert’s 16th problem, see [2, 16, 19]. If this periodic annulus is
formed by the linear center ẋ = −y, ẏ = −x, Iliev [16] proved that [3(n − 1)/2] is a lower
bound for the maximum number, where [·] denotes the integer part function. They also gave
that [N(n − 1)/2] is an upper bound for the maximum number using the Melnikov method
of order N . However the exact maximum number is unclear so far except for some special
perturbations, e.g. Liénard family [14, 21]. In 2010, Buică, Giné and Llibre [6] extended the
work of Iliev [16] considering the polynomial perturbations of the center

(1) ẋ = −y
(
x2 + y2

2

)m
, ẏ = x

(
x2 + y2

2

)m
with m ≥ 0. Note that H(x, y) = (x2 + y2)/2 is a first integral of system (1).

Discontinuous events are widespread in the real world, such as stick-slip motion in oscilla-
tors with dry friction [12,20], switching in electronic circuits [4,5], and impact in mechanical
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devices [4, 27]. To mathematically depict them, many models were established by discon-
tinuous piecewise smooth differential systems, which consist of multiple smooth differential
systems defined on different regions separated by smooth lines or curves, usually called dis-
continuity set [4]. The solution of such systems can be defined by the Filippov convention [13].

For discontinuous piecewise smooth differential systems, an isolated periodic orbit is said
to be a crossing limit cycle if it intersects the discontinuity set only at the so-called crossing
region, a subset of the discontinuity set where both vector fields are transverse to it and their
normal components have the same sign, see [18] for more details. Analogous to polynomial
differential systems, we can extend the weak Hilbert’s 16th problem to discontinuous piecewise
polynomial differential systems, asking for the maximum number of crossing limit cycles
bifurcating from a periodic annulus under discontinuous piecewise polynomial perturbations
of a fixed degree. The simplest case is the piecewise polynomial perturbations of the linear
center ẋ = −y, ẏ = x in two zones separated by a straight line. In this case for any given
degree n ≥ 1 Buzzi, Lima and Torregrosa [7] proved that Nn − 1 is an upper bound for the
maximum number using Melnikov method up to order N . Moreover, they showed that this
upper bound is reached for orders one and two, which means that 2n − 1 is a lower bound.
According to the works [8] (resp. [24]), this lower bound can be improved to be 3 (resp. 8
and 13) for n = 1 (resp. n = 2 and n = 3) up to a study of order seven (resp. five).

Since models in applications with the discontinuity that is located on multiple straight
lines or curves are ubiquitous, see e.g. [1, 12, 26], this encourages us to research the crossing
limit cycles of discontinuous piecewise smooth differential systems having multiple straight
lines or curves as the discontinuity set, e.g. [10, 11,25,29,31,32] for some contributions.

In this paper, motivated by real applications and the works [7, 16], we bring the weak
Hilbert’s 16th problem to discontinuous piecewise polynomial perturbations of the center (1)
in four zones Rk (k = 1, 2, 3, 4) separated by the discontinuity set Σ = {(x, y) ∈ R2 : xy = 0},
where

R1 = {(x, y) ∈ R2 : x > 0, y > 0}, R2 = {(x, y) ∈ R2 : x < 0, y > 0},
R3 = {(x, y) ∈ R2 : x < 0, y < 0}, R4 = {(x, y) ∈ R2 : x > 0, y < 0}.

More precisely, we consider the discontinuous piecewise polynomial system

(2) ẋ = −y
(
x2 + y2

2

)m
+

∞∑
i=1

εifki (x, y), ẏ = x

(
x2 + y2

2

)m
+

∞∑
i=1

εigki (x, y)

if (x, y) ∈ Rk, where ε ∈ R is a small perturbation parameter, fki and gki are real polynomials
of degree n ≥ 1. Our main goal is to study the maximum number of crossing limit cycles of
system (2) bifurcating from the unperturbed periodic annulus. The following theorem is our
main result.

Theorem 1. Let MN (m,n) be the maximum number of crossing limit cycles of system (2)
with m ≥ 0, n ≥ 1 which can be obtained using the averaging theory of order N for |ε| > 0
sufficiently small. We have the following statements.

