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Abstract

This paper is devoted to the study of the period function of planar generic
and non-generic turning points. In the generic case (resp. non-generic) a
non-degenerate (resp. degenerate) center disappears in the limit ε → 0,
where ε ≥ 0 is the singular perturbation parameter. We show that, for
each ε > 0 and ε ∼ 0, the period function is monotonously increasing
(resp. has exactly one minimum). The result is valid in an ε-uniform
neighborhood of the turning points. We also solve a part of the conjecture
about a uniform upper bound for the number of critical periods inside
classical Liénard systems of fixed degree, formulated by De Maesschalck
and Dumortier in 2007. We use singular perturbation theory and the
family blow-up.
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1 Introduction

We consider slow-fast polynomial Liénard equations of center type

Xε,η :

{
ẋ = y −

(
x2n +

∑l
k=1 akx

2n+2k
)

ẏ = ε2n
(
−x2n−1 +

∑m
k=1 bkx

2n+2k−1
)
,

(1)

where l,m, n ≥ 1, η := (a1, . . . , al, b1, . . . , bm) is kept in a compact set K of
Rl+m and ε ≥ 0 is the singular perturbation parameter kept small. System
Xε,η is invariant under the symmetry (x, t)→ (−x,−t) and has a center at the
origin for all ε > 0, ε ∼ 0, and for all η ∈ K. The center is non-degenerate
when n = 1 or nilpotent when n > 1. In the limit ε = 0, we encounter drastic
changes in the dynamics of (1): the system has a curve of singular points, given

by {y = x2n +
∑l
k=1 akx

2n+2k}, passing through the origin, and horizontal
regular orbits (see Figure 1). A portion of the curve of singularities near the
origin consists of the normally attracting part {x > 0}, the normally repelling
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Figure 1: Dynamics of X0,η with 5 contact points.

part {x < 0} and the contact point (x, y) = (0, 0) between them. We call the
contact point a turning point because closed orbits surrounding the center, for
ε > 0 small, pass from the attracting part to the repelling part of the curve of
singularities. When n = 1, the turning point at the origin is generic (sometimes
called simple). When n > 1, we deal with a non-generic or degenerate turning
point.

The period function of a center assigns to each periodic orbit its minimal
period. Isolated critical points of the period function are called critical periods
(or critical periodic orbits) and are central in the qualitative study of the period
function. One can note that critical periods do not depend on the parametriza-
tion of the set of periodic orbits used. The main purpose of this paper is to give
a complete local study of the period function of Xε,η, near the center at the
origin, in both the generic and non-generic case. The study is valid in a small
fixed neighborhood of the turning point that is independent of (ε, η). Thus, the
neighborhood does not shrink to the origin as ε→ 0. In the generic (resp. non-
generic) case, the period function of the center in Xε,η is strictly monotonous
increasing (resp. has exactly one critical period which is a minimum). More
precisely, let us denote by T (y; ε) the period function of the center at the origin
of system (1) with ε > 0, ε ∼ 0, parametrized by the positive y-axis. Then we
have:

Theorem 1. Let l,m ≥ 1 and n = 1 (resp. n > 1) be fixed. For any compact
K ⊂ Rl+m there exist ε0 > 0 and y0 > 0 small enough such that the period
function T (y; ε) of the center of system (1) is strictly monotonous increasing
(resp. has a global minimum) in the interval ]0, y0], for all ε ∈]0, ε0] and η ∈ K.

We prove Theorem 1 in Section 3.4. To prove Theorem 1, we use a blow-
up at the origin in the (x, y, ε)-space to desingularize system (1). Roughly
speaking, after the blow-up we distinguish between “very small”, “small” and
“intermediate” closed orbits surrounding the center (x, y) = (0, 0). The period
function of the center of system (1) cannot be studied uniformly in these three
regions and we have to use different techniques for each type of closed orbits. To
treat the period function near the very small closed orbits (the ones closest to
the center), we use Chicone and Jacobs [2], in the generic case, and generalized
polar coordinates, in the non-generic case. The small closed orbits can be treated
using the monotonicity criterion due to Schaaf [11], in the generic case, and a
result due to Sabatini [10], in the non-generic case. The size of the very small
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and small closed orbits tends to zero as ε → 0. In order to obtain the result
in an (ε, η)-uniform neighborhood of (x, y) = (0, 0), the period function near
the passage from the small closed orbits to detectable closed orbits in the (x, y)-
space has to be studied. In this passage, we encounter the so-called intermediate
closed orbits. The period function near such intermediate closed orbits, in both
the generic and non-generic case, will be studied using techniques from [6, 8],
where small-amplitude limit cycles in an ε-uniform neighborhood of slow-fast
Hopf points have been investigated (the slow-fast Hopf points correspond to the
generic case). For more details we refer to Section 2.

We point out that Theorem 1 can be proved in a more general framework
of smooth Liénard systems. More precisely, the same local result is true if we
replace (1) with {ẋ = y−x2n+O(x2n+2), ẏ = ε2n

(
−x2n−1 +O(x2n+1)

)
} where

O(x2n+2) (resp. O(x2n+1)) is an even (resp. odd) C∞-perturbation term that
may depend on parameters kept in a compact set. The proof in this more general
setting is analogous to the proof for polynomial Liénard equations presented in
this paper.

Theorem 1, in the generic case n = 1, can be used to solve a part of the
following conjecture formulated in [4]: there exists a uniform upper bound on the
number of critical periods of classical Liénard equations {ẋ = y−G(x), ẏ = −x}
where G is an even polynomial of degree 2N , N ≥ 1, and G(0) = 0. Moreover,
this upper bound is conjectured to be 2N − 2. Following Theorem 5 in [4], this
can be reduced to the following problem: there exist a small ε0 > 0 and an
integer M > 0 such that the slow-fast system{

ẋ = y −
(
x2N +

∑N−1
k=1 c2kx

2k
)

ẏ = −εx (2)

has at most M critical periods, for all ε ∈]0, ε0] and (c2, c4, . . . , c2(N−1)) ∈ SN−2.
The following result covers the case where the curve of singularities of (2), at
level ε = 0, has only one contact point, the one at the origin (x, y) = (0, 0).

Theorem 2. Let c02 > 0 be small and fixed and let N ≥ 1 be a fixed integer.
Denote by C the set of all values (c2, c4, . . . , c2(N−1)) ∈ SN−2 such that c2 ≥ c02
and G′(x)

x > 0 for all x ∈ R, where G(x) = x2N +
∑N−1
k=1 c2kx

2k. For any

compact set C̃, with C̃ ⊂ C, there exists a small ε0 > 0 such that system (2)
has no critical periods for all ε ∈]0, ε0] and (c2, c4, . . . , c2(N−1)) ∈ C̃.

We prove Theorem 2 in Section 3.5. Note that keeping the parameter in a
compact set C̃ ensures that the critical curve has no contact points other than
the origin. The compact set

C̃ = {(c2, c4, . . . , c2(N−1)) ∈ SN−2 | c2 ≥ c02 and ci ≥ 0 for i = 4, . . . , 2(N − 1)}

is always contained in the set C defined in Theorem 2. When N = 1, Theorem 2
implies that {ẋ = y − x2, ẏ = −εx} has no critical periods for all ε ∈]0, ε0], for
some small ε0 > 0. When N = 2, we have to deal with the slow-fast systems
{ẋ = y − x4 ± x2, ẏ = −εx}. From Theorem 2 follows that the system with the
negative sign in front of x2 has no critical periods. The system with the positive
sign in front of x2 is conjectured to have at most 2 critical periods (see [4]). As
explained in [4], it is more difficult to deal with the part of the conjecture when
the curve of singularities of (2) has more contact points.
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When c2 is uniformly nonzero, Theorem 1 in the generic case implies that
system (2) has no critical periods in an ε-uniform neighborhood of the origin
in the (x, y)-space. It suffices to notice that the change of coordinates (x, y)→
(c2x, c2y) transforms (2) into (1). See Section 3.5.

