LIMIT CYCLES IN PIECEWISE POLYNOMIAL SYSTEMS ALLOWING
A NON-REGULAR SWITCHING BOUNDARY

TAO LI' AND JAUME LLIBRE?

ABSTRACT. Continuing the investigation for the piecewise polynomial perturbations of
the linear center ¢ = —y, ¥ =  from [Physica D 371(2018), 28-47] for the case where the
switching boundary is a straight line, in this paper we allow that the switching boundary
is non-regular, i.e. we consider a switching boundary which separates the plane into two
angular sectors with angles o € (0, 7] and 27 — a. Moreover, unlike the aforementioned
work, we allow that the polynomial differential systems in the two sectors have different
degrees. Depending on « and for arbitrary given degrees we provide an upper bound
for the maximum number of limit cycles that bifurcate from the periodic annulus of the
linear center using the averaging method up to order N. The reachability of the upper
bound is also reached for the first two orders. On the other hand, we pay attention to
the perturbation of the linear center inside this class of all piecewise polynomial Liénard
systems and give some better upper bounds in comparison with the one obtained in the
general piecewise polynomial perturbations. Again our results imply that the non-regular
switching boundary (i.e. when « # 7) the piecewise polynomial perturbations usually
leads to more limit cycles than the regular case (i.e. when a = 7) where the switching
boundary is a straight line.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In the qualitative theory of smooth differential systems, a classical and challenging objec-
tive is to determine the maximum number of the limit cycles bifurcating from the periodic
annulus of the linear center £ = —y,y = —x, when it is perturbed inside the family formed
by all planar polynomial differential systems of the form

N N
(1) (x,y): fy+Zs’fz(x,y),erZezgl(x,y) )
i=1 i=1

where |e| > 0 sufficiently small, and f; and g; are real polynomials of degree n. This is
essentially the weak Hilbert’s 16th problem, see [1,14,18]. It was proved in [14] that system
(1) has at most [N(n — 1)/2] limit cycles bifurcating from the periodic annulus for |e| > 0
sufficiently small, where as usual [-] denotes the integer part function. Since this upper
bound obtained in [14] is not reached in general, up to now we still do not know what is
the exact maximum number of limit cycles under the general polynomial perturbation (1)
except some special families of perturbations, such as the Liénard family, i.e. g;(z,y) =0
and f;(z,y) is independent of the variable y, for which it was proved in [12] that at most
[(n — 1)/2] limit cycles bifurcate and this number is reached due to [20].
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Figure 1. Switching boundary £, and angular sectors X

As the discontinuity turns out to be ubiquitous in the real world (see for instance the
papers in mechanical engineering [8,17], in neural sciences [11,32] and in electronic circuits [3,
26], ...), discontinuous piecewise smooth differential systems have attracted many researchers
in recent years. Let 3, be the union of the non-negative z-axis and the ray starting at O
and forming with the non-negative z-axis an angle o € (0,7], T and X7 be two angular
sectors separated by X, with angles o and 2m — « respectively, see Figure 1. It is worth
mentioning that 3, is just the z-axis if @« = 7. In this paper we consider the discontinuous
piecewise polynomial differential systems of the form

N N
@ (@)= (—y+Zsif,«i<x,y>7x+Zeigm,y)) it (r,y) € T,
i=1 i=1

where fi+ and g;r (respectively f;~ and g; ) are real polynomials of degree n (respectively
m). In this case we say that the degree of system (2) is (n,m). Throughout this paper we
will restrict our attention to the case of n > m > 1.

Following the Filippov convention [10] we know that all points in X, \ {O} where the
vector fields of two subsystems simultaneously point outward or inward X, \ {O} form the
sliding regions, and the complement of sliding regions in ¥, \ {O}, excluding the tangency
points of the vector fields and X, defines the crossing regions. A periodic orbit is called
crossing periodic orbit if it intersects X, only at the crossing regions. Additionally, we call it
crossing limit cycle if this periodic orbit is isolated. Analogous to the polynomial differential
system (1), it is natural to ask what is the mazimum number, denoted by My, n(n,m), of
the crossing limit cycles of system (2) bifurcating from the periodic annulus of the linear
center & = —y,y = x for given o, N and degree (n,m).

Some contributions have been made for the study of My ny(n,m) with n = m. In the
case of @« = m where the switching boundary X, is a straight line, i.e. the z-axis, Buzzi,
Pessoa and Torregrosa [6] considered the perturbations inside the class of all piecewise
linear differential systems and they proved M, n(1,1) = 1,1,2,3,3,3,3 up to order N =
1,2,3,4,5,6,7respectively. The piecewise quadratic and cubic perturbations were studied by
Llibre and Tang in [24] where it was proved that M, y(2,2) = 2,3,5,6,8 and M, y(3,3) =
3,5,8,11,13 up to order N = 1,2,3,4,5 respectively. For the general piecewise polynomial
perturbations of degree (n,n) separated by a straight line, Buzzi, Lima and Torregrosa
[5] proved that M, 1(n,n) = n, Mza(n,n) = 2n — 1 and M; n(n,n) < Nn —1 for
N > 3. When « € (0,7) the switching boundary ¥, is non-regular, in this case Cardin
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and Torregrosa [7] studied the piecewise linear perturbations providing that M, n(1,1) =
1,2,2,3,4 up to order N =1,2,3,4,5 and M, (1,1) <5.

Regarding M, n(n,m) with n > m, there exist few works to be done. If M, n(n,n) is
known, it provides an upper bound of M, n(n,m) with n > m, but how to know if this
upper bound is exact? Therefore it is worth for us to study My n(n,m) allowing n > m,
although some information could be provided by studying M, n(n,n). On the other hand,
to our knowledge an upper bound of M, n(n,m) for a € (0,7) is still not given, even in
the case of m = n. The case of a« = 7 and n = m has been studied in [5] as recalled in
the last paragraph. Stimulated by these two aspects, we provide some upper bounds for
M n(n,m) with o € (0, 7] and n > m using the averaging theory up to order N as they
are stated in the following result.

Theorem 1. For system (2) satisfying o € (0, 7] and n > m > 1, the following statements
can be obtained using the averaging theory up to order N.

(i) If « =, then My 1(n,m) =n, Mya(n,m) =2n—1 and My n(n,m) < Nn —1
for N > 3.

(i) If a € (0,m), then My 1(n,m) =n, My2(n,m) < 2n and My n(n,m) < Nn for
N > 3. Moreover the upper bound Mg 2(n,m) is reached for oo € (0,7/2].

The result in statement (i) of Theorem 1 was also obtained in [5, Theorem 1.1] in the
particular case m = n, so the result of this statement generalizes Theorem 1.1 of [5].

From Theorem 1 we see that the upper bound of M, n(n,m) for a € (0,7) is the
upper bound for @« = 7 plus one, which emphasizes the importance of the shape of the
switching boundary in the study of the crossing limit cycles of the piecewise differential
systems. Besides we observe that the upper bound of M, n(n,m) is usually determined
by the subsystem with the higher degree, because all numbers obtained in Theorem 1 are
independent of m.

Among discontinuous differential systems, one of the most studied classes is the one
formed by the discontinuous piecewise Liénard systems, which is widely used to model or
analyze many real problems, as for instance the mechanical engineering with dry frictions [§],
the integrate-and-fire neurons [32], the discontinuous control in the buck electronic converter
[3,11], ... Of course, the study of the limit cycles for the discontinuous piecewise Liénard
systems is also of fundamental importance and many researchers are devoted to the study of
this subject, see the papers [5,7,19,23,27,30,31] for one switching boundary and [9,16,25,28]
for multiple ones.

In this paper we also study the maximum number of crossing limit cycles bifurcating
from the periodic annulus of the linear center £ = —y,y = = when the perturbations are
restricted to the class of all piecewise polynomial Liénard systems of the form

N
g N G W R

where f;7 (respectively f;7) are real polynomials of degree n (respectively m) with n > m >
1. We denote the maximum number of the crossing limit cycles of system (3) bifurcating
from the periodic annulus by Lo n(n,m).