(i) If n ≥ 2m+ 1, then MN (m,n) ≤ Nn, and this upper bound is reached for N = 1, 2.
(ii) If n ≤ 2m, then MN (m,n) ≤ (2m + 1)(N − 1) + n. Moreover, this upper bound is

reached for N = 1, and N = 2 and n ≥ m, while for N = 2 and n ≤ m− 1, it can be
reduced to 3n+ 1 and the new upper bound is reached.
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We remark that Theorem 1 improves the results of [9,29,31]. In [29], using the first order
Melnikov method for system (2) with m = 0 and any fixed n, Wang, Han and Constantinescu
proved that n crossing limit cycles can bifurcate from the unperturbed periodic annulus. Thus
n is a lower bound for the maximum number of crossing limit cycles bifurcating from the
periodic annulus of the linear center ẋ = −y, ẏ = x, when we perturb it inside discontinuous
piecewise polynomial systems with four zones separated by Σ. After this, the lower bound
is updated as 2n − 1 in [31] by introducing multiple small parameters into the considered
systems and deriving a generalized first order Melnikov function. According to statement
(i) of Theorem 1, we can further update the lower bound as 2n and thus improve the result
of [31] providing one more crossing limit cycle.

On the other hand in [9] the authors considered discontinuous piecewise polynomial per-
turbations of the center (1) with m ≥ 1 in k zones separated by k rays originating at the
origin. According to [9, Theorem 1], for given m, k and degree n the first order averaging
theory at most provides n crossing limit cycles and this number is reached. Therefore if we
restrict the perturbations considered in [9] to system (2), i.e. k = 4 and the four rays are
exactly the coordinate axes, all the results of Theorem 1 with N = 1 is just [9, Theorem 1].
Although system (2) is special one, we obtain new results using the higher order averaging
theory as stated in Theorem 1 and thus we improve the work [9].

The paper is organized as follows. In section 2 we recall the averaging theory for non-
autonomous discontinuous piecewise smooth differential systems with many zones. Then we
prove Theorem 1 in section 3.

2. Averaging theory

It is well known that the averaging theory can be used to study the number of limit
cycles of smooth differential systems, see [28]. With the averaging theory we can obtain some
information on limit cycles bifurcating from a periodic annulus through studying the zeros of
the so-called averaged functions. In recent years, stimulated by both theoretical development
and real applications, the classical averaging theory developed for smooth differential systems
has been extended to piecewise smooth differential systems, e.g. [17,22,23,30]. In this section
we summarize the averaging theory for studying the crossing limit cycles of the discontinuous
piecewise polynomial system (2) following [23].

Using the change to polar coordinates (r, θ) where x = r cos θ and y = r sin θ we write
system (2) as

(3)
dr

dt
=

∞∑
i=1

εipki (θ, r),
dθ

dt
=
r2m

2m
− 1

r

∞∑
i=1

εiqki (θ, r) if θ ∈
[

(k − 1)π

2
,
kπ

2

]
,

where k = 1, 2, 3, 4 and

pki (θ, r) = cos θfki (r cos θ, r sin θ) + sin θgki (r cos θ, r sin θ),

qki (θ, r) = sin θfki (r cos θ, r sin θ)− cos θgki (r cos θ, r sin θ).

Taking θ as the new independent variable, system (3) is transformed into

(4)
dr

dθ
=

N∑
i=1

εiFi(θ, r) + εN+1R(θ, r, ε),
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with

(5) Fi(θ, r) =

4∑
k=1

χ
[
(k−1)π

2 , kπ2 ]
(θ)F ki (θ, r), R(θ, r) =

4∑
k=1

χ
[
(k−1)π

2 , kπ2 ]
(θ)Rk(θ, r, ε),

and

(6)

F ki (θ, r)=
2mpki (θ, r)

r2m
+

i−1∑
l=0

pkl (θ, r)

(
22mqki−l(θ, r)

r4m+1
+

∑
j1+j2=i−l
1≤j1,j2≤i−l

23mqkj1(θ, r)qkj2(θ, r)

r6m+2
+ · · ·

+
∑

j1+j2+···+ji−l=i−l
1≤j1,j2,...,ji−l≤i−l

2(i−l+1)mqkj1(θ, r)qkj2(θ, r) · · · qkji−l(θ, r)
r(2m+1)(i−l)+2m

)
,

where we are assuming that pk0(θ, r) ≡ 0 for the sake of convenience, χA(θ) is the characteristic
function on the interval A, i.e.

χA(θ) =

{
1 if θ ∈ A,
0 if θ /∈ A.