2 Blow-up and statement of results

2.1 Family blow-up at the origin in the (x, y, ε)-space

To be able to study the period function near the turning point, uniformly in
(ε, η) with ε > 0 small, we have to desingularize the system Xε,η near (x, y, ε) =
(0, 0, 0) using the so-called family blow-up. The family blow-up is the following
“singular” coordinate change with n ≥ 1:

Ψ : R+ × S2
+ → R3 : (r, (x̄, ȳ, ε̄)) 7→ (x, y, ε) = (rx̄, r2nȳ, rε̄), ε̄ ≥ 0.

We define the blown-up vector field as the pullback of Xε,η + 0 ∂
∂ε divided by

r2n−1: X̄η := 1
r2n−1 Ψ∗

(
Xε,η + 0 ∂

∂ε

)
. To study the blown-up vector field X̄η

(or r2n−1X̄η) near the blow-up locus {0} × S2
+, it is convenient to use different

charts with “rectified” coordinates, instead of the spherical coordinates. For our
purposes, only the family chart {ε̄ = 1} and the phase directional chart {ȳ = 1}
are relevant for the study of the period function since all closed orbits near the
center (x, y) = (0, 0) are visible therein (see Figure 2).

ε̄ = 1

ȳ = 1

p−p+

Figure 2: The family blow-up at the origin (x, y, ε) = (0, 0, 0) and dynamics
on the blow-up locus. To study the period function of (1) in an (ε, η)-uniform
neighborhood of (x, y) = (0, 0), it suffices to use the charts {ε̄ = 1} and {ȳ = 1}.

In the family chart {ε̄ = 1}, we have

(x, y, ε) = (rx̄, r2nȳ, r)
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with (x̄, ȳ) kept in an arbitrary but fixed compact set. In this chart, r = ε and
system (1) becomes XF := ε2n−1X̄F , where

X̄F :

{
˙̄x = ȳ −

(
x̄2n +

∑l
k=1 akε

2kx̄2n+2k
)

˙̄y = −x̄2n−1 +
∑m
k=1 bkε

2kx̄2n+2k−1.
(3)

System (3) is invariant under the symmetry (x̄, t)→ (−x̄,−t) and has a center
at the origin, for all ε ≥ 0, ε ∼ 0 and η ∈ K. When ε = 0, we are located on
the blow-up locus and the vector field (3) becomes{

˙̄x = ȳ − x̄2n

˙̄y = −x̄2n−1.
(4)

A first integral of (4) is given by

H(x̄, ȳ) = e−2nȳ

(
ȳ − x̄2n +

1

2n

)
. (5)

Note that the invariant curve {ȳ = x̄2n − 1
2n} is the boundary of the period

annulus (see Figure 2). The main advantage of the family blow-up is that the
blown-up vector field (3) has no curves of singularities.

The (x̄, ȳ)-compact sets in which we will study system (3) (see Section 2.2)
shrink to the origin in the (x, y)-space as ε→ 0. To obtain (ε, η)-uniform results,
we also have to study Xε,η in the phase directional chart {ȳ = 1}. In the chart
{ȳ = 1}, we deal with the coordinate change

(x, y, ε) = (RX,R2n, RE),

where R ≥ 0 and E ≥ 0 are small and X is kept in any compact set. System
(1) becomes XD := R2n−1X̄D, where

X̄D :


Ẋ = 1−

(
X2n +

∑l
k=1 akR

2kX2n+2k
)

+ 1
2nXE

2nF (X,R, η)

Ṙ = − 1
2nRE

2nF (X,R, η)

Ė = 1
2nE

2n+1F (X,R, η)

(6)

with F (X,R, η) = X2n−1 −
∑m
k=1 bkR

2kX2n+2k−1. For R = E = 0, the sys-
tem has semi-hyperbolic singularities at X = −1 (denoted by p+) and X = 1
(denoted by p−). The singularity p+ (resp. p−) has the X-axis as unstable
(resp. stable) manifold and a two-dimensional center manifold, transverse to
the X-axis.

Using (3) and (6) we easily detect the singular polycycle Γ on the blow-
up locus consisting of singularities p+ and p− and the regular orbits that are
heteroclinic to them (see Figure 2). Note that p± are the end points of the
regular curve {ȳ = x̄2n − 1

2n}.
It is clear now that the study of the period function of the center in (1), in a

small ε-uniform neighborhood of (x, y) = (0, 0), can be divided into three parts:
the study near the center (x̄, ȳ) = (0, 0) of (3), the study of the interior of the
period annulus inside the family (3), away from (x̄, ȳ) = (0, 0) and Γ, and the
study near Γ, combining systems (3) and (6). The results related to the first
two parts (resp. the third part) are stated in Section 2.2 (resp. Section 2.3).
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2.2 Statement of results inside the vector field X̄F

Let l,m ≥ 1 be fixed. For the vector field X̄F given in (3) we define by TF (ȳ; ε)
the period function of the center at the origin parametrized by the ȳ-axis. As
we will see in Sections 3.1 and 3.2, the function TF (ȳ; ε) is well defined in any
compact interval [ȳ1, ȳ2] and when the turning point is generic it can be extended
analytically to ȳ = 0. We prove the following two results concerning the period
function of system X̄F . The first one states the behaviour of the period function
of the center of system (3) close to the equilibrium at the origin, whereas the
second one is a global statement in the interior of the period annulus.

Theorem 3. For any compact K ⊂ Rl+m there exist ȳ0 > 0 small enough and
ε0 > 0 small enough such that d

dȳTF (ȳ; ε) > 0 (resp. d
dȳTF (ȳ; ε) < 0) for n = 1

(resp. n > 1) for all ȳ ∈]0, ȳ0], ε ∈ [0, ε0] and η ∈ K. Moreover, TF (ȳ; ε)→ 2π
(resp. +∞) as ȳ → 0+ for n = 1 (resp. n > 1).

Theorem 4. For any compact K ⊂ Rl+m and any 0 < ȳ1 < ȳ2 < +∞ there

exists ε0 > 0 small enough such that d
dȳTF (ȳ; ε) > 0 (resp. d2

dȳ2TF (ȳ; ε) > 0) for

n = 1 (resp. n > 1) for all ȳ ∈ [ȳ1, ȳ2], ε ∈ [0, ε0] and η ∈ K.

We prove Theorem 3 in Section 3.1 and Theorem 4 in Section 3.2. A key
fact in the proof of the previous results is that, when ε = 0, the vector field
(3) becomes (4) with a first integral given by (5). As we will see, the period
function of (3) is an ε-perturbation of the period function of (4).

2.3 Statement of results near Γ

In both the generic and non-generic case, we have the following result about
the period function of the center of the vector field r2n−1X̄η, with r > 0, in an
η-uniform neighborhood of Γ.

Theorem 5. Let l,m ≥ 1 be fixed. For any compact K ⊂ Rl+m there exists ε0 >
0 small enough such that the period function of the center of system r2n−1X̄η,
with r > 0, near the polycycle Γ is monotonous increasing for all ε ∈]0, ε0] and
η ∈ K.

We prove Theorem 5 in Section 3.3. For a precise definition of a neighbor-
hood of Γ in the family blow-up coordinates and the period function near Γ see
Section 3.3.