When a = 7, i.e. the switching boundary ¥, is a straight line, Buzzi, Lima and Torregrosa
[5] proved that L 1(n,n) =[(n—1)/2] and L 2(n,n) = n+[(n—1)/2] for any given n, and
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L n(n,n) =n+[(n—1)/2] forn =1,2,3,4 up to order N = 2,3,4,5,6. In particular, if f-
are even polynomials, they further proved that the origin O is a center for every e, while if
f£ are odd polynomials, £ x(n,n) = (n—1)/2 up to any order N. When a € (0, 7), i.e. the
switching boundary X, is non-regular, the result on the maximum number of crossing limit
cycles of system (3) bifurcating from the periodic annulus is much fewer. As far as we know,
only the case where fijE are linear was considered by Cardin and Torregrosa in [7]. In that
paper they proved that £, n(1,1) =1,2,2,2,2,2 up to a study of order N =1,2,3,4,5,6.

Allowing o € (0,7] and n > m > 1 again, we give some upper bounds for £, n(n,m)
using the averaging theory up to order N = 1,2 in the next result.

Theorem 2. For system (3) satisfying o € (0, 7] and n > m > 1, the following statements
can be obtained using the averaging theory up to order N = 1,2.

(1) If a =m, then Lo1(n,m) =[(n—1)/2] and Ly 2(n,m) =n+[(m—1)/2].
(ii) If @ € (0,m), then Lo1(n,m) =n and Ly 2(n,m) < max{2m — 1,n} (respectively
< max{2m — 2,n}) for m odd (respectively even).

The result in statement (i) of Theorem 2 is just Theorem 1.2 of [5] for m = n, while for
m < n we provide a better upper bound up to order 2. Again we see that the non-regular
switching boundary « € (0, 7) increases the number of limit cycles in comparison with the
regular one o = 7 as it was observed in some publications, as for instance in [7].

The paper is organized as follows. In section 2 we shortly review some main tools used in
this paper, including the averaging method, Descartes Theorem and some technical results on
integrals. It is worth mentioning that another method studying the limit cycle bifurcations
from a periodic annulus is the Poincaré-Pontryagin-Melnikov method and it turns out to
be equivalent to the averaging one for planar autonomous systems, see [4,13]. In sections 3
and 4 we are devoted to the proof of Theorems 1 and 2, respectively. Some comments and
future directions are summarized in Section 5.

2. PRELIMINARIES

The averaging theory is an important tool for studying the number of limit cycles of
differential systems. The classical averaging theory [29] usually requires that the considered
system is smooth. However this theory, with the efforts of many researchers, has been
generalized for piecewise smooth differential systems in recent years, see [15,21, 22, 33].
Following the work [15] in this section we introduce the averaging theory that we shall use
in order to obtain information on the existence and number of crossing limit cycles for the
discontinuous piecewise polynomial system (2).

To apply the averaging theory we need to write system (2) in a convenient normal form. As
usual this normal form can be obtained using the polar coordinates (r, 6), where & = r cos
and y = rsin@. In this case system (2) becomes

N
% = Zsi (cos 0 fE (7 cos B, 7sin 0) + sin g (r cos 0, r sin 9)) .
W do a 1
_ i (gt : + .
i 1-— ;ZE (sin@f;"(rcos,rsin6) — cosOg; (rcosf,7sinb)),

=1
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for § € TF, where Z+ = [0,a] and T, = [a,2n]. Then taking 6 as the new independent
variable system (4) writes

dr

N
(5) 5= > e FEO, 1)+ 0N i feIr,
i=1

where the expression of Fii (6, r) will be determined later on.
From [15] the averaged function F;(r) : (0,+00) — R of order i is

v (a,r) —y; (o —2m,7)
i!
and the functions y* : [0, 271] x (0, +00) — R for i = 1,2, ..., N are defined recurrently by

0
yE(0.r) = / F (1),

0 i l
v (0,7) = “/0 (Fii(%r) +ZZ[1(5LFiil(<p,r)jl:[lyf(<p,r)"f>d<p.

=1 S

(6) Fi(r) =

)

(7)

Here 9% denotes the derivative of order L with respect to r, S; is the set of all I-tuples of
non-negative integers (by, ba, ..., b;) satisfying by +2bs +-- -+l =1, L=b; +bo+---+
and K = by!by121%2 ... h;111% . Moreover we are assuming that FOjE = 01in (7) for convenience.

From [15] we get the following result on the averaging theory for the non-autonomous
discontinuous piecewise smooth differential system (5).

Theorem 3. Consider the non-autonomous discontinuous piecewise smooth differential sys-
tem (5). Suppose that ig is the first positive integer such that F; =0 for 1 <i<iy—1 and
Fio # 0. If Fiy(p) = 0 and Fi (p) # 0 for some p € (0,+00), then for |e| > 0 sufficiently
small there exists a 2m-periodic solution r(0,¢) of system (5) such that r(0,€) — p ase — 0.

Theorem 3 states that a simple positive zero of the first non-vanishing averaged function
provides a crossing limit cycle of system (2) bifurcating from the periodic annulus of the
linear center & = —y,y = x. In other words we can obtain some information on the
existence and number on the crossing limit cycles of system (2) for |¢| > 0 sufficiently small
via studying the number of simple positive zeros of the first non-vanishing averaged function.

In order to determine the maximum number of positive roots of a real polynomial in one
variable we shall use the following theorem, namely the Descartes Theorem, a proof of it
can be found in [2].

Theorem 4. Consider the real polynomial p(x) = a; 17" + a;,z% + ... + a; % with 0 =
i <y < ...<i. andr >1. If ai;aq;,, <0, we say that a;; and a;,,, have a variation of
sign. If the number of variations of signs is ro € {0,1,2,...,7 — 1}, then the polynomial p(x)
has at most rq positive roots. Furthermore, we can choose the coefficients of the polynomial
p(x) in such a way that p(x) has exactly r — 1 positive roots.

Let

0 0
Cr(0) : = / cos® pdp, Sk(0) == / sin® pd,
0 0

T 0 ©
Ch = / cos® psin' pdy, Cri(0) == / cos® gp/ cos! pdpdep,
0 0 0
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for k,l > 0. We summarize some technical results on these integrals that we will need in
the proofs of our results.

Lemma 5. The following propositions hold.

(i) Cr(m) =Cr(2m)/2 = (k;!l!)”ak, where o, = 7 if k is even and o = 0 if k is odd.
(ii) Cx(a) #0 anc{lck(a —2m) = Cr(a) — Cr(2m) # 0 for a € (0, 7).
(iil) Sg(m) = (k;!ll)”gk, where g, = if k is even and ¢ = 2 if k is odd.
(iv) kSgp() = —cos@sin® 1 0 4 (k — 1)Sp_o().
(V) cke =0 ifk is odd and cip = 27FSy () if k is even.
(Vi) chi = Frtck—iye = Fbck—au.
.. —(—1)kTt! _ 1)kt _ (1 \k+L
(vil) Ca(m) = iy Cra—2 (1) = S+ 52 Croa () and C g (m) = Sy —+
A=1)((=1)**"2-1) | (=1)(k=1)
(i 1-2) + = Cr—2,1—2(m).
(viil) If I is odd, then Cyi(m) = 0 (respectively > 0) for k odd (respectively even) and
Ck,l(27r) =0.

(iX) Ck7l(a - 271’) = CkJ(Ot) Zfl is odd.
(X) Ck’l(g) = Ck(é))Cl(G) - Cl’k(e),

We neglect the proof of Lemma 5 because these propositions can be computed using some
standard methods on integrals, such as the integration by parts method, and properties on
trigonometric functions. We must mention that some of the results presented in Lemma 5
already appeared in [5].