Let S1 ≡ R/(2πZ). Clearly, F ki : S1 × (0,+∞) → R and Rk : S1 × (0,+∞) × (−ε0, ε0) → R
are CN+1 functions which are 2π-periodic in the variable θ.

According to [23], the averaged function of order i associated to system (4) is

(7) Fi(r) =
yi(2π, r)

i!

where the functions yi(θ, r) : S1 × (0,∞)→ R for i = 1, 2, ..., N are given recurrently by

(8)

y1(θ, r) =

∫ θ

0

F1(ϕ, r)dϕ,

yi(θ, r) = i!

∫ θ

0

(
Fi(ϕ, r) +

i∑
l=1

∑
Sl

1

K

∂LFi−l(ϕ, r)

∂rL

l∏
j=1

yj(ϕ, r)
bj

)
dϕ.

Here

(9)
∂LFi(θ, r)

∂rL
=

4∑
k=1

χ[(k−1)π/2,kπ/2](θ)
∂LF ki (θ, r)

∂rL
,

where Sl is the set of all l-tuples of non-negative integers (b1, b2, ..., bl) satisfying b1 + 2b2 +
· · ·+ lbl = l, L = b1 + b2 + · · ·+ bl and K = b1!b2!2!b2 · · · bl!l!bl . Moreover we are assuming
that F0 = 0 in (7) for convenience.

The next theorem was proved in [23].

Theorem 2. Consider the non-autonomous discontinuous piecewise smooth differential sys-
tem (4). Suppose that i0 is the first positive integer such that Fi = 0 for 1 ≤ i ≤ i0 − 1 and
Fi0 6= 0. If Fi0(r∗) = 0 and F ′i0(r∗) 6= 0 for some r∗ ∈ (0,∞), then for |ε| > 0 sufficiently
small there exists a 2π-periodic solution r(θ, ε) of system (4) such that r(0, ε)→ r∗ as ε→ 0.

Theorem 2 implies that a simple positive real zero of the first non-vanishing averaged
function provides a crossing limit cycle of system (2) bifurcating from some unperturbed
periodic orbit of the period annulus of the center (1).
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We state the Descartes Theorem for studying the number of positive real zeros of polyno-
mials in the following, for a proof see [3].

Theorem 3. Consider the real polynomial p(x) = ai11x
i1 +ai2x

i2 + ...+airx
ir with 0 = i1 <

i2 < ... < ir and r > 1. If aijaij+1
< 0, we say that aij and aij+1

have a variation of sign.
If the number of variations of signs is r0 ∈ {0, 1, 2, ..., r − 1}, then the polynomial p(x) has
at most r0 positive real roots. Furthermore, we can choose the coefficients of the polynomial
p(x) in such a way that p(x) has exactly r − 1 positive real roots.

3. Proof of Theorem 1

The goal of this section is to prove Theorem 1. To do this, from section 2 we only need to
study the maximum number of simple positive real zeros of the averaged functions associated
to system (4) satisfying (5) and (6). We start with the following lemma.

Lemma 4. Consider the functions Fi(θ, r) and F ki (θ, r), i = 1, 2, ..., N and k = 1, 2, 3, 4,
given in (5) and (6) respectively. Let

(10) F̃ ki (θ, r) = F ki (θ, r)r(2m+1)i−1, F̃i(θ, r) = Fi(θ, r)r
(2m+1)i−1.

If n ≥ 2m + 1 (resp. n ≤ 2m), then both F̃ ki (θ, r) and F̃i(θ, r) are polynomials of degree in
(resp. (2m+ 1)(i− 1) + n) in the variable r.

Proof. Since fki (x, y) and gki (x, y) are polynomials of degree n ≥ 1, the functions pki (θ, r) and
qki (θ, r) defined in (3) are polynomials of degree n ≥ 1 in the variable r whose coefficients
are polynomials in the variables cos θ and sin θ. Thus, if n ≥ 2m + 1 (resp. n ≤ 2m),

it follows from (6) that F̃ ki (θ, r) = F ki (θ, r)r(2m+1)i−1 is a polynomial of degree in (resp.
(2m+ 1)(i− 1) +n) in the variable r whose coefficients are polynomials in the variables cos θ
and sin θ. Joining (5) and (10), we have

F̃i(θ, r) =

4∑
k=1

χ
[
(k−1)π

2 , kπ2 ]
(θ)F ki (θ, r)r(2m+1)i−1 =

4∑
k=1

χ
[
(k−1)π

2 , kπ2 ]
(θ)F̃ ki (θ, r).