3 Proof of Theorem 1–Theorem 5

First we prove Theorem 3, Theorem 4 and Theorem 5. Then we glue them
together and prove Theorem 1 (see Section 3.4). Theorem 2 is proved in Section
3.5.

3.1 Proof of Theorem 3

Let us start considering the case n = 1. We define by TF (x̄; ε) the period
function of system (3) parametrized by the x̄-axis. Notice that, since n = 1,
the center at the origin is non-degenerate and therefore the period function can
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be extended analytically to x̄ = 0. For ε ≥ 0 small system (3) is an analytic
perturbation of the quadratic system{

˙̄x = ȳ − x̄2

˙̄y = −x̄. (7)

Therefore we can consider the Taylor’s series development at ε = 0 of TF (x̄; ε),

TF (x̄; ε) = T0(x̄) +O(ε),

where T0(x̄) is the period function of system (7) parametrized by the x̄-axis. In
particular, if d

dx̄T0(x̄) > 0 then d
dx̄T (x̄; ε) > 0 for every ε ≥ 0 small enough. In

consequence, the assertion concerning n = 1 in Theorem 3 will follow once we
show that the period function T0(x̄) of the quadratic system (7) is monotonous
increasing near the origin.

To do so we use Chicone and Jacobs [2] result on quadratic centers to deduce
that, in a neighbourhood of the origin,

T0(x̄) = 2π + p2(λ)x̄2 +O(x̄3),

where p2(λ) = π
12 (16λ2

2 +8λ2λ5 +λ2
5 +18λ2

3−12λ3λ6 +9λ3λ4 +10λ2
6−λ4λ6 +λ2

4),
and λi stand for the coefficients of the Bautin’s normal form for quadratic
systems {

ẋ = −y − λ3x
2 + (2λ2 + λ5)xy + λ6y

2

ẏ = x+ λ2x
2 + (2λ3 + λ4)xy − λ2y

2.

In our case system (7) can be brought to the Bautin’s normal form with the
change of variable {ȳ 7→ −ȳ} and corresponds to the parameters λ2 = λ5 =
λ6 = 0, λ3 = 1 and λ4 = −2. Consequently, for system (7) the period function
near the origin can be written as

T0(x̄) = 2π +
π

3
x̄2 +O(x̄3).

This fact, together with the discussion at the beginning of the section, shows
that there exist ε0, x̄0 > 0 small such that d

dx̄TF (x̄; ε) > 0 for x̄ ∈]0, x̄0] and
ε ∈ [0, ε0]. Since monotonicity is unaltered by parametrization, this finishes the
proof of Theorem 3 for the case n = 1.

For n > 1 the center at the origin becomes degenerate and Chicone-Jacobs
procedure do not apply. With the aim of studying the period function of system
(3) near the origin (x̄, ȳ) = (0, 0) for n > 1 we consider the change to generalized
polar coordinates

(x̄, ȳ) = (r cos θ, rn sin θ)

with r ≥ 0 and θ ∈ T. After this change system (3) is written as
ṙ =

rn

cos2 θ + n sin2 θ

(
cos θ sin θ − cos2n−1 θ sin θ +O(r)

)
θ̇ =

rn−1

cos2 θ + n sin2 θ

(
− n sin2 θ − cos2n θ +O(r)

)
.

We note that terms with ε small are inside O(r) so the forthcoming arguments
are uniform with respect to ε ∈ [0, ε0].
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For r > 0 small enough we have θ̇ < 0. Therefore we can parametrize the
orbits near the origin by ϕ := −θ. We denote by TF (s; ε) the period of the
solution r(ϕ, s) and for the sake of simplicity we write f(ϕ) := cos2 ϕ+n sin2 ϕ,
α(ϕ) := cos2n−1 ϕ sinϕ − cosϕ sinϕ, β(ϕ) := n sin2 ϕ + cos2n ϕ. Note that
β(ϕ) > 0. Due to the symmetry of system (3) the function TF (s; ε) writes

TF (s; ε) = 2

∫ π
2

−π2

dϕ

ϕ̇
= 2

∫ π
2

−π2

f(ϕ)dϕ

r(ϕ, s)n−1
(
β(ϕ) +O(r(ϕ, s))

) .
Moreover,

d

dϕ
r(ϕ, s)

r(ϕ, s)
=
α(ϕ)

β(ϕ)
+O(r(ϕ, s)) =

α(ϕ)

β(ϕ)
+O(s),

where in the second equality we use r(ϕ, s) = O(s). Therefore,

r(ϕ, s) = r(0, s)e
∫ ϕ
0

(
α(φ)
β(φ)

+O(s)
)
dφ = s

(
e
∫ ϕ
0
α(φ)
β(φ)

dφ +O(s)
)
.

We denote ρ(ϕ) := e
∫ ϕ
0
α(φ)
β(φ)

dφ > 0. Substituting the previous equality in the
expression of TF (s; ε) and taking into account that O(r(ϕ, s)) = O(s) we get

TF (s; ε) =
2

sn−1

∫ π
2

−π2

f(ϕ)dϕ(
ρ(ϕ) +O(s)

)n−1(
β(ϕ) +O(s)

)
=

2

sn−1

∫ π
2

−π2

(
f(ϕ)

ρ(ϕ)n−1β(ϕ)
+O(s)

)
dϕ

=
2

sn−1

(∫ π
2

−π2

f(ϕ)dϕ

ρ(ϕ)n−1β(ϕ)
+O(s)

)
.

Since f , ρ and β are positive, the last equality shows that TF (s; ε) → +∞ as
s→ 0+ for n > 1. Moreover,

d

ds
TF (s; ε) = −2(n− 1)

sn

(∫ π
2

−π2

f(ϕ)dϕ

ρ(ϕ)n−1β(ϕ)
+O(s)

)
+

2

sn−1
O(1)

=
1

sn

(
−2(n− 1)

∫ π
2

−π2

f(ϕ)dϕ

ρ(ϕ)n−1β(ϕ)
+O(s)

)
.

The last equality shows that d
dsTF (s; ε)→ −∞ as s→ 0+. This ends the proof

of Theorem 3 for n > 1.

3.2 Proof of Theorem 4

In order to study the global behaviour of the period function of system (3)
uniformly on ε ≥ 0 small in a compact set inside the period annulus it is
enough to study the period function of the system (4), that is when ε = 0.
We denote by T0(ȳ) the period function of system (4) parametrized by the
positive ȳ-axis, and we consider ȳ inside an arbitrary compact interval [ȳ1, ȳ2]
with 0 < ȳ1 < ȳ2 < +∞. By continuity with respect to the small parameter ε
of system (3), taking ε small enough the ȳ-axis is also transversal to all orbits of
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(3), which are also periodic for ȳ ∈ [ȳ1, ȳ2]. We can then define TF (ȳ; ε) as the
period function of system (3) parametrized by the same ȳ as T0. The function
TF (ȳ; ε) is analytic for ε ≥ 0, ε ∼ 0, and so we can consider its Taylor’s series
development at ε = 0,

TF (ȳ; ε) = T0(ȳ) +O(ε).

Then, since the center of system (4) is not isochronous, properties of the period
function of system for ε = 0 are reflected for ε ≥ 0 small enough. In particular,
d
dȳT0(ȳ) > 0 and d2

dȳ2T0(ȳ) > 0 for all ȳ ∈ [ȳ1, ȳ2] will imply d
dȳTF (ȳ; ε) > 0 and

d2

dȳ2TF (ȳ; ε) > 0 for all ȳ ∈ [ȳ1, ȳ2] and ε ≥ 0 small, respectively. For this reason,
Theorem 4 is a consequence of the following result.

Proposition 1. The period function of the center (4) is strictly monotone in-
creasing for n = 1 and it is strictly convex for n > 1.

