

Check for updates

Topological entropy of continuous self-maps on closed surfaces

Juan Luis García Guirao^a, Jaume Llibre^b and Wei Gao^{a, c}

^aDepartamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Hospital de Marina, Región de Murcia, Spain; ^bDepartament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain; ^cSchool of Information Science and Technology, Yunnan Normal University, Kunming, People's Republic of China

ABSTRACT

The objective of this work is to present sufficient conditions for having positive topological entropy for continuous self-maps defined on a closed surface by using the action of this map on the homological groups of the closed surface.

ARTICLE HISTORY

Received 5 June 2019 Accepted 16 December 2019

KEYWORDS

Closed surface; continuous self-map; Lefschetz fixed point theory; periodic point; set of periods

2010 MATHEMATICS SUBJECT CLASSIFICATIONS 37C05; 37C25; 37C30

1. Introduction

Along this work by a *closed surface*, we denote a connected compact surface with or without boundary, orientable or not. More precisely, *an orientable connected compact surface without boundary of genus* $g \ge 0$, \mathbb{M}_g , is homeomorphic to the sphere if g = 0, to the torus if g = 1, or to the connected sum of g copies of the torus if $g \ge 2$. *An orientable connected compact surface with boundary of genus* $g \ge 0$, $\mathbb{M}_{g,b}$, is homeomorphic to \mathbb{M}_g minus a finite number b > 0 of open discs having pairwise disjoint closure. In what follows $\mathbb{M}_{g,0} = \mathbb{M}_g$.

A non-orientable connected compact surface without boundary of genus $g \ge 1$, \mathbb{N}_g , is homeomorphic to the real projective plane if g = 1, or to the connected sum of g copies of the real projective plane if g > 1. A non-orientable connected compact surface with boundary of genus $g \ge 1$, $\mathbb{N}_{g,b}$, is homeomorphic to \mathbb{N}_g minus a finite number b > 0 of open discs having pairwise disjoint closure. In what follows $\mathbb{N}_{g,0} = \mathbb{N}_g$.

Let $f : \mathbb{X} \to \mathbb{X}$ be a continuous map on a closed surface \mathbb{X} . A point $x \in \mathbb{X}$ is periodic of period n if $f^n(x) = x$ and $f^k(x) \neq x$ for k = 1, ..., n - 1.

The *topological entropy* of a continuous map $f : \mathbb{X} \to \mathbb{X}$ denoted by h(f) is a non-negative real number (possibly infinite) which measures how much f mixes up the phase

CONTACT Juan Luis García Guirao 🖾 juan.garcia@upct.es 😰 Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Hospital de Marina, 30203-Cartagena, Región de Murcia, Spain