Furthermoe F̃i(θ, r) is a polynomial of degree in (resp. (2m + 1)(i − 1) + n) in the variable
r whose coefficients are polynomials in the variables cos θ and sin θ if n ≥ 2m + 1 (resp.
n ≤ 2m). �

Having Lemma 4 we now obtain the following result.

Proposition 5. The averaged function of order N associated to system (4) satisfying (5) and
(6) has at most Nn (resp. (2m+1)(N −1)+n) simple positive real zeros if n ≥ 2m+1 (resp.
n ≤ 2m).

Proof. Let

(11) ỹi(θ, r) = yi(θ, r)r
(2m+1)i−1,

where i = 1, 2, ..., N and yi(θ, r) is the function defined in (8). We claim that ỹi(θ, r) is a
polynomial of degree in (resp. (2m + 1)(i − 1) + n) in the variable r if n ≥ 2m + 1 (resp.
n ≤ 2m). In fact, from (8), (10) and Lemma 4 it follows that

ỹ1(θ, r) = y1(θ, r)r2m =

∫ θ

0

F1(φ, r)dφr2m =

∫ θ

0

F̃1(φ, r)dφ
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is a polynomial of degree n in r, i.e. the claim holds for i = 1.

Assuming that this claim also holds for i = 2, 3, ..., i0 − 1 with 2 ≤ i0 ≤ N , by induction
we only need to prove it for i = i0 in the following. For 1 ≤ i0 − l ≤ i0 − 1, using (9), (10)
and the derivative method for the composition of functions, we have

(12)

∂LFi0−l(θ, r)

∂rL
=

4∑
k=1

χ
[
(k−1)π

2 , kπ2 ]
(θ)

∂LF ki0−l(θ, r)

∂rL

=

4∑
k=1

χ
[
(k−1)π

2 , kπ2 ]
(θ)

L∑
s=0

L!

s!(L− s)!
∂sF̃ ki0−l(θ, r)

∂rs
dL−sr−2(i0−l)m−i0+l+1

drL−s

=
Pi0−l(θ, r)

r(2m+1)(i0−l)+L−1
,

where Pi0−l(θ, r) is a polynomial in the variable r such that the above equality holds. By
Lemma 4 and a direct computation, it is not difficult to get that the degree of Pi0−l(θ, r) is
(i0 − l)n (resp. (2m + 1)(i0 − l − 1) + n) if n ≥ 2m + 1 (resp. n ≤ 2m). We do not provide
the specific expression of P (θ, r) because it is not necessary for the rest of the proof.

Since b1 + 2b2 + · · ·+ lbl = l and b1 + b2 + · · ·+ bl = L, for l ≤ i0 − 1 we have

(13)

l∏
j=1

yj(θ, r)
bj =

l∏
j=1

(
ỹj(θ, r)

r(2m+1)j−1

)bj
=

1

r(2m+1)l−L

l∏
j=1

ỹj(θ, r)
bj ,

and
∏l
j=1 ỹj(θ, r)

bj is a polynomial of degree ln (resp. (2m+ 1)(l− L) + Ln) in the variable

r if n ≥ 2m + 1 (resp. n ≤ 2m). Here we used the assumption that the claim holds for
i = 1, 2, 3, ..., i0 − 1.

Thus, combining (8), (12), (13) and F0 = 0 in (8), we get

(14)

yi0(θ, r) = i0!

∫ θ

0

Fi0(φ, r) +

i0−1∑
l=1

∑
Sl

1

K

∂LFi0−l(φ, r)

∂rL

l∏
j=1

yj(φ, r)
bj

 dφ

=
i0!

r(2m+1)i0−1

∫ θ

0

F̃i0(φ, r) +

i0−1∑
l=1

∑
Sl

1

K
Pi0−l(φ, r)

l∏
j=1

ỹj(φ, r)
bj

 dφ.

With the properties of Pi0−l(θ, r) and
∏l
j=1 ỹj(θ, r)

bj obtained above, i.e.

