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Abstract. In this work, we are interested in isolated crossing periodic orbits in
planar piecewise polynomial vector fields defined in two zones separated by a straight
line. In particular, in the number of limit cycles of small amplitude. They are all
nested and surrounding one equilibrium point or a sliding segment. We provide lower
bounds for the local cyclicity for planar piecewise polynomial systems, M c

p(n), with
degrees 2, 3, 4, and 5. More concretely, M c

p(2) ≥ 13, M c
p(3) ≥ 26, M c

p(4) ≥ 40, and
M c

p(5) ≥ 58. The computations use parallelization algorithms.

1. Introduction

The study of piecewise or nonsmooth differential systems was started by the school
of Andronov, see for example [3]. Many problems of engineering can be modeled by
this class of systems, see [1]. Recently, they also appear modeling different situations
in physics and biology, see [5]. One of the most studied situations in the plane is
given by two vector fields defined in two half-planes separated by a straight line. As
in the case of the classical qualitative theory of polynomial systems, the study of the
number and location of the isolated periodic orbits, also called limit cycles, have received
special attention. See for example [7, 14, 20, 25, 28, 31]. In particular, it can be seen
as an extension of the 16th-Hilbert problem for planar piecewise polynomial vector
fields. Ilyashenko, in [27], presented an updated summary of the status of this problem,
proposed by Hilbert more than one hundred years ago.

In this work, our main interest is the study of the number of limit cycles bifurcating
from the origin in the class of piecewise polynomial differential equations defined in two
zones separated by a straight line. In particular, the ones that write as{

(ẋ, ẏ) = (P+(x, y, λ+), Q+(x, y, λ+)), when y ≥ 0,

(ẋ, ẏ) = (P−(x, y, λ−), Q−(x, y, λ−)), when y < 0,
(1)

where P±(x, y, λ±) and Q±(x, y, λ±) are real polynomials of degree n in (x, y) and all the

coefficients of their monomials define the parameter vector λ = (λ+, λ−) ∈ R2n2+6n+4.
The straight line Σ = {y = 0} divides the plane in two half-planes Σ± = {(x, y) : ±y >
0} and the trajectories on Σ are defined following the Filippov convention, see [16]. The
so-called crossing limit cycles are the ones that, when they pass through the separation
line Σ, both vector fields point out in the same direction.

For polynomial vector fields of degree n, as usual, we denote by M(n) the maximum
number of limit cycles bifurcating from a monodromic singular point and by H(n)
the maximum number of limit cycles. For piecewise polynomial vector fields, also of
degree n, we denote respectively both numbers by M c

p(n) and Hc
p(n). The upper index c

means crossing limit cycles. Clearly, M(n) ≤ H(n) and M c
p(n) ≤ Hc

p(n). Clearly, linear
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systems have no limit cycles, then H(1) = M(1) = 0. While they appear in piecewise
linear differential systems. For the class of piecewise linear differential systems defined
in two zones separated by a straight line, Huan and Yang in 2012 ([26]) were the first
showing the numerical evidence that Hc

p(1) ≥ 3 The first analytic proof appeared the
same year in [31]. In 2013, using the averaging technique of high order, this lower bound
was reobtained in [7]. The same number was confirmed by Freire et al in 2014 ([18]),
where a detailed study of the way that the crossing limit cycles appear is done using
the full return map. More concretely, two appear near the origin and the other one far
from it. But the three limit cycles appear nested and surrounding one sliding segment.
In fact, the two limit cycles of small amplitude appearing from an equilibrium point
provide the lower bound M c

p(1) ≥ 2. This value can be proved with the results in [17]
and we will also show it in the next section.

