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Abstrat. The objetive of the present work is to present su�ient on-

ditions for having positive topologial entropy for ontinuous self�maps

de�ned on a losed surfae by using the ation of this map on the homo-

logial groups of the losed surfae.

1. Introdution

Along this work by a losed surfae we denote a onneted ompat surfae

with or without boundary, orientable or not. More preisely, an orientable on-

neted ompat surfae without boundary of genus g ≥ 0, Mg, is homeomorphi

to the sphere if g = 0, to the torus if g = 1, or to the onneted sum of g opies

of the torus if g ≥ 2. An orientable onneted ompat surfae with boundary

of genus g ≥ 0, Mg,b, is homeomorphi to Mg minus a �nite number b > 0 of

open diss having pairwise disjoint losure. In what follows Mg,0 = Mg.

A non�orientable onneted ompat surfae without boundary of genus g ≥
1, Ng, is homeomorphi to the real projetive plane if g = 1, or to the onneted
sum of g opies of the real projetive plane if g > 1. A non�orientable onneted

ompat surfae with boundary of genus g ≥ 1, Ng,b, is homeomorphi to Ng

minus a �nite number b > 0 of open diss having pairwise disjoint losure. In

what follows Ng,0 = Ng.

Let f : X → X be a ontinuous map on a losed surfae X. A point x ∈ X

is periodi of period n if fn(x) = x and fk(x) 6= x for k = 1, . . . , n − 1.

The topologial entropy of a ontinuous map f : X → X denoted by h(f)
is a non�negative real number (possibly in�nite) whih measures how muh

f mixes up the phase spae of X. When h(f) is positive the dynamis of the

system is said to be ompliated and the positivity of h(f) is used as a measure

of the so alled topologial haos.

Here we introdue the topologial entropy using the de�nition of Bowen [4℄.
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Sine it is possible to embedded any surfae orientable or not in R4
by the

Whitney immersion theorem see [11℄, we onsider the distane between two

points of X as the distane of these two points in R4
. Now, we de�ne the

distane dn on G by

dn(x, y) = max
0≤i≤n

d(f i(x), f i(y)), ∀x, y ∈ G.

A �nite set S is alled (n, ε)�separated with respet to f if for di�erent points

x, y ∈ S we have dn(x, y) > ε. We denote by Sn the maximal ardinality of an

(n, ε)�separated set. De�ne

h(f, ε) = lim sup
n→∞

1

n
log Sn.

Then

h(f) = lim
ε→0

h(f, ε)

is the topologial entropy of f .

We have hosen the de�nition by Bowen beause, probably it is the shorter

one. The lassial de�nition was due to Adler, Konheim and MAndrew [1℄. See

for instane the book of Hasselblatt and Katok [7℄ and [3℄ for other equivalent

de�nitions and properties of the topologial entropy. See [1, 2, 12℄ for more

details on the topologial entropy.

Our main results are the following.

Theorem 1. Let Mg be an orientable onneted ompat surfae without bound-

ary of genus g. Then the following statements hold.

(a) If the degree d /∈ {−1, 0, 1}, then the topologial entropy of f is positive.

(b) If the degree d ∈ {−1, 0, 1} and the number of roots of the hara-

teristi polynomial of f∗1 equal to ±1 or 0 taking into aount their

multipliities is not even, then the topologial entropy of f is positive.

Theorem 2. Let Mg,b, b > 0, be an orientable onneted ompat surfae with

boundary of genus g. Then the following statements hold.

(a) If 2g+ b− 1 is even and the number of roots of the harateristi poly-

nomial of f∗1 equal to ±1 or 0 taking into aount their multipliities

is not even, then the topologial entropy of f is positive.

(b) If 2g + b− 1 is odd and the number of roots of the harateristi poly-

nomial of f∗1 equal to ±1 or 0 taking into aount their multipliities

is not odd, then the topologial entropy of f is positive.

Theorem 3. Let Ng,b, b ≥ 0, be a non�orientable onneted ompat surfae

with boundary of genus g. Then the following statements hold.

(a) If g + b− 1 is even and the number of roots of the harateristi poly-

nomial of f∗1 equal to ±1 or 0 taking into aount their multipliities

is not even, then the topologial entropy of f is positive.
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(b) If g+b−1 is odd and the number of roots of the harateristi polynomial

of f∗1 equal to ±1 or 0 taking into aount their multipliities is not

odd, then the topologial entropy of f is positive.