Pi0−l(θ, r)

l∏
j=1

ỹj(θ, r)
bj

is a polynomial of degree i0n (resp. (2m + 1)(i0 − L − 1) + (L + 1)n) in r if n ≥ 2m + 1

(resp. n ≤ 2m). Moreover, from Lemma 4 we know that F̃i0(θ, r) is a polynomial of degree
i0n (resp. (2m+1)(i0−1)+n) in the variable r if n ≥ 2m+1 (resp. n ≤ 2m). Consequently,
if n ≥ 2m+ 1 we obtain that ỹi0(θ, r) = yi0(θ, r)r(2m+1)i0−1 is a polynomial of degree i0n in
the variable r from (14), while if n ≤ 2m, we have

(2m+ 1)(i0 − L− 1) + (L+ 1)n < (2m+ 1)(i0 − 1) + n

and then ỹi0(θ, r) is a polynomial of degree (2m + 1)(i0 − 1) + n in the variable r by (14)
again from (14). This completes the proof of the claim.
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According to the definitions (7) and (11), the averaged function of order N associated to
system (4) satisfying (5) and (6) is

FN (r) =
yN (2π, r)

N !
=

ỹN (2π, r)

N !r(2m+1)N−1 .

Thus FN (r) and ỹN (2π, r) have the same simple positive real zeros. By the above claim,
ỹN (2π, r) is a polynomial of degree Nn (resp. (2m + 1)(N − 1) + n) if n ≥ 2m + 1 (resp.
n ≤ 2m), so that Proposition 5 follows. �

Proposition 5 gives a unified upper bound for the maximum number of simple positive real
zeros of the averaged function of order N . Note that the upper bound for N = 1 is always n
whatever n ≥ 2m+ 1 or n ≤ 2m. But for N = 2 and n ≤ m− 1 analyzing the second order
averaged function we can reduce the upper bound as it is stated in the next proposition.

Proposition 6. If n ≤ m − 1, the second order averaged function associated to system (4)
satisfying (5) and (6) has at most 3n+ 1 simple positive real zeros.

Proof. Since n ≤ m− 1 ≤ 2m, by Lemma 4 and the proof of Proposition 5 we know that

(a) P1(θ, r) = r2m+1∂F1(θ, r)/∂r is a polynomial of degree n in the variable r,
(b) ỹ1(θ, r) = y(θ, r)r2m is a polynomial of degree n in the variable r,

(c) F̃2(θ, r) = F2(θ, r)r4m+1 is a polynomial of degree 2m+ n+ 1 in the variable r.

On the other hand, it follows from (6) that

F̃ k2 (θ, r) = F k2 (θ, r)r4m+1 = 2mr2m+1pk2(θ, r) + 22mpk1(θ, r)qk1 (θ, r),

for k = 1, 2, 3, 4, where pk1 , q
k
1 and pk2 are given in (3). Since n ≤ m − 1 and both pk1(θ, r)

and qk1 (θ, r) are polynomial of degree n in the variable r as stated in the proof of Lemma 4,

all the terms of F̃ k2 (θ, r) from r2n+1 to r2m vanish for k = 1, 2, 3, 4, i.e. F̃ k2 (θ, r) has at most

3n+ 2 terms. Because of (5), hence all the terms of F̃2(θ, r) from r2n+1 to r2m also vanish.

Finally, using (7) and statements (a), (b) and (c) we have

F2(r) =

∫ 2π

0

F2(θ, r) +
∂F1(θ, r)

∂r
y1(θ, r)dθ =

1

r4m+1

∫ 2π

0

F̃2(θ, r) + P1(θ, r)ỹ1(θ, r)dθ,

and then F2(r)r4m+1 is a polynomial of degree 2m+n+1 having at most 3n+2 terms. Thus
F2(r)r4m+1 has at most 3n+ 1 simple positive real zeros due to Theorem 3. This concludes
the proof of Proposition 6 because F2(r) and F2(r)r4m+1 have the same simple positive real
zeros. �

Next we study the realization of the upper bounds obtained in Propositions 5 and 6.

Proposition 7. Consider the discontinuous piecewise polynomial system

(15)


ẋ = −y

(
x2 + y2

2

)m
+ε

n∑
i=0

aiy
i, ẏ = x

(
x2 + y2

2

)m
if (x, y)∈R1,

ẋ = −y
(
x2 + y2

2

)m
, ẏ = x

(
x2 + y2

2

)m
if (x, y) ∈ R2∪R3∪R4.

For any given m ≥ 0 and n ≥ 1 there exists a choice of parameters ai, i = 0, 1, 2, ..., n, such
that the corresponding first order averaged function has exactly n simple positive real zeros.
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Proof. Writing system (15) into the form (4) in the polar coordinates (r, θ), we get

F1(θ, r) =


2m

r2m
cos θ

n∑
i=0

ai sini θri if θ ∈ [0,
π

2
],

0 if θ ∈ [
π

2
, 2π].