The first part of the proof of Proposition 1 relies on the application of the
following monotonicity criterion due to Schaaf [11].

Theorem 6. Consider a Hamiltonian system of the form u̇ = −v, v̇ = g(u),
where function g satisfy the following assumptions:

1. g : R → R is three times continuously differentiable with g(0) = 0 and
g′(0) > 0.

2. For all u ∈ R where g′(u) > 0:
(
5(g′′)2 − 3g′g′′′

)
(u) > 0.

3. If g′(u) = 0 then g(u)g′′(u) < 0.

Then the origin is a center and the period function is strictly increasing in the
whole period annulus.

One of the key elements to prove the second part of Proposition 1 is to
show that at most one critical period can exist in the interior of the period
annulus. To do so we use the following result due to Sabatini [10]. For the
sake of shortness in the statement, we define the following operator for smooth
functions defined on an interval I:

K[g] :=
3g2g′′2 − 3gg′2g′′ − g2g′g′′′

g′4
.

Theorem 7. Consider a Hamiltonian of the form H(u, v) = G(u)+F (v), where
G(u) = αu2k + o(u2k) ∈ C∞(IG), F (v) = βv2` + o(v2`) ∈ C∞(IF ), 0 ∈ IG ∩ IF ,
0 < k, ` ∈ N, α, β > 0. Here IG and IF denote the maximal interval of definition
of G and F , respectively. Then the origin is a center and if

µs2 := 4

(
1 + 2

GG′′

G′2
FF ′′

F ′2
+K[G] +K[F ]

)
> 0

then the period function is strictly convex in the whole period annulus.

Proof of Proposition 1. The change of variables {u = ln(1+2n(ȳ−x̄2n)), v = x̄}
transforms (4) into the Hamiltonian system with separable variables{

u̇ = −2nv2n−1

v̇ = V ′n(u),
(8)
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where Vn(u) = 1
2n (eu−u−1). We notice that both periodic functions of system

(8) and (4) are the same through the change of variable. We shall prove the
results for (8).

Let us prove the first assertion of the statement. To do so, we apply Schaaf’s
criterion to system (8) with n = 1. After a positive constant rescaling of time
and taking g = V ′1 we have that the assumptions in Theorem 6 are fulfilled since
g′(u) = V ′′1 (u) = 1

2e
u > 0 for all u ∈ R and

(
5(g′′)2 − 3g′g′′′

)
(u) = 1

2e
2u > 0 for

all u ∈ R. Therefore the period function of system (8) is strictly increasing and
so d

dȳT0(ȳ) > 0 for all ȳ > 0. This proves the assertion concerning n = 1.
Let us consider n > 1. With the aim of applying Theorem 7 we denote

G(u) = Vn(u) = 1
2n (eu − u − 1) and F (v) = v2n. Clearly the first part of the

assumptions of the theorem are fulfilled since Vn(u) = 1
4nu

2 + o(u2). We claim
that µs2 ≥ 1

n2 > 0 for all n ≥ 2. After showing the inequality, the result follows
by direct application of Theorem 7.

Using the expressions of F and G we have that

µ̂s2(u, n) := µs2(u, n)− 1

n2
=

4eu

n(eu − 1)4
η(u, n),

where η(u, n) = nu2 +(1+3n)u+2n+1+(2nu2−2u−3n−3)eu+((1−3n)u+
3)e2u + (n− 1)e3u. A direct computation shows that

d

dn
µ̂s2(u) =

4(eu − u− 1)eu

n2(eu − 1)2
> 0

for all u ∈ R. Therefore to prove the claim it is enough to show that η(u, 2) ≥ 0.
We perform a derivation-division procedure with respect to eu achieving the

following equality:

e−u
d3

du3

(
e−u

d3

du3
η(u, 2)

)
= 216eu − 40u− 156.

The previous expression has exactly two simple negative zeros. Indeed, its
derivative is zero only at u = ln(5/27), the image at u = 0 is positive and the
limits u → ±∞ are both +∞. A sequence of simple arguments of continuity,
number of zeros of the derivative, the values at u = 0 and the values of the
limits at ±∞ yields to show that η(u, 2) ≥ 0 for all u ∈ R. This finishes the
proof of the claim.

3.3 Proof of Theorem 5

We define a section Σ1 ⊂ {X = 0} parametrized by (R1, E1) ∈ [0, R0
1]× [0, E0

1 ]
for some small R0

1, E
0
1 > 0. The section Σ1 is defined using the coordinates

(X,R,E) of (6) (we write (R1, E1) instead of (R,E) to avoid confusion later).
Similarly, we define Σ4 ⊂ {x̄ = 0} parametrized by (ȳ, ε), with ε ∈ [0, R0

1E
0
1 ],

where (x̄, ȳ, ε) are the coordinates of (3). The sections Σ1,Σ4 are transverse to
the blown-up vector field X̄η and located near the polycycle Γ (see Figure 3).
Since system (3) (resp. (6)) is invariant under the symmetry (x̄, t) → (−x̄,−t)
(resp. (X, t) → (−X,−t)), it suffices to study the time spent between Σ1 and
Σ4, i.e. the half time period function of r2n−1X̄η, denoted by H. Our goal is to
prove that LH > 0 on Σ1 (for R0

1, E
0
1 > 0 small enough but fixed), with ε > 0,

10



R = 0

X
R

E = 0

E

RE = ε

p−

p+

Σ1Σ2

Σ3

Σ4

(a) (b)

RE = ε

Figure 3: (a) Closed orbits near the polycycle Γ, inside RE = ε, for a fixed
ε > 0. Γ is located on the blow-up locus {r = 0} (it corresponds to {R = 0} in
the phase directional chart). The center is visible in the family chart. (b) The
study of the time spent inside {x ≥ 0} is divided into three parts: Σ1 → Σ2,
Σ2 → Σ3 and Σ3 → Σ4. In the first two parts, we use the vector field XD, and
in the last part we use XF .

where L is the Lie-derivative along the vector field R ∂
∂R − E

∂
∂E (see Section

3.3.5). This implies that r2n−1X̄η (r > 0) has no critical periods near Γ and the
period function is monotonous increasing there. When ε = 0, system (1) has no
center.

We split up H in three parts: the time H1,2 spent between Σ1 and Σ2

(Section 3.3.2), the timeH2,3 spent between Σ2 and Σ3, near the semi-hyperbolic
singularity p− (Section 3.3.1), and the time H3,4 between Σ3 and Σ4 (Section
3.3.3). In Section 3.3.4 we glue the local results together. Section 3.3.5 is
devoted to the study of the Lie-derivative LH.

3.3.1 The study of H2,3

In this section we study the time H2,3 inside the family XD, i.e. X̄D multiplied

by R2n−1. First, we bring X̃D := F (X,R, η)−1X̄D, locally near p− = (1, 0, 0),
to a normal form which simplifies the study of H2,3 (transverse sections Σ2,3 will
be defined in the normal form coordinates). Since p− is partially hyperbolic for
all η ∈ K, there exists a Ck η-family of center manifolds at p−, given as a graph
of X = 1 + ψ(R,E, η) with ψ(0, 0, η) ≡ 0. Following [5] in the generic case or
[3] in the non-generic case, an η-family of center manifolds can be chosen to be
C∞ (i.e. ψ can be C∞). We fix such ψ.