3. PROOF OF THEOREM 1

This section is devoted to the proof of Theorem 1. To this end we next give four propo-
sitions where the maximum number of simple positive zeros of the averaged functions asso-
ciated to the considered systems is computed.

Proposition 6. The averaged function of order N associated to the piecewise polynomial
differential system (2) satisfying o € (0, 7] and n > m > 1 has at most

(i) n (respectively Nn — 1) simple positive zeros if &« = ©® and N = 1 (respectively
N >2),
(ii) Nn simple positive zeros if o € (0,7) and N > 1.

Proof. Using the polar coordinates we transform system (2) into system (5) with

izl + + +
4-.(0,7) a5, (0,7)qy, (0,7)
Fiiwﬂ“)szi(e,?“)-&-z:pli(&,r)(lT+ Z %_,_

=0 ki1+ko=1i—1

1<k ko <i—1
q}?i (97 T)Q]:CZ (07 T) T q]:gti_l (0, T)

+ > pr )

kitkot-+ki— =il
1<k ko, ki—1<i—1
for i = 1,2, ..., N, where p£(6,7) = 0 and

pE(0,7) = cos OfE(rcos 0, 7sin @) + sin g (r cos 0, 7 sin ),

(8)

¢ (0,7) = sin 0 (r cos B, rsin @) — cos g (r cos 6, rsin b).
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Since f;"(x,y) and g; (z,y) (respectively f; (x,y) and g; (z,y)) are polynomials of degree n
(respectively m), pj (6,7) and ¢;" (0,7) (respectively p; (6,r) and g; (6,7)) are also polyno-
mials of degree n (respectively m) in the variable r with the coefficients that are polynomials
in sinf and cosf. Then

i @e ()

(9) FE(0,7) = r2F%(0,7)
are polynomials of degree in — 1 and im — 1 in r because n,m > 1, respectively. Here we
are writing pi(6,0) and ¢ (,0) as pi(6) and ¢i(6) to simplify the notation.
Let h; (¢ (8), ¢ (0)) be the function defined recurrently by
ha(gi(0), 4y (0) =45 (0) — ¢y°(0),
hi(ai (0), 477 (0) =(i = ! (g7 ()" — g1 (0)")
i—1 2] + l
. M;_ i—1-1dqy (@ ,
st SR [ I Ty, 0) e,

=1 S d(p

j=1
for ¢ = 2,3, ..., N, where
(-DE(L+i—1-2)!

M, =
it (i—1—2)! ’

and S;, K, L,b; are defined below (7).
We claim that

(11) FEO,7) = ri2yE (0, r) — hi(ai*(6), i (0)

are polynomials of degree in—1 and im — 1 in r respectively, where yzi (0,7) is defined in (7).
This claim will be proved by induction and we only deal with "gj (0,7), because a similar
procedure can be applied to g; (6,7). To alleviate the notation, we drop the superscript +
in the proof of this claim. In fact, it follows from (7) and (9) that

0 0 _ 0
1 (0,7) = / Fi(p,r)dp = r / B (i, r)dg + / pi(p)dg
0
= 7“/0 ﬁl(@ﬂ")d@ +q1(0) — q1(0).

Thus §1(0,7) = foe Fi (¢, 7)dg by the definitions of hy and §;. Since Fy(6,r) is a polynomial
of degree n — 1 in r as it was stated below (9), so also g1(6,r) is a polynomial of the same
degree, i.e. the claim holds for i = 1.

To complete the proof of the claim, we next only need to prove it for ¢« = k, provided
that it holds for ¢ = 1,2,....k — 1. According to (9), Fx—;(0,r) is a polynomial of degree
(k—1)n—11in r, and then a direct calculation yields

Mi—ip1(0)qu(0)* 1 + rPy_iyn—1(0,7)
T.L-‘rk—l—l ’

(12) OV Fu_y(0,7) =

for 1 <k—1<k—1. Here Pj_j,—1(0,7) is a polynomial of degree (k —I)n — 1 in 7 and
its specific expression is neglected because it is not necessary in the next proof. Moreover
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we have
ﬁyj(Q,r)bj _ H (hj(Q1(9)7q1:;)_)3+rgj(em))bj
(13) j=1 e |
"y th(Q1(9),q1(0))bj+7Ph;;7igﬁ,r))

j=1

for I < k—1, since we are assuming that the claim holds for ¢ = 1,2, ...,k — 1 and by + 2bs +
-+ 1y =1,b; +by+ - -+ b = L, where P,,_1(6,r) is a polynomial of degree In — 1 in r

and we neglect the specific expression again. Joining (12) and (13) we obtain

0 k—1 l
/ZZ — 0 Fy_i(p,r H
0 =1 s j=1
(14) b " -
L il 7) = 122 /p1 )q1 ()1 1Hh 01(¢), 01(0))" dep,
=1 5

where Pyp,—1(p,r) is a polynomial of degree kn — 1 in r. By (7), (9), (14) and since we are
assuming that F;" = 0 in (7), it follows that

yp(6,7r) = /(Fk (o, 7 +ZZ aLFk 1, Hyj (,7 >

=1 S
koor? - -~ K7 Prp_1(0, 7
:F/O rE(e,7) + pr(e)qr(9)* 1dw++()
My yE=i-1
e 122 pi(e)ai(e Hh q1(), q1(0))" d

=1 S

B0~ k! Ppp_1(6,7) hk(fh(g)afh(o))
:Tk—_g/o Fi.(p,r)dp + h—2 + rk—1 ’

because dqi(0)/d6 = p1(0). Thus

0
Giu(6,7) = k! / Fulo,r)de + K Pin_1(0,7)
0

from its definition given in (11). Since both Fj(¢,r) and Py,_1(8,r) are polynomials of
degree kn — 1 in r, we immediately get that g (0, ) is also a polynomial of degree kn — 1 in
r. This ends the proof of the claim.

From (6) and (11) the averaged function of order N associated to system (2) is

y}(a,r) —yyla—2m,7r) L]?N(T)

(15) Fr) = N! TNl N1

where
Fn(r) =7k (a,r) + ha(gf (@), ¢ (0) = riiy (@ — 2m,7) — hy (g (a — 27), g5 (0)).

Since § (o, 7) and § (o —2m, 1) are polynomials of degree Nn —1 and Nm — 1 respectively,

Fn(r) is of degree Nn due to n > m. This concludes that Fy(r), or equivalently Fn(r),
has at most Nn simple positive zeros, which directly gives statement (i) for N = 1 and
statement (ii) for any N.



To obtain statement (i) for N > 2 we shall prove

(16) hav (g (1), 4 (0)) = h(gy (=7), 47 (0)) =0,
if N > 2 provided that F; = 0. In fact, by (15) F; = 0 implies

ha(gi (), 41 (0)) = ha gy (=), 47 (0)) = 0.
Besides it follows from (8) that

af (1) = g1 (0,0), a1 () =47 (0,0), ¢f(0) = —g7"(0,0), q; (0) = g7 (0,0).
Thus together with the definition of h; given in (10), we get g; (0,0) = g; (0,0), which
implies
hN(gf_ (Oa O)a _g?— (07 0)) - hN(gl_ (07 O)a _gl_ (Oa O)) = 07

if N > 2, ie. (16) holds. Consequently, Fn(r) = ri(m,7) — riiy(—m,7) and the averaged
function in (15) becomes
_ i g?\_f(ﬂ-v T’) — gl?/(fﬂ-v T)
- NI rN-2 ’
if N > 2. As we have proved that §{(0,r) and §y(6,7) are polynomials of degree Nn — 1

and Nm — 1 in r respectively, the averaged function in (17) has at most Nn — 1 simple
positive zeros because n > m, i.e. statement (ii) holds for N > 2. O

(17) Fn(r)

For the piecewise polynomial differential system (2) Proposition 6 provides upper bounds
for the maximum number of simple positive zeros of the corresponding averaged functions
of order N. Next we study the realitzation of these upper bounds for N =1, 2.