Thus the first order averaged function is

F1(r) =

∫ π
2

0

F 1
1 (θ, r)dθ =

∫ π
2

0

2m

r2m
cos θ

n∑
i=0

ai sini θridθ =
2m

r2m

n∑
i=0

1

i+ 1
air

i

by (7) and (8). Clearly, F1(r) and F1(r)r2m have the same simple positive real zeros and
F1(r)r2m is a complete polynomial of degree n, i.e. all coefficients of F1(r)r2m can be chosen
arbitrarily. Consequently, there exists a choice of parameters ai, i = 0, 1, 2, ..., n, such that
F1(r) has n simple positive real zeros. This ends the proof of Proposition 7. �

Proposition 8. Consider the discontinuous piecewise polynomial system

(16)



ẋ= −y
(
x2 + y2

2

)m
+ ε

n∑
i=0

aiy
i, ẏ=x

(
x2 + y2

2

)m
+ ε

n∑
i=0

bix
i if (x, y)∈R1,

ẋ= −y
(
x2 + y2

2

)m
, ẏ=x

(
x2 + y2

2

)m
if (x, y)∈R2,

ẋ= −y
(
x2 + y2

2

)m
+ ε

n∑
i=0

ciy
i, ẏ=x

(
x2 + y2

2

)m
if (x, y)∈R3,

ẋ= −y
(
x2 + y2

2

)m
+ ε2

n∑
i=0

diy
i, ẏ=x

(
x2 + y2

2

)m
if (x, y)∈R4,

with ci = (−1)i(ai+bi) for i = 0, 1, 2, ..., n. For any given m ≥ 0 and n ≥ 1 the corresponding
first order averaged function vanishes, and there exists a choice of parameters ai, bi and di
such that the corresponding second order averaged function has exactly 2n (resp. 2m + n +
1, 3n+ 1) simple positive real zeros if n ≥ 2m+ 1 (resp. m ≤ n ≤ 2m,n ≤ m− 1).

Proof. Writing system (16) into the form (4) in the polar coordinates (r, θ) and using the
condition ci = (−1)i(ai + bi) for i = 0, 1, 2, ..., n, we get

F1(θ, r) =



2m

r2m

n∑
i=0

(ai cos θ sini θ+bi sin θ cosi θ)ri if θ ∈ [0,
π

2
],

0 if θ ∈ [
π

2
, π],

2m

r2m

n∑
i=0

(−1)i(ai + bi) cos θ sini θri if θ ∈ [π,
3π

2
],

0 if θ ∈ [
3π

2
, 2π],
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and

F2(θ, r) =



22m

r4m+1

n∑
i=0

(ai cos θ sin
i θ+bi sin θ cos

i θ)ri
n∑
i=0

(ai sin
i+1 θ − bi cosi+1 θ)ri if θ∈ [0, π

2
],

0 if θ∈ [π
2
, π],

22m

r4m+1

n∑
i=0

(−1)i(ai + bi) cos θ sin
i θri

n∑
i=0

(−1)i(ai + bi) sin
i+1 θri if θ∈ [π, 3π

2
],

2m

r2m

n∑
i=0

di cos θ sin
i θri if θ∈ [ 3π

2
, 2π].

Therefore, by (7) and (8) the first order averaged function is

F1(r) =
2m

r2m

∫ π
2

0

n∑
i=0

(ai cos θ sini θ + bi sin θ cosi θ)ridθ

+
2m

r2m

∫ 3π
2

π

n∑
i=0

(−1)i(ai + bi) cos θ sini θridθ = 0,

and the second order averaged function is
(17)

F2(r) =
2m

r2m

∫ 2π

3π
2

n∑
i=0

di cos θ sin
i θridθ

+
22m

r4m+1

∫ π
2

0

n∑
i=0

(ai cos θ sin
i θ+bi sin θ cos

i θ)ri
n∑
i=0

(ai sin
i+1 θ−bi cosi+1 θ)ridθ

+
22m

r4m+1

∫ 3π
2

π

n∑
i=0

(−1)i(ai + bi) cos θ sin
i θri

n∑
i=0

(−1)i(ai + bi) sin
i+1 θridθ

+
22m

r4m+1

∫ π
2

0

n∑
i=0

(ai cos θ sin
i θ+bi sin θ cos

i θ)(i− 2m)ri
n∑
i=0

ai sin
i+1 θ−bi cosi+1 θ+bi

i+ 1
ridθ

+
22m

r4m+1

∫ 3π
2

π

n∑
i=0

(−1)i(ai+bi) cos θ sini θ(i− 2m)ri
n∑
i=0

(ai+bi)
(−1)i sini+1 θ + 1

i+ 1
ridθ.