The first proof of the existence of four limit cycles in quadratic vector fields was
done in 1980 ([36]). Then H(2) ≥ 4. But only 3 can bifurcate from the origin, that
is, M(2) = 3. This fact was proved by Bautin in 1954 ([4]). For piecewise quadratic
systems it is not proved yet which will be that local maximum number. Moreover,
there are few works providing good lower bounds. Using averaging theory of order
five, and perturbing the linear center, Llibre and Tang in [32] proved that Hc

p(2) ≥ 8.
Recently, da Cruz and et al. in [15] provide a better lower bound, Hc

p(2) ≥ 16. These
limit cycles appear using also averaging method up to order 2 and perturbing some
quadratic isochronous systems. The new lower bound is higher than what it can be
expected a priori. Its value is more than the double (because we have two vector fields)
of the maximal value aforementioned for quadratic vector fields.

In cubic and quartic systems, up to our knowledge, the best known lower bound for
the number of limit cycles is H(3) ≥ 13 and H(4) ≥ 28, see [29] and [33], respectively.
But for the local cyclicity, the best results, M(3) ≥ 12 and M(4) ≥ 21, are given in [21].
In piecewise polynomial vector fields there are no so many results studyingHc

p(3) nor the
local cyclicity problem M c

p(3). In the very recent works [22, 24] the reader can find the
best-known values for these numbers. In the first, it is proved thatHc

p(3) ≥M c
p(3) ≥ 24.

Previously, in the second, studying the phenomenon of simultaneous bifurcation, it was
shown that there are 18 limit cycles in a configuration of two nests of 9 each.

The main result of this paper deals with new lower bounds for the local cyclicity of
piecewise polynomial vector fields of degrees three, four, and five.

Theorem 1.1. The local cyclicity for piecewise polynomial vector fields of degrees n =
3, 4, and 5 is M c

p(3) ≥ 26, M c
p(4) ≥ 40, and M c

p(5) ≥ 58, respectively.

In particular, Hc
p(3) ≥ M c

p(3) ≥ 26, Hp(4) ≥ M c
p(4) ≥ 40 and Hp(5) ≥ M c

p(5) ≥ 58.
But, of course, these are not so relevant because using the known values for H(3) ≥
13 and H(4) ≥ 28, we can provide directly better lower bounds: Hp(3) ≥ 26 and
Hp(4) ≥ 56. Because, as our piecewise polynomial vector fields are constructed from 2
polynomial vector fields the most direct lower bound for Hp(n) is, at least, the double
than the best known value for H(n).

Moreover, we also provide a quadratic system exhibiting at least 13 limit cycles of
small amplitude. Furthermore, the limit cycles are all of crossing type and in only one
nest, surrounding the same equilibrium point. In this paper, we study the limit cycles
of small amplitude bifurcating from an equilibrium point of center-focus type. This
bifurcation mechanism is known as degenerate Hopf bifurcation and is based on the
precise study of the return map defined in a cross section containing the origin. More
concretely, computing the first coefficients of the Taylor series of the return map at the
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origin. These coefficients allow us to define the (generalized) Lyapunov constants. We
provide the explicit definition of them in the next section. The key point is the study
of polynomial perturbations of centers using high-order Taylor series of the Lyapunov
constants with respect to the perturbation parameters. This is based on the Implicit
Function Theorem as was firstly used by Chicone and Jacobs in [9] for a similar prob-
lem but only with a first-order analysis. Our work is the piecewise extension of the
one done by Christopher in [11] and it can be considered as the continuation of [22],
where only a first-order study was presented for a piecewise cubic system, proving that
M c

p(3) ≥ 24. However, as the computations are quite hard, we have implemented the
same parallelization mechanism introduced in [23, 30].

The paper is structured as follows. In Section 2 we present how the Lyapunov con-
stants can be computed and how to use them to study degenerate Hopf and pseudo-Hopf
bifurcations. In particular, we prove the existence of generic unfolding of 2n + 1 limit
cycles of small amplitude bifurcating from a weak-focus of such order. We detail also the
differences in the order between a weak-focus of analytic and piecewise analytic vector
fields. Section 3 is devoted to show how the proposed technique works to find good lower
bounds for the local cyclicity in quadratic, cubic, quartic, and quintic piecewise poly-
nomial vector fields. From them we get our main result. We perturb quadratic, cubic,
quartic, and quintic centers with piecewise polynomial systems, of the corresponding
degrees 2, 3, 4, and 5, defined in two zones separated by a straight line. We finish this
work, in Section 4, detailing the computational difficulties to get further in the study of
number of limit cycles of small amplitude in higher degree piecewise polynomial vector
fields.

