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Period function of planar turning points
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Abstract. This paper is devoted to the study of the period function of planar generic and
non-generic turning points. In the generic case (resp. non-generic) a non-degenerate
(resp. degenerate) center disappears in the limit ε → 0, where ε ≥ 0 is the singular
perturbation parameter. We show that, for each ε > 0 and ε ∼ 0, the period function
is monotonously increasing (resp. has exactly one minimum). The result is valid in an
ε-uniform neighborhood of the turning points. We also solve a part of the conjecture
about a uniform upper bound for the number of critical periods inside classical Liénard
systems of fixed degree, formulated by De Maesschalck and Dumortier in 2007. We use
singular perturbation theory and the family blow-up.
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1 Introduction

We consider slow-fast polynomial Liénard equations of center type

Xε,η :


ẋ = y−

(
x2n +

l

∑
k=1

akx2n+2k
)

,

ẏ = ε2n
(
−x2n−1 +

m

∑
k=1

bkx2n+2k−1
)

,

(1.1)

where l, m, n ≥ 1, η := (a1, . . . , al , b1, . . . , bm) is kept in a compact set K of Rl+m and ε ≥ 0 is
the singular perturbation parameter kept small. System Xε,η is invariant under the symmetry
(x, t) → (−x,−t) and has a center at the origin for all ε > 0, ε ∼ 0, and for all η ∈ K.
The center is non-degenerate when n = 1 or nilpotent when n > 1. In the limit ε = 0, we
encounter drastic changes in the dynamics of (1.1): the system has a curve of singular points,
given by {y = x2n + ∑l

k=1 akx2n+2k}, passing through the origin, and horizontal regular orbits
(see Figure 1.1).
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