Using the coordinate change Z = X − (1 + ψ(R,E, η)), the fixed family of

11



center manifolds becomes {Z = 0} and the vector field X̃D changes to
Ż = − (Φ(R,E, η) +O(Z))Z

Ṙ = − 1
2nRE

2n

Ė = 1
2nE

2n+1,

(9)

where Φ is a smooth function with Φ(0, 0, η) = 2n. We used the fact that the

family of center manifolds is invariant for X̃D. Now, we can normally linearize
the vector field (9) using Theorem 1.1 of [7]:

Theorem 8. There is a smooth family Πη : (Z,R,E) → (Z̄, R,E) of local
diffeomorphisms, defined in an η-uniform neighborhood of the origin in the
(Z,R,E)-space, which brings (9) into the normally linearized vector field

X̂D :


Ż = −Φ(R,E, η)Z

Ṙ = − 1
2nRE

2n

Ė = 1
2nE

2n+1,

(10)

where Φ is defined in (9) and where we denote Z̄ again by Z. The diffeomor-
phisms Πη preserve {RE = const}: Πη(Z,R,E) = (Z(1 + Zπη(Z,R,E)), R,E)
with a smooth family πη.

Remark 1. The coordinate change in the normal linearization theorem from
[7] is C∞-smooth and preserves the parameter η and the leaves of the foliation
{RE = const} (the center variables R,E are preserved). In [6], this normal
linearization theorem has been used in the generic case (see also Remark 1.2 in
[7]). In the same way we apply it to the non-generic case. We point out that
we could also use Ck center manifolds and the normal linearization theorem of
[1] with a Ck-coordinate change that preserves η and {RE = const}. The size
of the domain of the coordinate change may tend to zero as k →∞. The finite
smoothness is not a problem in our proof.

We conclude that, in the normal form coordinates (Z,R,E) of (10), XD can
be written as

R2n−1κ(Z,R,E, η)X̂D, (11)

where κ(Z,R,E, η) = F (Z(1 +O(Z)) + 1 + ψ,R, η) and κ(0, 0, 0, η) = 1.

In the normal form coordinates, we define Σ2 ⊂ {Z = −Z0}, parametrized
by (R2, E2) ∈ [0, R0

2] × [0, E0
2 ] for some small constants Z0, R

0
2, E

0
2 > 0, and

Σ3 ⊂ {E = E3}, parametrized by (Z,R) with Z ∼ 0 and R ∈ [0, R3] for
some small constants R3, E3 > 0. All the constants are chosen such that the
transverse sections Σ2,3 are located in the domain of Π−1

η and such that the

passage w.r.t. X̂D between Σ2 and Σ3 is well-defined.

We can now find the time H2,3(R2, E2) in (11), spent between Σ2 and Σ3.

Note that the orbit of X̂D (or (11) with R > 0) with the initial point (R2, E2) >
(0, 0) on Σ2 has the form

(Z(E,R2, E2),
R2E2

E
,E)

with Z(E,R2, E2) = −Z0 exp
(
−2n

∫ E
E2

Φ(
R2E2
s ,s,η)

s2n+1 ds
)
. Using this, the time H2,3

can be written as

H2,3(R2, E2) =
2n

(R2E2)2n−1

∫ E3

E2

dE

E2κ(Z(E,R2, E2), R2E2

E , E, η)
. (12)

12



Since |Z(E,R2, E2)| ≤ Z0 for E ≥ E2 and κ is positive and bounded for
(Z,R,E) ∼ (0, 0, 0) and η ∈ K, it is clear that (12) tends to +∞ as ε =
R2E2 → 0, uniformly in η. (Note that the integral in (12) is of order O( 1

E2
).)

We will use the expression (12) in Section 3.3.4.
We conclude this section with a result about the transition map of X̂D

between Σ2 and Σ3.

Proposition 2. There is a C∞-function J in (R2, E2, E
2
2 lnE2, η) such that the

transition map (R2, E2)→ (Z,R) along the trajectories of (10) between Σ2 and
Σ3 is given by R = R2E2

E3
and

Z = −Z0 exp

(
− 1

E2n
2

J(R2, E2, E
2
2 lnE2, η)

)
with J(0, 0, 0, η) = 2n.

Proof. When n = 1, the proof of the proposition can be found in [6] (Proposition
4.9). The proof of the case “n > 1” is analogous to the proof of the case
“n = 1”.

Proposition 2 implies that the transition map between Σ2 and Σ3 is C∞-
smooth in (R2, E2, η). This will be used in the gluing process in Section 3.3.4.

3.3.2 The study of H1,2

In this section we deal with the time H1,2, spent between Σ1 and Σ2, inside
the vector field XD. The smooth sections Σ1,2 are defined above. Note that
the system (6) has no singularities between Σ1 and Σ2 (since the section Σ2

is located uniformly away from the singularity p−, the X-component of (6) is
strictly positive between Σ1 and Σ2, for all (R,E) ∼ (0, 0) and for all η kept in
the compact set K). Since XD is (6), multiplied by R2n−1, it can be seen that

H1,2(R1, E1) =
1

R2n−1
1

I1 (R1, E1, η) , (13)

where I1 is a strictly positive C∞-function. We conclude this section with

Proposition 3. There exists a C∞-function J(R1, E1, η) such that the transi-
tion map (R1, E1) → (R2, E2) along the trajectories of (6) between Σ1 and Σ2

is given by

(R2, E2) =
(
R1(1 + E2n

1 J(R1, E1, η)), E1(1 + E2n
1 J(R1, E1, η))−1

)
.

Proof. In the generic case (n = 1), the proof of the proposition is given in [6]
(Proposition 5.1). The proof of the non-generic case (n > 1) is analogous to the
proof of the generic case.

We use (13) and Proposition 3 in Section 3.3.4.
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3.3.3 The study of H3,4

In this section we deal with the time H3,4, spent between Σ3 and Σ4, inside the
vector fieldXF (XF is equal to (3), multiplied by a constant ε2n−1 = (RE)2n−1).
The smooth sections Σ3,4 are defined above. If we parametrize Σ3 with (x̄, ε)
((x̄, ȳ, ε) are the coordinates of (3)), then we can write H3,4 as

H3,4(x̄, ε) =
1

ε2n−1
I3 (x̄, ε, η) , (14)

where I3 is a strictly positive C∞-function. This follows from the fact that the
vector field (3) is regular along Γ on the blow-up locus, between Σ3 and Σ4 (see
Figure 3).

3.3.4 The study of H

In this section we glue together the local results obtained in Sections 3.3.1–3.3.3
and find an expression for the half time period function H. We know that

H(R1, E1) = H1,2(R1, E1) +H2,3(R2, E2) +H3,4(x̄, ε),

where the orbit of r2n−1X̄η (X̄η is the blown-up vector field defined in Section 2)
with the initial point (R1, E1) ∈ Σ1 intersects section Σ2 at the point (R2, E2)
and section Σ3 at the point (x̄, ε). From (12) follows that

H2,3(R2, E2) =
2n

(R1E1)2n−1

∫ E3

E2

dE

E2κ(Z(E,R2, E2), R1E1

E , E, η)
, (15)

where R2 and E2 are the C∞-functions of (R1, E1, η) given in Proposition 3.
Here we used that ε = R1E1 = R2E2. Now, we want express H3,4(x̄, ε) in terms
of (R1, E1). Let us recall that the constant E3 > 0 comes from the definition
of Σ3. Using x̄ = X

E3
and X = Z(1 + O(Z)) + 1 + ψ(R1E1

E3
, E3, η) on Σ3 (O(Z)

is a C∞-function, see Section 3.3.1), and the fact that Z is a C∞-function in
(R1, E1, η) (we combine Proposition 2 and Proposition 3), we see that x̄ is a
C∞-function of (R1, E1, η) and ε = R1E1. This and (14) imply that