Proposition 7. Consider the piecewise polynomial differential system

n n
(—y-&-EZaiyi,x—FaZbiyi) if (x,y) et
i=0 i=0

(—y,x) it (z,y) € 3.

For any given o € (0,7] and n > 1 there exists a choice of the parameters a; and b; such
that the first order averaged function associated to (18) has exactly n simple positive zeros.

(18) (#,9) =

Proof. Using the polar coordinates we write system (18) in the form (5) with

Fr0,r) = Z a; cos fsin’ Or' + Z by sin gt Fy(0,r)=0.
=0 i=0
Then according to the definition in (6), the first order averaged function is

Fi(r) = / FiF(0,r)d0 = " b;Sip (m)r'
0 i=0

if @« = 7. Thus Fi(r) is a complete polynomial of degree n because S;y1(w) # 0, see (iii)

of Lemma 5, which implies that we can choose b; in such a way that Fi(r) has exactly n

simple positive zeros. If a € (0,7), then Fi(r) becomes

Fi(r) = Z (z j_i 1 sint o 4 biSZ-H(a)) 7.

=0

In this case it is also a complete polynomial of degree n because sina # 0 for « € (0, 7).
Again we can choose a; in such that Fi(r) has exactly n simple positive zeros. (]
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Proposition 8. Consider the piecewise polynomial differential system

n T
—y+e Z(aixi + by’ + iyt
i=0 .
7 red dy' +e> ey
i=0 i=0
<_ya$) if (l‘,y) € 2;7
where n > 1,
(20) d() = 0, C; = —igiai - ’idh

for i = 0,1,....n and either o; = 1 if v is odd, or o; = 0 if i is even. For any given n
there exists a choice of the parameters a;,b;, d; and e; such that the second order averaged
function associated to (19) has exactly 2n — 1 simple positive zeros.

Proof. Using polar coordinates system (19) with (20) writes in the form (5) with

n

1 (0,7r) = Z wi(0)r, FF(0,r) = Z e; sin 1 grt + - Z wi(6)r' Z v (0)r

(21) i=0 i=0 i=0 i=0
Ff(@,r):& F27(977‘):0

where

(22) 1i(0) =a;(cos"™ 0 —ig; cos® O sin’ ! 0)4-b; cos O sin’ O+d; (sin™* @ —i cos® O sin’ ' 6),
vi(0) =a;(sinf cos’ § — ig; cos @sin’ B) + b; sin®™ @ — d;(i + 1) cos @ sin’ 6.

From (i) and (iii) of Lemma 5 we have
/ cos' Tt @ —ip; cos? Osin’ 1 6do = 0 for i=0,1,2,...,n
0
/ sin™ #—icos? fsin’ "1 9dh = 0 for i=1,2,...,n,
0

together with the definition in (6), we obtain that the first order averaged function vanishes.

By (6) and (21) the second order averaged function is

iy 9 n 2n
Far) = [ F50.0)+0F 0) [ FF(pr)dpdd = Y eSea(mri+ > Var'
0 0 i=0

i=0
where
0
(23) Vi= Y / iy (0)iy (6) + i1 13, (6) / i, () dipdf.
7 3 1 0
O<12—~1_,122<n

It is easy to obtain that Vo = (ag + bo)? [ cosfsinfdf = 0 because dy = 0. Hence F,(r)
becomes

(24) fg(r)zz e;Siq1(m)r’ +ZV7” L
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and it has at most 2n — 1 simple positive zeros. To obtain the realization of this number,
we need more information on V;. In particular, by (22) and (23) we can write V; in the form

Vi= Z gi (ila Z.2)ai1ai2 + f% (ila Z.2)bi1bi2 + Eil’) (ilv iQ)dil diz
i1 +i0=1
0<i;1<iz2<n

+ Z géil(ihlé)ailbiz +§g(i17i2)ai1di2 +£é(i1ai2)bi1di2a

i1 +i2=1
0<iy,i2<n

and the following four statements will be proved,

(a) & (i1, i2) = & (i1, i2) = &g (i1, 72) = 0 for any iy and ip;

(b) if iy =iy =i/2 > 3 is odd, then €}(i/2,i/2) < 0 and & '(i/2,i/2 — 1) < 0;
(c) if iy =iy = i/2 > 2 is even, then & (i/2,i/2) < 0 and & 1(i/2,i/2 — 1) < 0;
(d) if i is even, then &(i/2,i/2) = 0.

Regarding statement (a), &5 (i1, i2), &4 (i1, i2) and &4 (i1, i) are the coefficients of b;, b;,, d;, d;,
and b;, d;, respectively. Then, according to (22) and (23), we get

™ ) ) : ) 0 .
(i, i2) :/ cosfsin? fsinz 14 + %cos&sin% 9/ cos psin? dpdd = 0,
0 0

and

; g i ; i i+ 2 i
€3(i1,42) =/ (Sin2+1 0 — % cos? fsinz ! 9) (—Z —; cos 0 sin2 9)
0

+ % <sin§Jrl 0 — % cos? fsinz ! 0> (/ sinz ! — % cos? psin? ! <,0d<,0> df
0

. s ) - ) 0 ; ) i
. / sini+t19 — L cos?@sins 10 / sin?+t1 o — L cos? psind L pdy | do
2/, 2 ) 2

N / (sin;Jrl 0 — L cos? fsins ! 0> cos Osin? df = 0,
2 Jo 2
if il = 2.2 = 2/2, while if il 7& iz then

T 0
(i1, i2) = / cos fsin @sin®2" @ 4 i cos O sin® 0 / cos psin’? pdpdd
0 0

™ 0
+ / cos §sin® @sin™ ! @ + iy cos O sin’? 9/ cos @ sin™ pdpdf = 0,
0 0
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and

€L (i, 1) :/ (sin” ' 9 — 41 cos® @sin™ ~' 6)(—(iz + 1) cos fsin* §)
0
+ 1 (sin”Jrl 6 — iy cos? fsint ! 9) / sin2 ™! o — iy cos? psin® ! pdy | df
0
+ / (Simi"’Jr1 6 — iy cos® fsin®2 ! 9)(—(2'1 + 1) cos  sin™ 9)
0
+ i (sin22+1 6 — iy cos? fsin2 ™! 9) / sin? ™ ¢ — iy cos? psin™ ! pdyp | df
0
=—1 / (sinilJrl 6 — iy cos® fsin® ! 9) cos 0 sin’? 6d0
0
— ig / (siniz'Irl 0 — iy cos? fsin271 9) cos@sin’ 6df = 0.
0

Here we used cos?f = 1 — sin?# and (iv) of Lemma 5 in the computation of &4(i1,is).
Furthermore

s
€6 (in,d2) :/ cos @ sin" 0 (—(i2 + 1) cos 0 sin* §)
0
+ 41 cos fsin™ 0/ sin®? ™ o —iy cos? sin® ! pdpdf
0

s
+ / (sin?*! @ — iy cos® Osin " §) sin” T 0
0

0
+ 2 (sini2+1 6 — iy cos? fsin®2 ! 6) / cos @ sin™ pdpdf
0

=— (i1 +ia + 1)/ cos? 0sin 2 940
0
+ % / sin®t2%2 94, cos® 0 sin™ T2 0dp
11 0
_ (41 + iz +'1)(i1 + s + 2) /7T gini1Fiz+2 GdH—M /7T sini1+2 9do
11+ 1 0 11 + 1 0
:07

where we used cos? = 1 — sin?# and (iv) of Lemma 5 in the second equality, and the
last equality is a straightway application of (iii) of Lemma 5. These computations conclude
statement (a).