2. Lefshetz zeta funtions for surfaes

Let f be a ontinuous self�map de�ned on Mg,b or Ng,b, respetively. For a

losed surfae the homologial groups with oe�ients in Q are linear vetor

spaes over Q. We reall the homologial spaes of Mg,b with oe�ients in Q,

i.e.

Hk(Mg,b,Q) = Q⊕ nk. . . ⊕Q,

where n0 = 1, n1 = 2g if b = 0, n1 = 2g + b− 1 if b > 0, n2 = 1 if b = 0, and
n2 = 0 if b > 0; and the indued linear maps f∗k : Hk(Mg,b,Q) → Hk(Mg,b,Q)
by f on the homologial group Hk(Mg,b,Q) are f∗0 = (1), f∗2 = (d) where d
is the degree of the map f if b = 0, f∗2 = (0) if b > 0, and f∗1 = A where A is

an n1 × n1 integral matrix (see for additional details [10, 13℄).

We reall that the homologial groups of Ng,b with oe�ients in Q, i.e.

Hk(Ng,b,Q) = Q⊕ nk. . . ⊕Q,

where n0 = 1, n1 = g + b − 1 and n2 = 0; and the indued linear maps are

f∗0 = (1) and f∗1 = A where A is an n1 × n1 integral matrix (see again for

additional details [10, 13℄).

Let f : X → X be a ontinuous map and let X be either Mg,b or Ng,b. Then

the Lefshetz number of f is de�ned by

L(f) = trace(f∗0)− trace(f∗1) + trace(f∗2).

We shall use the Lefshetz numbers of the iterates of f , i.e. L(fn). In order

to study the whole sequene {L(fn)}n≥1 it is de�ned the formal Lefshetz zeta

funtion of f as

Zf (t) = exp

(

∞
∑

n=1

L(fn)

n
tn

)

.

The Lefshetz zeta funtion is in fat a generating funtion for the sequene of

the Lefshetz numbers L(fn).

From the work of Franks in [6℄ we have for a ontinuous self�map of a losed

surfae that its Lefshetz zeta funtion is the rational funtion

(1) Zf (t) =
det(I − tf∗1)

det(I − tf∗0)det(I − tf∗2)
,
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where in I−tf∗k the I denotes the nk×nk identity matrix, and det(I−tf∗2) = 1
if f∗2 = (0). Then for a ontinuous map f : Mg,b → Mg,b we have

Zf (t) =















det(I − tA)

(1− t)(1− dt)
if b = 0,

det(I − tA)

1− t
if b > 0,

and for a ontinuous map f : Ng,b → Ng,b we have

Zf (t) =
det(I − tA)

1− t
.

3. Basi results

In this setion we present the main result stated in Theorem 7 for proving

Theorems 1, 2 and 3. Sine its proof is short and important for this work we

provide it here.

For a polynomial H(t) we de�ne H∗(t) by

H(t) = (1− t)α(1 + t)βtγH∗(t),

where α, β and γ are non-negative integers suh that 1− t, 1 + t and t do not

divide H∗(t).

The spetral radii of the maps f∗k are denoted sp(f∗k), and they are equal to

the largest modulus of all the eigenvalues of the linear map f∗k. The spetral

radius of f∗ is

sp(f∗) = max
k=0,...,m

sp(f∗k).

The next result is due to Manning [9℄.

Theorem 4. Let f : X → X be a ontinuous map on a losed surfae X. Then

logmax{1, sp(f∗1)} ≤ h(f).

Lemma 5. Let f : X → X be a ontinuous map and let X be a losed surfae.

If the topologial entropy of f is zero, then all the eigenvalues of the indued

homomorphism f∗1 are zero or root of unity.

Proof. Sine the topologial entropy is zero, by Theorem 4 we have sp(f∗1) = 1.
So, all the eigenvalues of f∗1 have modulus in the interval [0, 1] and at least

one of them is 1. Then the harateristi polynomial of f∗1 is of the form

tmp(t), where m is a non�negative integer, positive if the zero is an eigenvalue.