H3,4(x̄, ε) =
1

(R1E1)2n−1
Ĩ3 (R1, E1, η) (16)

where Ĩ3 is a strictly positive C∞-function. Combining (13), (15) and (16), we
finally get

H(R1, E1) =
2n

(R1E1)2n−1

(∫ E3

E2

dE

E2κ(Z(E,R2, E2), R1E1

E , E, η)
+ I(R1, E1, η)

)
,

(17)
where I is a C∞-function (thus, bounded). Note that the H2,3-contribution is
dominant in (17) and that H(R1, E1) tends to +∞ as ε = R1E1 → 0, uniformly
in η. We know that R2 = R1 (1 + o(1)) and E2 = E1 (1 + o(1)) where the o(1)-
terms are C∞-functions of (R1, E1, η), equal to 0 when E1 = 0. In Section 3.3.5
we show that the Lie-derivative of the integral in (17) is of order O( 1

E1
).
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3.3.5 Lie-derivative of H

When we fix any value of (ε, η), with ε > 0 small, H is 1-variable function
defined on interval {(R1, E1) ∈ Σ1 | R1E1 = ε} (see Figure 3(b)). To study
critical periods of H on such intervals, we define the Lie-derivative of H along
the vector field R1

∂
∂R1
− E1

∂
∂E1

(it is tangent to the intervals and without
singularities there):

LH := R1
∂H

∂R1
− E1

∂H

∂E1
.

It can be easily seen that the Lie-derivative of a C∞-function in (R1, E1, η) (e.g.

Ĩ in (17)) is a C∞-function in (R1, E1, η), equal to zero when (R1, E1) = (0, 0).

We also have L (R1E1) = 0 and L
(
Rl11 E

l2
1

)
= (l1− l2)Rl11 E

l2
1 for l1, l2 ∈ Z. For

more details about the Lie-derivative we refer the reader to [6, 9].

The Lie-derivative of the time (17) can be written as

(LH)(R1, E1) =
2n

(R1E1)2n−1

(
1 + o(1)

E1κ(−Z0, R1(1 + o(1)), E1(1 + o(1)), η)

+

∫ E3

E2

− ∂κ
∂Z (Z(E,R2, E2), R1E1

E , E, η)

E2
(
κ(Z(E,R2, E2), R1E1

E , E, η)
)2 (LZ)(E,R1, E1)dE + o(1)

)
,

(18)

where o(1)-terms are C∞-functions of (R1, E1, η), equal to zero when (R1, E1) =
(0, 0), and LZ is given by

(LZ)(E,R1, E1) =

2nZ0 (Φ(R1, E1, η) + o(1))

E2n
1

exp

(
−2n

∫ E

E2

Φ(R1E1

s , s, η)

s2n+1
ds

)
, (19)

where o(1)-terms have the same property as above. We show that the first term
in (18) is dominant.

Since κ is uniformly positive near the origin (κ(0, 0, 0, η) = 1) and ∂κ
∂Z and

Φ are bounded, we find an upper bound for the integral in (18):∣∣∣∣∣
∫ E3

E1(1+o(1))

∣∣∣∣∣ ≤ αZ0

E2n
1

∫ E3

E1(1+o(1))

1

E2
exp

(
−2n

∫ E

E1(1+o(1))

Φ(R1E1

s , s, η)

s2n+1
ds

)
dE

(20)
for some constant α > 0 independent of Z0. (We write E2 = E1(1 + o(1)).) For
E1 > 0 and E1 ∼ 0, we split up the integral on the right-hand side of (20) in
two parts: ∫ E3

E1(1+o(1))

=

∫ 2E1

E1(1+o(1))

+

∫ E3

2E1

.

We denote the first integral by J1 and the second by J2. We make in J1 the
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change of variable E = E1τ , getting

J1 =
1

E1

∫ 2

1+o(1)

1

τ2
exp

(
−2n

∫ E1τ

E1(1+o(1))

Φ(R1E1

s , s, η)

s2n+1
ds

)
dτ

=
1

E1

∫ 2

1+o(1)

1

τ2
exp

(
− 2n

E2n
1

∫ τ

1+o(1)

Φ(R1

u , E1u, η)

u2n+1
du

)
dτ

≤ 1

E1

∫ 2

1+o(1)

1

τ2
exp

(
− β

E2n
1

(τ − 1− o(1))

)
dτ

≤γE2n−1
1 (21)

for some constants β, γ > 0 independent of Z0. In the second step we used
the change of variable s = E1u and in the third step we used the fact that the
integrand function in

∫ τ
1+o(1)

is uniformly positive (Φ(0, 0, η) = 2n). In the last

step the term 1
τ2 is bounded on the segment [1 + o(1), 2] and the integral of

the exponential function is bounded by E2n
1 , multiplied by a positive constant.

Note also that the o(1)-terms in the last step are equal.

Concerning the integral J2 we get

J2 =

∫ E3

2E1

1

E2
exp

(
−2n

∫ E

E1(1+o(1))

Φ(R1E1

s , s, η)

s2n+1
ds

)
dE

≤
∫ E3

2E1

1

E2
exp

(
−2n

∫ 2E1

E1(1+o(1))

Φ(R1E1

s , s, η)

s2n+1
ds

)
dE

=

∫ E3

2E1

1

E2
exp

(
− 2n

E2n
1

∫ 2

(1+o(1))

Φ(R1

u , E1u, η)

u2n+1
du

)
dE

≤ exp

(
− β

E2n
1

)∫ E3

2E1

1

E2
dE ≤ γ

E1
exp

(
− β

E2n
1

)
(22)

for some new constants β, γ > 0. Finally, combining inequalities (21) and (22)
we obtain∣∣∣∣∣

∫ E3

E1(1+o(1))

∣∣∣∣∣ ≤ αZ0

E2n
1

(J1 + J2) ≤ α1Z0

E1
+

α2

E2n+1
1

exp

(
− β

E2n
1

)
for some constants α1, α2, β > 0. It is clear now that the first term in (18) is
the leading term since 1

κ > α1Z0 (Z0 > 0 is as small as we want but fixed).
We conclude that there are no critical periods for any fixed level ε > 0

on Σ1 with R0
1, E

0
1 > 0 small enough and fixed, uniformly in η. The Lie-

derivative LH tends to +∞ as ε → 0, uniformly in η. Since LH > 0 and
2nȳ ∂

∂ȳ + 0 ∂
∂ε = R1

∂
∂R1
− E1

∂
∂E1

the period function is monotonous increasing

(as large ȳ increases, i.e. as we go away from the center (x̄, ȳ) = (0, 0), the
period function increases). This completes the proof of Theorem 5.

3.4 Proof of Theorem 1

Let n ≥ 1 and T (y; ε) be the period function of the center at the origin of system
(1) with ε > 0, ε ∼ 0, parametrized by the positive y-axis, with y ∼ 0. We have
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the following relation between the (x, y, ε)-coordinates, the family directional
coordinates and the phase directional coordinates defined in Section 2.1:

x = εx̄ = RX, y = ε2nȳ = R2n, ε = RE.

Note that the positive y-axis is given by {x = 0}. In the family chart (resp. the
phase directional chart), it corresponds to {x̄ = 0} (resp. {X = 0}).