Now we prove statement (b). From (25) we know that &§(i/2,i/2) and €, '(i/2,i/2 — 1)
are the coefficients of a%b% and a%b%_l respectively. Since ¢/2 is odd, we get 0i = 1 from
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its definition given in Proposition 8. Thus, using (22) and (23), for i/2 > 3 we get
€1(i)2,i/2) =/ <cos5'+1 0 — %cos2 0 sinz ! 0) sinzt! 0do
0
) i ) 9 i 0 i
+ 3 (cos2+ 0 — 5 cos fsin2~ 9) / (COS(pSirﬁ <P) dpdf
0
+ / cosfsin 0 <sin9€os§ 0— %cos@sin% 0> do
0
1 A o i4q 1 2 i
+§COSQSID29 cos?2 ¢ — 508 psin2™ " pdy | db
0
:2/ cosz Tl fsinztlg — % cos? 0 sin’ 0d6
0
+ 3 / cos Osin? Gdﬁ/ cosztlg — %cos2 fsinz ' 0do
0 0

] (i — 1)
=Tz oD 0,
2z \ (2 +11 2(341)!

where we used the integration by parts method in the second equality and statements (iii)(v)
of Lemma 5 are applied to the third one. In a similar way we have

Li/2,0/2-1) :/ <cos§+1 0 — %cos2 fsin? ! 0) sin? 6d
0

. ) . 0 .
+ % (coséJrl 0 — %cos2 fsinz 0) / (cosgosin?*1 90) dpdf
0
+ / cosfsin? =10 (sin@cos; 0— %cos@sin% 9) do
0
) P | o i41 ] 2 i
—|—(§—1)COSQSID2 0 cosTT g — o cos” psin® pdp | do
0
:2/ cosz T fsinz § — % cos? 0sin’ ! 0db
0

T ) - . % s
+ / <cosi’+1 0 — % cos? fsin? ! 9) / (COS psinz ! <,0) dpdf
0 0

=2+ *)/ cos2 ' fsinz § — %cos2ﬂsin“19d0
t Jo

2 (ENE -1 4 m .
—(o4 5[ 222 2 2 iie1
(2+ z) <(Z — o) 2) /0 cos“ @sin'™ " 0do

=(i+1) (21_% — 1) / cos? fsin’ "1 0df < 0,
0
for i/2 > 3, where we used the integration by parts method again in the second equality
and the fourth one is due to (vi) of Lemma 5. So statement (b) holds.

We see that &£(i/2,i/2) and & 1(i/2,i/2 — 1) are the coefficients of aids; and azd;_,
respectively. Moreover, o i= 0 because we are assuming that 7/2 is even in statement (c).



14 TAO LI AND JAUME LLIBRE
Thus, using (22) and (23) again, for i/2 > 2 we get
&5(i/2,1/2) :/ cosz 19 <Z—; cosfsin? 0) de
0
) i 0 i ) 9 i
+ 5 cosz2t1 g / sinzt o — 5 cos psin? ™" pdp | df
0
+ / (sin;+1 0 — % cos® fsinz ! 9) sin 6 cos? 0d6
0
i i i 29 ins—1 ? 41
+ 3 sinz2 ™ 0 — 5 cos fsin2™" 0 cos2 ™" pdpdl
0
=—(i+1) / cos2 2 9sin? 0df + / cos? Osin®*2 0dg
0 0
+ : / cos? ! 9d9/ sind ™19 — L cos? 0sin 1 4o
=—(i+2) / cos2 2 0 sin? Odf +/ cos? Osin? 0do
0 0

:—3/ COS%QSin%9d9<O,
2 Jo

where we used the integration by parts method in the second equality and the third equality
is due to f; cosz ™ #df = 0 for i/2 even, and the last equality is obtained by (vi) of Lemma 5.
Applying these techniques and (iv) of Lemma 5 to €57 '(i/2,4/2 — 1) we get

if2,i/2 - 1) =/ cos2 9 (—; cosfsin? ! 9) do
0
) i41 0 .4 ] 2 . L9
—|—§cos2 0 s1n2<p—(§—1)cos psin2 " “ pdp | df
0
+ / <sin; 60— (% — 1) cos? fsinz 2 9) sin 6 cos? 0d6
0
+ (5 -1) (sin2 60— (§ — 1) cos® §sinz 2 9) / cos2 T pdipdd
0
=—(i— 1)/ cos?t2 g sinz ' 9do +/ cos? fsin?t! 0df
0 0
—|—/ cos2 1@ (/ sinz ¢ — (§ — 1) cos? psinz 2 ¢d80> dé
0 0
=— z/ cos?t2@sin 1 0do + / cos? fsinz ! 0dg
0 0

=—(i+ 1)/ cos? fsin? 1 9df < 0.
0

In summary statement (c) is proved.
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Finally, since &}(i/2,i/2) is the coefficient of aia;, statement (d) follows from the fol-
lowing computation

€1(i/2,i/2) :/ (cosé'H 0 — %Q% cos? O sin? ! 9) (sin@cosé 60— %Q% cos fsin? 9)
0
i i41 i 20 i i—1 o i41 i 2 i1
+ —(cos2T 0——p: cos” Osinz " 0 /cos2 p——picos“psin?z” @ | df
2 272 0 272
= cos%+197101c032081n%_19 SiHQCOS%Q*EQiCOSGSiD%Q df
0 272 272
. x ) 2
v i41 ¢ 2 i1
+Z (/ cos?2 9—59% cos” Osin? 9d9)
0
= COS%+10*£Q£COSQGSin%_10 Sin@COS%G*EQiCOSGSiD%Q de
0 2°2 2°2
2

™ . .
41 LIPS S | 141 v sl
=—- cos2 0+ —pisin?" 0d | coszT 0+ —p;sinz7 0
; 2/0 0s 292 sin (c S 2Q2 in )

) I . i i ) ins
_/0 5% sin2 9<sm9(:os2¢9—295 cos 6 sin> 9) do
:_%@%/ sin? 0 cos? 00 = 0.
0

Here the third equality is obtained by a direct computation using (i)(iii) of Lemma 5, the
last equality is obtain by joining (v) of Lemma 5 and the fact that o i= 0 if 5 is even.

Under statements (a) and (d) the expression of V; can be simplified as follows
Vi= > &linidanan, + Y &ilinyis)aibi, + & (i, i2)ai, iy

i1+i2=1 i1+io=1
0<i1<i2<n 0<41,72<n

(26)

Assuming that n is odd, we can choose the parameters a;,b;, d; and e; to produce 2n — 1
simple positive zeros following the next procedure. We start by letting all parameters equal
zero except a, = b, = 1, and we continue adding the rest of parameters such that a,b,_1 <
0, ap—1dn—1 >0, apn_1dyp—2 <0, ap_2byp_2 >0, apn_2b,—3 <0,...; e, <0,ep_1>0,...,e1 <
0,e9 > 0 in the next each step. Here the total number of steps is 2n — 1. From (26) and
statement (b) we get Fa(r) = Va,r?" "1 with Va, = £3"(n,n)a,b, < 0 when all parameters
are zero except a, and b,. In the first step we add the parameter b,_1 < 0, which satisfies
anbn—1 < 0, and then from (26) and statements (b) the function Fy(r) is becomes

(27) Fa(r) = Vanr™ ™" 4 Vopar™" 72,

where Va,, = £2"(n,n)a,b, < 0 and Va,_1 = ﬁ”*l(n,n — D)apby,—1 > 0. Thus one simple
positive zero bifurcates from r = 0 by choosing b,,—1 < 0 in such a way that |Va,_1| < |Va,].
In the second step we further update F»(r) adding the parameters a,,—1 and d,,_; satisfying
ap—1dp—1 > 0. In this case (26) and statement (c) imply that

(28) Fa(r) = Vanr?" ™ 4 Vaar?" 72 4 Vop_or 2,

with Vo, o = € %(n — 1,n — 1)an_1bp_1 + 52”72(71 —1,n— 1)an_1d,_1. Notice that Vs,
and Va,_1 in (28) may be different from the ones in (27) after adding the new parameters
an—1 and d,_1. We use the same notations only for the sake of simplification. Choosing
ap—1 and d,,_1 such that V5,_o < 0 and |Va,—ao| < |Va,—1], we get the second simple positive
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zero bifurcating from r = 0. Continue to add the parameters d,,_o with a,_1d,—2 < 0 and
then

on—1 2n—2 2n—3 2n—4
For) = Vopr™™ ™0 + Vo 17" 7% + Va9 72 4 Vo g™ 7%,

where Vs,,_3 = 552)”73(11 —1,n—2)ap_1d,—2 > 0 by (26) and statement (c). Thus, in the

third step the third simple positive zero occurs when |Va,_3| < |Van—2|. Following the
procedure, we finally obtain that 2n — 1 simple positive zeros bifurcate from r = 0. We
note that it is reasonable to add the parameters e; for ¢ = n,...,1,0 from step n + 1 to 2n,
because S;11(m) # 0 in (24).