We can write F2(r) as F2(r) = F̃2(r)/r4m+1 where

F̃2(r) =2m
n∑
i=0

(−1)i

i+ 1
dir

i+2m+1

+ 22m
2n∑
i=0

 ∑
i1+i2=i

0≤i1≤i2≤n

αi1,i2ai1ai2 +
∑

i1+i2=i
0≤i1,i2≤n

(βi1,i2bi1bi2 + γi1,i2ai1bi2)

 ri.
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To determine the number of simple positive real zeros of F̃2(r), or equivalently F2(r), we
next compute αi1,i2 , βi1,i2 and γi1,i2 . Collecting all terms of ai1ai2 from (17), we obtain

αi1,i2 =

∫ π
2

0

cos θ sini1 θ sini2+1 θdθ +

∫ 3π
2

π

(−1)i1+i2 cos θ sini1 θ sini2+1 θdθ

+

∫ π
2

0

(i1 − 2m) cos θ sini1 θ
sini2+1 θ

i2 + 1
dθ

+

∫ 3π
2

π

(−1)i1(i1 − 2m) cos θ sini1 θ
(−1)i2 sini2+1 θ + 1

i2 + 1
dθ

+

∫ π
2

0

cos θ sini2 θ sini1+1 θdθ +

∫ 3π
2

π

(−1)i1+i2 cos θ sini2 θ sini1+1 θdθ

+

∫ π
2

0

(i2 − 2m) cos θ sini2 θ
sini1+1 θ

i1 + 1
dθ

+

∫ 3π
2

π

(−1)i2(i2 − 2m) cos θ sini2 θ
(−1)i1 sini1+1 θ + 1

i1 + 1
dθ

=
1

i1 + 1
+

1

i2 + 1

if i1 < i2, while if i1 = i2 = i
2 ,

α i
2 ,
i
2

=

∫ π
2

0

cos θ sin
i
2 θ sin

i
2+1 θdθ +

∫ 3π
2

π

(−1)i cos θ sin
i
2 θ sin

i
2+1 θdθ

+

∫ π
2

0

(
i

2
− 2m

)
cos θ sin

i
2 θ

sin
i
2+1 θ

i
2 + 1

dθ

+

∫ 3π
2

π

(−1)
i
2

(
i

2
− 2m

)
cos θ sin

i
2 θ

(−1)
i
2 sin

i
2+1 θ + 1

i
2 + 1

dθ

=
1

i
2 + 1

.