For each ε > 0 and ε ∼ 0, we consider T in the following intervals: ]0, ε2nȳ0],
[ε2nȳ1, ε

2nȳ2] and [ε2nȳ3, y0] where ȳ0, ȳ1, y0 > 0 are small and independent of ε
and ȳ2, ȳ3 > 0 are large and independent of ε. For ȳ0, y0 small and ȳ3 large, it
suffices to decrease ȳ1 and increase ȳ2 to cover the interval ]0, y0]. In the interval
]0, ε2nȳ0] (resp. [ε2nȳ1, ε

2nȳ2] and [ε2nȳ3, y0]) we use Theorem 3 (resp. Theorem
4 and Theorem 5). Let us recall that the results of Theorem 5 are valid in a
section Σ1 ⊂ {X = 0} parametrized by (R,E) ∈]0, R0

1]×]0, E0
1 ] where R0

1, E
0
1 >

0 are small enough and fixed (see Section 3.3). The interval ]0, R0
1] × {E0

1}
corresponds to y = ε2n 1

(E0
1)2n

and ε ∈]0, R0
1E

0
1 ] (we denote 1

(E0
1)2n

by ȳ3). The

interval {R0
1}×]0, E0

1 ] is given by y = (R0
1)2n (we denote (R0

1)2n by y0) and
ε ∈]0, R0

1E
0
1 ]. Theorem 3 is valid for ȳ ∈]0, ȳ0] and ε ∈]0, ε0] where ȳ0, ε0 > 0

are small enough. In the (y, ε)-coordinates, it corresponds to y ∈]0, ε2nȳ0] and
ε ∈]0, ε0]. Finally, for any small ȳ1 > 0 and any large ȳ2 > 0, Theorem 4 is valid
for ȳ ∈ [ȳ1, ȳ2] and ε ∈]0, ε1] where ε1 > 0 is small enough. It corresponds to
y ∈ [ε2nȳ1, ε

2nȳ2] and ε ∈]0, ε1] in the original coordinates.

Note that the notion of critical period is independent of the chosen coordi-
nates and the chosen transverse section (for example, if we work with the polar
coordinates (r, θ) instead of (x̄, ȳ), we have the same number of critical periods,
counting multiplicity).

We consider two cases: n = 1 and n > 1. Suppose first that n = 1. Following
Theorem 3, we have that ∂T

∂y (y; ε) > 0 for all y ∈]0, ε2ȳ0] and ε ∈]0, ε0]. Indeed,

we know that T (y; ε) = 1
εTF ( yε2 ; ε) where TF (ȳ; ε) is the period function of the

center of (3), parametrized by the positive ȳ-axis. Now, it suffices to see that

∂T

∂y
(y; ε) =

1

ε3

∂TF
∂ȳ

( y
ε2

; ε
)

(23)

and that ∂TF
∂ȳ (ȳ; ε) > 0 for all ȳ ∈]0, ȳ0] and ε ∈]0, ε0] (Theorem 3). On the

other hand, we know that T (y; ε) = TD(
√
y, ε√

y ) where TD(R,E) is the period

function of rX̄η near the polycycle Γ (X̄η is the blown-up vector field). Note
that

∂T

∂y
(y; ε) =

1

2y
(LTD)(

√
y,

ε
√
y

)

and that LTD > 0 for all (R,E) ∈]0, R0
1]×]0, E0

1 ] (see Theorem 5). Thus,
∂T
∂y (y; ε) > 0 for all y ∈ [ε2ȳ3, y0] and ε > 0 small. Finally, by taking ȳ1 < ȳ0

and ȳ2 > ȳ3, we have that ∂TF
∂ȳ (ȳ; ε) > 0 for all ȳ ∈ [ȳ1, ȳ2] and ε > 0 small (see

Theorem 4) and thus ∂T
∂y (y; ε) > 0 for all y ∈ [ε2ȳ1, ε

2ȳ2] and ε > 0 small (see

(23)). This ends the proof of Theorem 1 in the generic case.

Suppose now that n > 1. The study of the non-generic case is similar to the
study of the generic case. We have ∂T

∂y (y; ε) < 0 for all y ∈]0, ε2ȳ0] and for all

ε > 0 small (see Theorem 3), and ∂T
∂y (y; ε) > 0 for all y ∈ [ε2ȳ3, y0] and ε > 0
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small (see Theorem 5). Using Theorem 4 we find that ∂2T
∂y2 (y; ε) > 0 for all

y ∈ [ε2ȳ1, ε
2ȳ2] and ε > 0 small. This implies that at most one critical period

can exist in ]0, y0]. Since ∂T
∂y goes from − to +, we conclude that precisely one

critical period exists in ]0, y0]. This completes the proof of Theorem 1 in the
non-generic case.

3.5 Proof of Theorem 2

We consider system (2) with N ≥ 1 and denote c := (c2, c4, . . . , c2(N−1)) ∈ SN−2

(when N = 1, we don’t have the parameter c). When N ≥ 2, we assume that
c2 ≥ c02 for some arbitrarily small and fixed c02 > 0. Let C and G be as defined
in Theorem 2 and let C̃ be an arbitrary and fixed compact subset of C. Let
c ∈ C̃. We replace ε in (2) by ε2. It is clear that, if we can prove the result in a
small interval in the new ε-space, then we have proved it in a small interval in
the old ε-space.

If we apply the scaling (x, y) = ( x̃c2 ,
ỹ
c2

) to (2), we get{
ẋ = y −

(
x2 +

∑N−1
k=2 c̄2kx

2k + c̄2Nx
2N
)

ẏ = −ε2x,
(24)

where c̄2k = c2k
c2k−1
2

, for k = 2, . . . , N − 1, and c̄2N = 1
c2N−1
2

. (We use the old

notation (x, y) instead of (x̃, ỹ) for the sake of simplicity). Since c is kept in the
compact set C̃, it is clear that c̄ = (c̄4, . . . , c̄2N ) is also contained in a compact
set, denoted by C̄, and that

Ḡ′(x)

x
> 0, (25)

for all x ∈ R and c̄ ∈ C̄, where Ḡ denotes the polynomial in x in the first
equation of (24). Note that Ḡ(x) = c2G( xc2 ) and that system (24) is of type (1)
with n = 1.

Figure 4: Dynamics of (24). The curve of singularities, at level ε = 0, with
indication of small-amplitude, detectable and large closed orbits, for ε > 0 and
ε ∼ 0.

It suffices to show that there exists ε0 > 0 small such that system (24) has
no critical periods for all ε ∈]0, ε0] and c̄ ∈ C̄. Let T (y; ε) be the period function
of the center at the origin of system (24) with ε > 0 and ε ∼ 0, parametrized
by the positive y-axis. In the rest of this section we prove that d

dyT (y; ε) > 0 on
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{y > 0}, for all ε ∈]0, ε0] and c̄ ∈ C̄, for some ε0 > 0. This will imply that there
are no critical periods uniformly in ε ∼ 0. We study the period function T in
the following intervals: ]0, y0], [ρ, 1

ρ ] and [y1,∞[, where y0 > 0 is small enough,

y1 > 0 is large enough and ρ > 0 is arbitrarily small (see Figure 4). When
we find y0 and y1, we decrease ρ (i.e., increase the segment [ρ, 1

ρ ]) to cover the

entire {y > 0}.
Following Theorem 1, there exist ε0 > 0 and y0 > 0 such that d

dyT (y; ε) > 0

for all y ∈]0, y0] and (ε, c̄) ∈]0, ε0]× C̄.

Consider now the period function T in the segment [ρ, 1
ρ ], for any small and

fixed ρ > 0. The reduced flow (sometimes called the slow system) of (24) along
the critical curve {y = Ḡ(x)}, away from the contact point (x, y) = (0, 0), is
given by

x′ = − x

Ḡ′(x)
(or y′ = −x).

Note that the reduced flow is well-defined and uniformly negative for all x kept
in large compact sets and c̄ ∈ C̄. Here we use (25). The orbit through the point
y ∈ [ρ, 1

ρ ] is attracted to the curve of singularities {x > 0}, follows the reduced
flow directed towards the turning point at the origin and then goes back to the
point y due to the symmetry. This implies that T is well-defined for y ∈ [ρ, 1

ρ ].