A similar procedure can be applied to the case where n is even, adding the parameters
in the following order a,d, > 0, and,—1 <0, an_1bp—1 > 0, ap_1b,—2 <0, ap_od,—2 > 0,
Ap_odp_3<0,...,e,>0,e,_1<0,...,e1 <0, eg > 0 in the next 2n — 1 steps. This ends the
proof of Proposition 8. ]

The procedure of choosing parameters in the proof of Proposition 8 relies on statements
(a)-(d). As an example we give the explicit expression of Fa(r) for system (19) with n =5,

25w 9 2 g T 7
== — - —— (4 1 12
Fo (’/‘) 198 asbsr 045 (55&4&5 +360a5b4 —|—96a4d5)7‘ 198 ( Oasbs+15a3bs+ a4d4)7‘
2
+ ﬁ(15a3a4 - 55&2(15 — 7Oa5b2 — 24a3b4 - 24a4d3 - 16a2d5)r6

— 17;6(10&561 + 3asbs + 4agds + 2a0dy — 565)7’5
2
- B(3a2a3 + 25&0&5 + 25(151)0 + 6a362 + 12a4d1 + 4a2d3 - 864)7‘4

2 1
- %(30,31)1 + 2a2d2 - 363)7’3 - §(3aoa3 + 3a3b0 + 2a2d1 - 262)7”‘2 + 5617’(7" + 260.

It is easy to see that the above F»(r) satisfies all statements (a)-(d), and in each step we
can add the parameters in the order asbs, asby, asds, asds, €5, €4, €3, €2, €1, ey to produce
9 simple positive zeros.

Proposition 9. Consider the piecewise polynomial differential system

n T
—y+e Z(aizifly + biy')
i=0 .
. if (z,y) €37,
(29) () = e
x+5ZCix +e Zdiy
i=0 i=0
(—y — ebg,x — eby) it (z,y) € 3,

where a € (0,7/2], n > 1, ap = 0,¢; = wb; —a; withi1=0,1,2,...,n,

2sina —cosa+ 1 sint! o
(30) 0 T ocositla—1 =

)

cosa —1

For any given « and n there exists a choice of the parameters a;,b; and d; such that the
second order averaged function associated to (29) has exactly 2n simple positive zeros.
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Proof. Writing system (29) in the form (5) and using the condition ¢; = w;b; — a; we obtain
n ' n ‘ _ 1 n n .
Fro,r) = Z ¢i(O)r, FF(0,r) = Zdi sin"t1 grt 4 - ZQ(G)TZ Zm(@)rl,
i=0 i=0 i=0 i=0
1
Fy(0,7) = —bo(cos O +sind), Fy (6,r) = —b3(sin? § — cos®0),
T
where ‘ '
¢i(0) = b;(w; sinf cos’ 6 + cos fsin’ ),
n:i(0) = a; cos' 1 0 + b(sin" ™ 6 — w; cos'TLA).
From (6) and (30) the first order averaged function is

—2m

Fi(r)=> /O Ci(0)dor + by /O cos 0 + sin df
i=0

wi(1 — cost a) +sin" T
1+1

bir' + bo(sina — cosa + 1) = 0.

I

s
I
=)

Moreover the second order averaged function is

a [
Falr) :/ FF(0,7) + 8F1+(9,r)/ Fif (p,r)dpdd
0

0
a—2m 6
(31) - [ E om0 [ R Gendan
0 0
- I T |
= Z d;iSit1(a)r* + = Z Wirt + fbg sin «v cos «,
i=0 [ "
where
« 6
Wim 3 [ GO ®)+i60) [ Galodeas
i1+ig=i Y0 0
02it Han
= Z K4 (i1, 42)bi, @iy + K5 (i1, 72)bi, biy
i1 +in=i
Ogil,izgn

and

[e%
K1(i1,12) :/ (ww;, sin 6 cos™ 6§ + cos B sin’™ @) cos™ ! d),
0
k4 (i1,12) :/ (ww;, sin 6 cos™ § + cos Asin’ @) (sinT!  — w;, cos’2T1 9)
0

0
+ i1 (w4, sin @ cos™ @ + cos §sin® 0) / (w4, sin 6 cos® 6 4 cos A sin’2 0)d6.
0

Clearly rF5(r) is a polynomial of degree 2n, implying that it has at most 2n simple positive
zeros. To get the realization we need more information on the coefficient W;. In particular
we have the following statements for o € (0, 7/2]

(e) £9(0,0) + sinacos a # 0;
(f) Ki(i1,i2) # 0 when i; > 2 and iy > 2.
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Indeed, from the expression of k4 (i1, i2) we directly obtain

1—w? .
Os1n2a,

£9(0,0) = / (o sin @ + cos ) (sin @ — g cos H)dh = —wg sin o cos o +
0

together with (30), which imply that

1
£9(0,0) +sinacosa = (1 — wp) sina (cosa + +2w0 sina> = (wp — 1)sina # 0,

for a € (0,7/2], i.e. statement (e) holds.

Using the integration by parts method and (30) we get

: io—1 [¢ ) ) )
Ky (i1,12) = 2 1 / (sin®™ 0 — w;, cos T O + w;, ) cos™? 2 O sin Hdh
Zl 0
ig—1 [ i1+1 ia—2 1 o
T i, (0)(cos 6 — 1) cos 0 sin 6d0,

1 0

where
0 — sin®t1 9 _ sin?T'e sin" ! o
Vi (0) = cositlg—1 7T ositlg—1  coshitla—1

Since

dip;, (0) . cost § — cosf

S (i) 4+ 1) sin®t g0 BT
do (i +1)sin 0(005““9—1)2’

i, (0) is strictly decreasing in (0, 7/2] when i1 > 2, so that ¢, () > v, (a) = 0 for 6 € (0, @)
and a € (0,7/2]. Consequently % (i1,42) < 0 when 43 > 2 and i3 > 2, because the integrant
is non-positive and is not identically zero, i.e. statement (f) holds.

Consider the polynomial rF»(r) where Fa(r) is given in (31). The constant term is
Wo + b sinaccos a = b3 (k5(0,0) + sin a cos ),

because ag = 0, and thus we can rewrite the polynomial as

n+1 2n
rFa(r) = b3 (k3(0,0) + sin o cos ) + Z (di1Si() + W)t + Z Wirt.
i=1 n+2
Fixing by = by = --- = b, = 1, we find that W; with i = n+2,n+ 3, ..., 2n only contains the
parameters a;—n, G;i—n+1, ---, Ay, and then W; has one less parameter than W,;_;. Moreover

Wi withi =1,2,...,n+1 is independent of d;, j = 0,1, 2, ...,n. Therefore joining statements
(e), (f) and the fact that S;(a) > 0 for a € (0,7/2], we get that all coefficients of rFa(r)
can be chosen arbitrarily, i.e. it is a complete polynomial of degree 2n. This concludes the
proof of Proposition 9. (|

Finally, combining these propositions we can prove Theorem 1.