Collecting all terms of bi1bi2 and ai1bi2 from (17) respectively, we obtain

βi1,i2 =

∫ π
2

0

sin θ cosi1 θ(− cosi2+1 θ)dθ +

∫ 3π
2

π

(−1)i1+i2 cos θ sini1 θ sini2+1 θdθ

+

∫ π
2

0

(i1 − 2m) sin θ cosi1 θ
1− cosi2+1 θ

i2 + 1
dθ

+

∫ 3π
2

π

(−1)i1(i1 − 2m) cos θ sini1 θ
(−1)i2 sini2+1 θ + 1

i2 + 1
dθ

=0,
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and

γi1,i2 =

∫ π
2

0

cos θ sini1 θ(− cosi2+1 θ) + sin θ cosi2 θ sini1+1 θdθ

+

∫ 3π
2

π

(−1)i1+i2 cos θ sini1 θ sini2+1 θ + (−1)i1+i2 cos θ sini2 θ sini1+1 θdθ

+

∫ π
2

0

(i1 − 2m) cos θ sini1 θ
1− cosi2+1 θ

i2 + 1
+ (i2 − 2m) sin θ cosi2 θ

sini1+1 θ

i1 + 1
dθ

+

∫ 3π
2

π

(−1)i1(i1 − 2m) cos θ sini1 θ
(−1)i2 sini2+1 θ + 1

i2 + 1

+ (−1)i2(i2 − 2m) cos θ sini2 θ
(−1)i1 sini1+1 θ + 1

i1 + 1
dθ

=

∫ π
2

0

− sini1 θ cosi2+2 θ + cosi2 θ sini1+2 θdθ +

∫ π
2

0

2 cos θ sini1+i2+1 θdθ

+

∫ π
2

0

(i1 − 2m) cos θ sini1 θ
1− cosi2+1 θ

i2 + 1
+ (i2 − 2m) sin θ cosi2 θ

sini1+1 θ

i1 + 1
dθ

+

∫ π
2

0

(i1 − 2m) cos θ sini1 θ
sini2+1 θ − 1

i2 + 1
+ (i2 − 2m) cos θ sini2 θ

sini1+1 θ − 1

i1 + 1
dθ

=

∫ π
2

0

− i1 + i2 + 1

i2 + 1
sini1 θ cosi2+2 θ +

i1 + i2 + 1

i1 + 1
cosi2 θ sini1+2 θdθ +

1

i2 + 1

=
1

i2 + 1
,

where we have used the formula∫ π
2

0

sini1 θ cosi2+2 θdθ =
i2 + 1

i1 + 1

∫ π
2

0

cosi2 θ sini1+2 θdθ.

The above computations reduce F̃2(r) to

F̃2(r) =2m
n∑
i=0

(−1)i

i+ 1
dir

i+2m+1

+ 22m
2n∑
i=0

 1
i
2 + 1

a i
2
a i

2
+

∑
i1+i2=i

0≤i1<i2≤n

(
1

i1 + 1
+

1

i2 + 1
)ai1ai2 +

∑
i1+i2=i

0≤i1,i2≤n

1

i2 + 1
ai1bi2

 ri

=2mF̃21(r) + 22mF̃22(r)F̃23(r),

where

F̃21(r) =

n∑
i=0

(−1)i

i+ 1
dir

i+2m+1, F̃22(r) =

n∑
i=0

air
i, F̃23(r) =

n∑
i=0

1

i+ 1
(ai + bi)r

i.

Since both F̃22(r) and F̃23(r) are complete polynomials of degree n, there exists a choice

of parameters ai and bi for i = 0, 1, ..., n such that F̃22(r) and F̃23(r) have n simple positive

real zeros respectively. Moreover, the independence of F̃22(r) and F̃23(r) allow to ensure that

the n simple positive real zeros of F̃22(r) are different from the ones of F̃23(r). This means
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that F̃2(r) has 2n simple positive real zeros if we fix di = 0 and choose conveniently the
parameters ai and bi for i = 0, 1, 2, .., n. Thus Proposition 8 holds directly if n ≥ 2m+ 1.

However, if m ≤ n ≤ 2m we see that F̃21(r) contributes with 2m − n + 1 additional

monomials of higher degree from r2n+1 to r2m+n+1 to the degree of F̃22(r)F̃23(r). Since

F̃21(r) is a complete polynomial, fixing the parameters ai and bi for i = 0, 1, ..., n obtained
in the last paragraph we can perturb di for i = 2n − 2m, 2n − 2m + 1, ..., n in such a way
that 2m − n + 1 simple positive real zeros bifurcate from the infinity. Hence, adding the 2n

zeros obtained in the last paragraph we get 2m + n + 1 simple positive real zeros of F̃2(r),
i.e. Proposition 8 holds if m ≤ n ≤ 2m.

If n ≤ m−1, then F̃21(r) contributes with n+1 additional monomials of higher degree from

r2m+1 to r2m+n+1 to the degree of F̃22(r)F̃23(r). Similarly we can perturb di for i = 0, 1, ..., n
in such a way that n+ 1 simple positive real zeros bifurcate from the infinity. Hence, adding

the 2n zeros obtained above we eventually get 3n+ 1 simple positive real zeros of F̃2(r) and
thus Proposition 8 also holds if n ≤ m− 1. �

Finally, we can prove Theorem 1.

Proof of Theorem 1. By the averaging theory and the used change to polar coordinates,
we know that a simple positive real zero of the first non-vanishing averaged function provides a
crossing limit cycle of system (2) that bifurcate from a periodic orbit of the periodic annulus
of the center ẋ = −y((x2 + y2)/2)m, ẏ = x((x2 + y2)/2)m with m ≥ 0. Consequently,
statement (i) of Theorem 1 follows from Propositions 5, 7 and 8, and statement (ii) follows
from Propositions 5, 6, 7 and 8. �
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