Following [3] (Theorem 2.1.) or [4], the period function T and its derivative,
restricted to the segment [ρ, 1

ρ ], are given by

T (y; ε) = 2
1

ε2
(T0(y) + o(1)) and

d

dy
T (y; ε) = 2

1

ε2

(
d

dy
T0(y) + o(1)

)
,

with ε > 0 small enough, where T0(y) is the transition time (at level ε = 0) of
the reduced flow along the attracting part of the curve of singularities between
the ω-limit of the point y ∈ [ρ, 1

ρ ] and the turning point. Using the expressions

for the reduced flow we have for y ∈ [ρ, 1
ρ ]

T0(y) = −
∫ 0

y

dỹ

x̃
= −

∫ 0

y

dỹ

g(ỹ)
,

where x̃ = g(ỹ) represents the attracting part of the critical curve, i.e. ỹ =
Ḡ(g(ỹ)). Finally, we get

d

dy
T0(y) =

1

g(y)
> 0

for all y ∈ [ρ, 1
ρ ] and c̄ ∈ C̄. We conclude that d

dyT (y; ε) > 0 for all y ∈ [ρ, 1
ρ ],

c̄ ∈ C̄ and ε ∈]0, ε0] for some small ε0 > 0. We point out that we are allowed to
use the results of [3] because the reduced flow has no singularities.

It remains to show that d
dyT (y; ε) > 0 for y ∈ [y1,∞[, c̄ ∈ C̄ and ε ∈]0, ε0]

for y1 > 0 large enough and ε0 > 0 small enough. To investigate the period
function when y →∞, we apply the coordinate change (x, y) = ( x̃q ,

1
q2N

) to (24),
where q > 0 is small and x̃ is kept in a compact set. In the new coordinates
(24) becomes 1

q2N−1X∞ where the vector field X∞ is given by{
˙̃x = 1−

(
q2N−2x̃2 +

∑N−1
k=2 c̄2kq

2N−2kx̃2k + c̄2N x̃
2N
)

+ 1
2N ε

2q4N−2x̃2

q̇ = 1
2N ε

2q4N−1x̃.
(26)
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On the line {q = 0} (it represents infinity in the (x, y)-phase space), system

(26) has two semi-hyperbolic singularities x̃ = ±
(

1
c̄2N

) 1
2N (resp. x̃ = ±1) when

N ≥ 2 (resp. N = 1). Note that c̄2N is uniformly positive and bounded. It
suffices to look at the positive sign. When ε = 0, we have the curve of (semi-

hyperbolic) singularities x̃ =
(

1
c̄2N

) 1
2N + O(q) (resp. x̃ = 1). The reduced flow

is given by

q′ =
1

2N
q4N−1

((
1

c̄2N

) 1
2N

+O(q)

) (
resp. q′ =

1

2
q3

)
.

Using a Takens normal form for Ck-equivalence (see e.g. [5]), system X∞ near
the semi-hyperbolic singularity on the line {q = 0} is Ck-equivalent to{

˙̂x = −x̂
˙̂q = ε2q̂4N−1h(q̂, ε, c̄)

(27)

where h is a positive Ck-function. We denote system (27) by X̂∞. We conclude
that in the normal form coordinates (x̂, q̂) the vector field 1

q2N−1X∞ can be
written as

1

q̂2N−1ĥ(x̂, q̂, ε, c̄)
X̂∞, (28)

where ĥ is a positive Ck-function. We choose two transverse sections Σ− ⊂
{x̂ = x̂0}, parametrized by q̂, and Σ+ ⊂ {q̂ = q̂0}, parametrized by x̂, for some
small and fixed x̂0, q̂0 > 0. We compute the time of (28) spent between Σ− and
Σ+, near (x̂, q̂) = (0, 0). The orbit of (27) or (28) starting at q̂1 ∈ Σ−, with
q̂1 > 0, is given by

x̂(q̂, q̂1) = x̂0 exp

(
− 1

ε2

∫ q̂

q̂1

dz

z4N−1h(z, ε, c̄)

)
.

Now is the time spent by the orbit given by

T (q̂1; ε) =
1

ε2

∫ q̂0

q̂1

h̄(x̂(z, q̂1), z, ε, c̄)dz

z2N

with a positive Ck-function h̄. The derivative is given by

d

dq̂1
T (q̂1; ε) = − h̄(x̂0, q̂1, ε, c̄)

ε2q̂2N
1

+
1

ε2

∫ q̂0

q̂1

∂h̄
∂x̂ (x̂(z, q̂1), z, ε, c̄) ∂x̂∂q̂1 (z, q̂1)

z2N
dz. (29)

Now, we proceed exactly as in Section 3.3.5. The first term in (29) tends to
−∞ as ε2q̂2N

1 → 0 and we show that it is a dominant term. We have∣∣∣∣∣ 1

ε2

∫ q̂0

q̂1

∣∣∣∣∣ ≤ αx̂0

ε4q̂4N−1
1

∫ q̂0

q̂1

exp
(
− 1
ε2

∫ z
q̂1

ds
s4N−1h(s,ε,c̄)

)
z2N

dz (30)

with a positive constant α. We used the fact that ∂h̄
∂x̂ is bounded and h is

uniformly positive. For the [q̂1, 2q̂1]-part of the integral on the right hand side
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of (30), we get∫ 2q̂1

q̂1

=
1

q̂2N−1
1

∫ 2

1

exp
(
− 1
ε2

∫ q̂1z̃
q̂1

ds
s4N−1h(s,ε,c̄)

)
z̃2N

dz̃

=
1

q̂2N−1
1

∫ 2

1

exp
(
− 1
ε2q̂4N−2

1

∫ z̃
1

ds̃
s̃4N−1h(q̂1s̃,ε,c̄)

)
z̃2N

dz̃

≤ 1

q̂2N−1
1

∫ 2

1

exp
(
− β(z̃−1)

ε2q̂4N−2
1

)
z̃2N

dz̃

≤ γε2q̂2N−1
1 , (31)

where β, γ > 0 are constants. (See Section 3.3.5 for each step.) On the other
hand, we have ∫ q̂0

2q̂1

≤
∫ q̂0

2q̂1

exp
(
− 1
ε2

∫ 2q̂1
q̂1

ds
s4N−1h(s,ε,c̄)

)
z2N

dz

=

∫ q̂0

2q̂1

exp
(
− 1
ε2q̂4N−2

1

∫ 2

1
ds̃

s̃4N−1h(q̂1s̃,ε,c̄)

)
z2N

dz

≤ exp

(
− β

ε2q̂4N−2
1

)∫ q̂0

2q̂1

dz

z2N

≤ γ

q̂2N−1
1

exp

(
− β

ε2q̂4N−2
1

)
(32)

for some new constants β, γ > 0. Combining (30), (31) and (32) we finally have∣∣∣∣∣ 1

ε2

∫ q̂0

q̂1

∣∣∣∣∣ ≤ α1x̂0

ε2q̂2N
1

+
α2

ε4q̂6N−2
1

exp

(
− β

ε2q̂4N−2
1

)
for positive constants α1, α2, β. Now, it suffices to notice that x̂0 > 0 can be
arbitrarily small but fixed.

The time of 1
q2N−1X∞ spent between {x̃ = 0} and Σ− is of order O(q2N−1)

(X∞ is regular in this region). Following [3], the time spent between Σ− and
the turning point and its derivative are of order O( 1

ε2 ). This implies that the

contribution (29) is dominant. Thus, d
dyT (y; ε) > 0 for large y. This ends the

proof of Theorem 2.
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