Proof of Theorem 1. By the averaging theory statement (i) follows from statement (i)
of Proposition 6, and Propositions 7 and 8. Statement (ii) follows from statement (ii) of
Proposition 6, and Propositions 7 and 9. (]
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4. PROOF OF THEOREM 2

In this section we focus on the piecewise polynomial Liénard system (3) with N = 2
providing the proof of Theorem 2. In this section we take

fH@)=>"af2",  ff@)=>bfa',  fi@) =) a;a",  fy(@)=> b
1=0 1=0 1=0 1=0

First we deal with the case of &« = m where the switching boundary is a straight line.

Proposition 10. Consider the piecewise polynomial Liénard system (3) with « = m and
N = 2. For any given n > m > 1 the first (respectively second) order averaged function
has at most [(n — 1)/2] (respectively n+ [(m — 1)/2]) simple positive zeros. Moreover, these
upper bounds are reached.

Proof. For sake of convenience we rewrite fi-(z) as

241 + 2
Za2j+1x] —l—Za 7,

where kt = [(n —1)/2], k= = [(m —1)/2], I = [n/2] and I~ = [m/2]. Clearly, k* > k~
and [T > 1~ due to n > m. Using polar coordinates system (3) becomes (5) with

FE(0,7) = cos (R*(cos0,7) + S*(cos b, 1)),

FyF(0,7) E bt cos™t ort M (R (cos,r) + ST (cos¥, r))2 :
T
=0

fsin 6
Zb costtlgpi  SBUSIY sin —— (R~ (COS&,T)+57(COSQ,T))2,

where
k* 1+
R*(cosf,r) = E aQin cos™ It gr2itt, S*(cosh,r) = E agtj cosZ 9r2i
Jj=0 Jj=0

By the definition in (6) and statement (i) of Lemma 5, the first order averaged function is

Et P
F1 (7") = Z aé’}+1C2j+2(7T)r2j+l + Z a2_j+162j+2(71')7“2j+1.
j=0 j=0

Due to Caj42(m) # 0, all coefficients of Fi(r) can be chosen arbitrarily. By Theorem 4 and
k™ > k~, eventually, Fi(r) has at most k* = [(n — 1)/2] simple positive zeros and there is
a choice of the parameters a: such that the maximum is reached.

In order to compute the second order averaged function, we have to take F; = 0, which
is obviously equivalent to

(32) a;'jJrl = —Gg;4q for j=0,1,...,k, a;'jJrl =0 for j=k= +1,..., kT,
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because kT > k~
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—R ™ (cos@,r). We compute the following integrals,

/F+0rd0 ZCzH Wit + = /cos@sin@(R+(cosﬁ,r)+5+(cost9,r))2d9

/ 5 (0,r)d = ZCZ+1
0

and

0

=0

= Z Civ1(m
i=0

0

1t
)bt + f/ x
rJ-a

(R (z,7) + S (a, 7‘))2 dx

1
:ZCiH(w)bjri + é/ oR (z,r)ST (2, r)dx
i=0 "Jo

- Z C1+1

1=0

=0

Et 41t

b+r’ +4 Z

7=0

Jitje=j

0<j1<kt,0<j <1t

k™41

1 _
)b, rt ‘44 Z Z m%ﬁ

Jit+j2=j
0<]1<k ,0<52<1™

L +
Z 9j 1 32 +1¢

2j
2.7

125,77

0 +7 0
8Fi (0, r)/ (o, r)dpdd = / cos ORT (cos 0, 7) / cos @ RE (cos @, r)dpdf
0 0 0

+7 0
+ / cos QORE (cos 0, 7) / cos pS*(cos @, r)dpdf
0 0

+7 0
+ / cos 89S~ (cos 0, 7) / cos @ RE (cos @, r)dpdf
0 0

2K+

RIRpY

Jitj2=J

(271 +1)C2j, 12,25, +2(7)

0<]1<ki 0<ja<k®

EE41E

HD NP>

(251 +1)C2j, 12,2541 (7

Jitj2=j
0<31<ki 0<jo<i*

EE41E

D INP>

- +
2j2C2j,+1,2j1+2(7)ag;,

]1+]2 =J
0<j1<k ,0<jo<IE

+ +
A5, +1425,+17

+ +
)a2j1+1a2j2T

+ .25
+1425,T

and Cy;42(m) # 0. Notice that this condition implies R* (cosf,r) =

2j+1

25

The above computations together with the definition (6) and the condition (32), yield
the second order averaged function

Fa(r) =

Z Cz+1
=0

m
Z Cz+1
=0

k41t
ZIEDY

0<j1 <

k™ +17

br-i-z

Lt + .25
E 79]1732a2j1+1a2j27°
Jitj2=J
<k™,0<jo<It
., t — .27
E 79317Jza2j1+1a2j27" )

Jitj2=j

0<j1 <k~ ,0<jp<I™
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where

4 . .
Vjy o = 513 + (251 + 1)Cajy 42,2, +1(7) + 252C2j, 11,25, +2(T)-

It follows from (i) of Lemma 5 that C;y1(w) = 0 for ¢ even and C;41(w) # 0 for ¢ odd, the
first and third summations in F(r) contribute only to the odd terms r?/*! which are from
j =0to [(n—1)/2] because n > m. Moreover the second and fourth ones contribute only to
the even terms 12/, which are from j = 0 to k= 4% because [T > [~. Then the total number
of terms is at most [(n —1)/2] + k= +1T +2=n+ [(m — 1)/2] + 1 using the definitions of
k~and [T. Therefore F5(r) has at most n + [(m — 1)/2] simple positive zeros by Theorem 4.

To get the realization of this upper bound, we prove ¥;, ;, # 0 if jo» > j1 in what follows.
In fact, by (i) and (x) of Lemma 5, 9, j, can be simplified to

Vjr g2 = 53 (271 + 1= 252)Cjy 12,2jo41 (7).
If jo = j1, we have ¥;, ;, > 0 directly, because Coj, +2.2j,+1(m) > 0 from (viii) of Lemma 5.
If jo = j1 + 1, we have the recursion formula
’ B —4 2j1 + 1
Ji.gitl — (2]1+3)(4]1+3)(4]1+1) 2]1+3 Ji—1,g1s
using property (vii) of Lemma 5. Hence, by induction we can prove that ¥;, ;, 11 > 1/(2j1 +
3)2 > 0 for j; > 0, where ¥g1 = 2/9 > 1/9. If jo = j1 + 2, we have the recursion formula
4(1451 +13) (21 +4)(251 +1)
Vjrgrv2 = 75 . . ‘ ‘ . =L+
(21 +5)(21 +2)(41 +5) (41 +3) (271 +5)(21 +2)
using property (vii) of Lemma 5 again. By induction we can prove that ¥;, ;,+2 < —1/(j1 +
3/2)? < 0, where ¥g 2 = —74/75 < —4/9. If jo = j; + k with k£ > 2 now, we have
—2(8j1 + 4k? + 3) (241 + 2k)(2k — 1)
Djy itk = 7= - : Vjy jath—1-
(271 + 2k + 1)(2k — 3)(4j1 + 2k + 1)  (2j1 + 2k + 1)(2k — 3)
Since ¥, j,+2 < 0 and we are assuming that k > 2, we finally get 9, j,+% < 0 for £ > 2 by
induction again. In conclusion we have that ¥;, ;, # 0 if j» > j;.

