Contents lists available at ScienceDirect

Nonlinear Analysis: Hybrid Systems

iournal homepage: www.elsevier.com/locate/nahs

The planar discontinuous piecewise linear refracting systems have at most one limit cycle

^a School of Mathematics and Statistics, Guangdong University of Finance and Economics, Guangzhou, 510320, PR China

^b School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai 519082, PR China

^c Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Catalonia, 08193, Spain

ARTICLE INFO

Article history: Received 18 September 2019 Received in revised form 19 January 2021 Accepted 18 March 2021 Available online xxxx

MSC: 34C37 34007 37G15

Keywords: Piecewise linear systems Refracting systems Limit cycle

ABSTRACT

In this paper we investigate the limit cycles of planar piecewise linear differential systems with two zones separated by a straight line. It is well known that when these systems are continuous they can exhibit at most one limit cycle, while when they are discontinuous the question about maximum number of limit cycles that they can exhibit is still open. For these last systems there are examples exhibiting three limit cycles.

The aim of this paper is to study the number of limit cycles for a special kind of planar discontinuous piecewise linear differential systems with two zones separated by a straight line which are known as refracting systems. First we obtain the existence and uniqueness of limit cycles for refracting systems of focus-node type. Second we prove that refracting systems of focus-focus type have at most one limit cycle, thus we give a positive answer to a conjecture on the uniqueness of limit cycle stated by Freire, Ponce and Torres in Freire et al. (2013). These two results complete the proof that any refracting system has at most one limit cycle.

© 2021 Published by Elsevier Ltd.

1. Introduction

In the qualitative theory of the differential systems in the plane one of the most important problems is the determination and distribution of limit cycles, which is known as the famous Hilbert's 16-th problem [1,2] and its weak form [3–6].

Since many real world differential systems involve a discontinuity or a sudden change [7], in recent years there is a growing interest in the following planar piecewise smooth vector fields

$$\mathcal{X}(q) = \begin{cases} X^-(q) & \text{if } h(q) < 0, \\ X^+(q) & \text{if } h(q) > 0, \end{cases}$$

(1)

where the discontinuity boundary $\Sigma = \{q \in \mathbb{R}^2 : h(q) = 0\}$ divides the plane \mathbb{R}^2 into two regions $\Sigma^{\pm} = \{q \in \mathbb{R}^2 : \pm h(q) > 0\}$. The equilibrium p^{\pm} of X^{\pm} are called *real* or *virtual* if $p^{\pm} \in \Sigma^{\pm}$ or $p^{\pm} \in \Sigma^{\mp}$, respectively.

Clearly the orbits are well defined in both zones Σ^{\pm} . While if an orbit arrives the discontinuous boundary Σ , different things can occur.

Definition 1. Let $X^{\pm}h(q) = \langle \nabla h(q), X^{\pm}(q) \rangle$. Then we can classify Σ into the following three open regions:

https://doi.org/10.1016/j.nahs.2021.101045

Corresponding author.

E-mail addresses: lism1983@126.com (S. Li), liuchangj@mail.sysu.edu.cn (C. Liu), jllibre@mat.uab.cat (J. Llibre).

¹⁷⁵¹⁻⁵⁷⁰X/© 2021 Published by Elsevier Ltd.