And p(t) is a polynomial with integer oe�ients and whose independent term

a0 is non�zero. Sine the produt of all non-zeros eigenvalues of f∗1 is the

integer a0 and, these eigenvalues have modulus in (0, 1], we have that any

of these eigenvalues an have modulus smaller than one, otherwise we are

in ontradition with the fat a0 is an integer. In short, all the non�zero

eigenvalues have modulus one, and onsequently a0 = 1.
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Sine if a polynomial has integer oe�ients, onstant term 1 and all of

whose roots have modulus 1, then all of its roots are roots of unity, see [14℄,

the lemma follows. �

The n�th ylotomi polynomial is de�ned by

cn(t) =
∏

k

(wk − t),

being wk = e2πik/n a primitive n�th root of unity and where k runs over all

the relative primes ≤ n. See [8℄ for the properties of these polynomials.

For a positive integer n the Euler funtion is ϕ(n) = n
∏

p|n,p prime

(

1−
1

p

)

.

It is known that the degree of the polynomial cn(t) is ϕ(n). Note that ϕ(n) is
even for n > 2.

A proof of the next result an be found in [8℄.

Proposition 6. Let ξ be a primitive n�th root of the unity and P (t) a poly-

nomial with rational oe�ients. If P (ξ) = 0 then cn(t)|P (t).

The proofs of our results are strongly based in the next theorem.

Theorem 7 (Theorem 3.2 of [5℄). Let X be a losed surfae, f : X → X be a

ontinuous self�map, and let Zf (t) = P (t)/Q(t) be its Lefshetz zeta funtion.

If P ∗(t) or Q∗(t) has odd degree, then the topologial entropy of f is positive.

Proof. From the de�nitions of a polynomial H∗
and of the Lefshetz zeta fun-

tion we have

Zf (t) =
P (t)

Q(t)
= (1− t)a(1 + t)btc

P ∗(t)

Q∗(t)
,

where a, b and c are integers.

Assume now that the topologial entropy h(f) = 0. Then by Lemma 5

all the eigenvalues of the indued homomorphisms f∗1's are zero or roots of

unity. Therefore, by (1) all the roots of the polynomials P ∗(t) and Q∗(t) are
roots of the unity di�erent from ±1 and zero. Hene, by Proposition 6 the

polynomials P ∗(t) and Q∗(t) are produt of ylotomi polynomials di�erent

from c1(t) = 1− t and c2(t) = 1 + t. Consequently P ∗(t) and Q∗(t) have even
degree beause all the ylotomi polynomials whih appear in them have even

degree due to the fat that the Euler funtion ϕ(n) for n > 2 only takes even

values. But this is a ontradition with the assumption that P ∗(t) or Q∗(t)
has odd degree. �
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4. Proof of Theorems 1, 2 and 3

Proof of Theorem 1. SineMg is an orientable onneted ompat surfae with-

out boundary of genus g, then the Lefshetz zeta funtion of f is equal to

Zf (t) =
det(I − tA)

(1− t)(1− dt)
,

where d is the degree of f and 2g is the dimension of the harateristi polyno-

mial det(I−tA) of f∗1 = A. Note here that if d /∈ {−1, 0, 1}, thenQ∗(t) = 1−dt
and therefore by Theorem 7 statement (a) of Theorem 1 is proved.

Assume now that d ∈ {−1, 0, 1}. Note that in this ase Q(t) = (1−t)(1−dt)
and Q∗(t) = 1. So, by Theorem 7 the main role will be play by the 2g degree

polynomial P (t) = det(I−tA) where f∗1 = A. Sine 2g is even and the number

of roots of the harateristi polynomial of f∗1 equal to ±1 or 0 taking into

aount their multipliities is not even, then P ∗(t) has odd degree. Therefore,

statement (b) of Theorem 1 follows by the appliation of Theorem 7.

�

Proof of Theorem 2. Note now, sine Mg,b is an orientable onneted ompat

surfae with boundary (b > 0) of genus g, then the Lefshetz zeta funtion of

f is equal to

Zf (t) =
det(I − tA)

1− t

being 2g + b − 1 the degree of the harateristi polynomial det(I − tA) of

f∗1 = A. Now the proof is similar to the statements (b) and () of Theorem

1. �

Proof of Theorem 3. For a non�orientable onneted ompat surfae with or

without boundary (b ≥ 0) of genus g ≥ 1, the Lefshetz zeta funtion of f is

equal to

Zf (t) =
det(I − tA)

1− t

being g + b − 1 the degree of the harateristi polynomial det(I − tA) of

f∗1 = A. Then the proof if this theorems follows in a similar way to the proof

of statements (b) and () of Theorem 1. �
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