Let ay;, = 0 for jo = 0,1,...,07 and b; = 0 for ¢ = 0,1,...,m. Joining the fact that
Ciy1(m) =0 if 7 is even, the polynomial F»(r) reduces to

Kt k4t
— ) + 2j+1 R + 2]
(33) Fa(r) = ZCQJ+2(7T)b2j+1T + Z Z 19]17]2a2j1+1a2jzr :
J=0 J=0 Jit+j2=j
0<j1 <k, 0<52<I*
To obtain n + [(m — 1)/2] simple positive zeros, we now choose the parameters a2+jl 1 ang

and b;rj 41 following the next procedure. We start letting all parameters equal zero except

a(T = af =1, and then, in the next each step we add the rest of parameters one by one the

order bf,a{,b?{, aj{, - b;r,ﬁ_l, a;rkJr, b;k++l’ a;ﬁ, a;{?a;r, ...,a;rk,_H if n is even, while if n is
;rkJrH because [T = kT + 1 (respectively k™) for n
even (respectively odd). The sign of the added parameters must ensure that two adjacent
terms have a variation of sign and it can be determined using the fact that Caji2(m) > 0
and 9;, j, > 0 (respectively < 0) for j; < jo < j3 + 1 (respectively jo > ji + 2). More
precisely, in the first step we add b < 0 and one simple positive zero occurs, because
Fa(r) = Co(m)bfr + 990 with 999 > 0 and Ca(7) > 0. The second one bifurcates from the

infinity when we further add the parameter aj > 0 sufficiently small due to 9y 1 > 0. Then,

odd, we need to interchange a;“l +and b
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due to Cy(m) > 0, in the third step we add b7 < 0 in the way that the coefficient of 73 is far
less than the one of 72, so the third simple positive zero bifurcates from infinity. Repeating
the above procedure with the specific order, we can obtain n + [(m — 1)/2] simple positive
Z€ros. (]

As an example we give the explicit expression of Fa(r) in (33) for n =9 and m =5,

Fo(r) = 2apa;1 + gbﬂ" + (%alag + 2a0a3)r2 + %bg’l"g + (%azag - %alcu + 2a0a5)r4
+ 5—7Tb5r5 + (ﬁagazl + %CLQG{, - @ala(;)rﬁ + 35—7Tb77“7
16 525 21 735 128
+ (@04(15 — Eaga(; — 7389140,10,8)7"8 -+ Ggibgrg
945 1225 14175 256
ny 1774 asag — 84806a3a8)r10 B 381454a5a8T12
24255 72765 945945 ’

where we drop the superscript 4+ to alleviate the notation. According to the last proof,
we first let all parameters equal zero except ag = a; = 1 and 11 simple positive ze-
ros can bifurcate from the infinity by perturbing the rest parameters following the order
b1, az2,bs,a4,b5,a6,b7,as,by, as, as.

Now we focus on « € (0,7) where the switching boundary is non-regular.

Proposition 11. Consider the piecewise polynomial Liénard system (3) with N = 2. For
any giwven a € (0,m) and n > m > 1 the first order averaged function has at most n
simple positive zeros, which are reached, and the second order averaged function has at most
max{2m — 1,n} (respectively max{2m —2,n}) simple positive zeros if m is odd (respectively
even).

Proof. In polar coordinates system (3) writes in the form (5) with

n m
F(0,r) = Z a; costtort Fy(0,r) = Z a; cos"t ort,
=0 i=0

=0 =0

n n 2
. 1 o
Fy(0,r) = Z b cos 1Ot + - cosfsin @ (Z a; cos’ 67‘1) )

2
Fy (0,r) =) b cos™ 6r' + —cosfsinf (Z a; cos’ 97’1) .

=0 i=0

Thus the first order averaged function is

Fi(r) = Z ai Civi(a)ri — Z a; Ciy1(a—2m)r.
i=0 i=0

Since a € (0,7), we know C;11(a) # 0 and Ciy1(av — 2m) # 0 for any ¢ > 0 from (ii) of
Lemma 5, so that all coefficients of Fi(r) are free, i.e. Fi(r) is a complete polynomial of
degree n because n > m. Therefore Fj(r) has at most n simple positive zeros and there is
a choice of the parameters a;.'E such that the maximum is reached.
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To get the second order averaged function, we have to take F; = 0, which is equivalent
to

ai Civi(a) = a; Civ1(a —2m) for i=0,1,...,m, and

34
(34) ai =0 for i=m+1,...n

A direct computation yields the following integrals

2
o n ) 1 o n ) )
/ F5F(0,r)do = Z b Cigr(a)r’ + ;/ cos 6 sin 0 (Z a; cos’ 07"”) do
0 0

=0 1=0
n ) 1 cos « 2
= E b Civ1(a)r' — 7/ g ajz'r’
N T J1
=0
- ‘o cos”‘Qa—l o4
:E bl z+1 T_,E E —a; a; 1,
. i+ 2 Lot
=0 i=0 41+i2=1
0<11,12<n
a—2m m 1o
_ _ 1 cos'?a—1 _ _ .
/ Fy (0,r)df = E b, Ciyi1(a —2m)r' — — E E ——a; a1,
0 ° T4 o~ 1+ 2
=0 1=0 11+i2=1t
0<i1,i2<m

and

2n
/ OF (0 r)/ Ff(p.n)ded) =y Y irCiprippa(e)afagr™,

=0 i1+ix=1
0<41,12<n

a—27m
/ aF{(aaT)/ Fl 258 dgode = Z E ilci1+17i2+1( 27T)az1az2’r 1'
0

=0 11+i2=1
0<i1,i2<m

Combining the above computations and the condition (34), we get the second order
averaged function

n m

Fo(r) = Z b Civ1(a)r — Z b; Ciy1(a —2m)r Z Z Wiy lQa:a;r’
1=0 1=0 1=0 i1+ia=1
0<i1,i2<m
where
cosit2a—1 | cosit2a —1 C; a)C; o
Wiy iy = — —————— +Zlcil+1,¢2+1(a) + : 11-0-1( ) 12-0—1( )
i+2 i+2 Cip1(a—2m)Cipyr(a—2m)

Ciy+1()Cigq1(a)
Cz'1+1(04 — QTI')CZ‘Z_H(O[ — 27‘(‘) '

Using (i) and (ii) of Lemma 5 we have C;y1(a) = C;y1(a — 27) if 4 is even, and using (ix) of
Lemma 5 we have Ci, +1,i,4+1(a) = Ciy 41,141 (a—27) if iz is even. So w;, 4, = 0if both 43 >0
and iz > 0 are even. This implies that the constant term in the third summation of Fa(r)
vanishes and the highest degree term r*™ also vanishes when m is even. Consequently due to
n > m, Fa(r) is a polynomial of degree max{2m —1,n} (respectively max{2m —2,n}) when
m is odd (respectively even), in other words F2(r) has at most max{n,2m —1} (respectively
max{n,2m — 2}) simple positive zeros. O

— 101G, 1,55 +1 (0 — 2m)
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Finally we can prove Theorem 2.

Proof of Theorem 2. Using the averaging theory it follows statement (i) of Theorem 2
from Proposition 10, and statement (ii) from Proposition 11. O

5. CONCLUSIONS

In this paper we extended the weak Hilbert’16 problem to discontinuous piecewise poly-
nomial differential systems with two zones separated by the switching boundary X, either
a straight line when o = 7 or a non-regular one when o € (0,7). Here we allow that
the degree of each subsystem in the two zones be different. More precisely, we studied the
maximum number of crossing limit cycles bifurcating from the periodic annulus of the linear
center £ = —y,y = —x when we perturb it inside this class of general piecewise polynomial
differential systems. Depending on o = 7 or not, we provided upper bounds for the max-
imum number using the averaging method up to any order. Besides we also restricted the
perturbation to the family of piecewise polynomial Liénard systems and some better upper
bounds were given. As observed by many researchers, our results emphasize the importance
of the shape of the switching boundary in the investigation of limit cycles.

We proved that all upper bounds obtained with the first order averaging method are
reached. Regarding the upper bounds obtained with the second order averaging method,
the main difficulty in the study of the realization, is to determine which terms of the cor-
responding averaged functions are not identically zero and then to give a suitable choice of
parameters. Overcoming these difficulties, for & = 7 we proved the realization whatever
the perturbation is inside the general piecewise polynomial family or piecewise Liénard one,
while for a € (0,7), the realization was obtained only in the case of the general piece-
wise polynomial perturbations with o € (0,7/2]. Hence, what about the general piecewise
polynomial perturbations with a € (7/2,7) and the piecewise Liénard perturbations with
a € (0,7)? These need to be answered in the future.
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