2. Degenerated Hopf bifurcations in piecewise vector fields

Let us introduce the concepts of crossing and sliding segments which are necessary
for the study of the dynamic of a piecewise differential system. The existence of an
sliding segment is used in this work only to provide one extra limit cycle. Mainly, we
will use perturbations that maintain the (isolated) equilibrium point on the separation
line. Let be a planar differential system defined as

Z(x, y) =

{
Z+(x, y), when f(x, y) ≥ 0,

Z−(x, y), when f(x, y) < 0,
(2)

with f : R2 → R a C1 function such that 0 is a regular value. The discontinuity curve
is given by Σ = f−1(0), and Z± = (X±, Y ±). Following the notation introduced by
Filippov in [16], in Σ when both vector fields meet, we can have on Σ three different
behaviors, that are of crossing, escaping and sliding type. We will denote the respective
segments by ΣC , ΣE and ΣS. Given a point p ∈ Σ, we say that p ∈ ΣC if, and
only if Z+f(p) · Z−f(p) > 0 where Z±f(p) = 〈∇f(p), Z±(p)〉. Consequently, we have
p ∈ ΣE

⋃
ΣS if, only if Z+f(p) ·Z−f(p) < 0. Figure 1 illustrates how is the vector field

near these three regions when f(x, y) = y.

Figure 1. Crossing, escaping, and sliding segments



4 LUIZ F. S. GOUVEIA AND J. TORREGROSA

As in this work we are interested in piecewise differential systems of type (1), we will
consider only piecewise analytic vector fields (2) with f(x, y) = y. That is, the ones
defined by

Z(x, y) =

{
Z+(x, y), when y ≥ 0,

Z−(x, y), when y < 0,
(3)

being Z± analytic vector fields.
Now, we detail the algorithm that we have implemented to compute the coefficients of

the return map, Π(ρ), near the origin, when it is of monodromic type, in a planar piece-
wise vector field. As, from (3), we have two vector fields, we will have two half-return
maps, Π±(ρ), and the global one can be defined by composition, Π(ρ) = Π−(Π+(ρ)),
and equivalently, the periodic orbits can be obtained from the zeros of the displacement
map, Π(ρ)− ρ. But, for simplicity, instead of this map we will compute the equivalent
one ∆(ρ) = (Π−)−1(ρ)− Π+(ρ). Here, the coefficients of the Taylor series of the differ-
ence map ∆ at the origin are also called Lyapunov constants for piecewise polynomial
vector fields. See Figure 2.

ρ

Π+(ρ) Π−(Π+(ρ)) Π+(ρ)

(Π−)−1(ρ) ρ

Figure 2. Crossing, escaping, and sliding segments

As in this work we are dealing with polynomial vector fields having nondegenerate
centers and the polynomial perturbations will be different on y > 0 and on y < 0, we
write our system (1), or the vector field (3), as{

ẋ = −y + P±(x, y, λ±),
ẏ = x+Q±(x, y, λ±),

(4)

being P±, Q± polynomials without constant or linear terms. That is, we restrict our
analysis to the case that, for every λ±, the trace of the Jacobian matrix of (4) at the
origin is zero and there are no sliding or scaping segments. Writing (4) in the usual
polar coordinates we have

dr

dθ
=
∞∑
i=2

R+
i (θ, λ+)ri, θ ∈ [0, π],

dr

dθ
=
∞∑
i=2

R−i (θ, λ−)ri, θ ∈ [π, 2π],

(5)

where R±i (θ, λ±) are trigonometrical polynomials in θ. In a neighborhood of the origin,
the Taylor series of the solution r±(θ, ρ) of (5), such that r±(0, ρ) = ρ, can be written
as

r±(θ, ρ, λ±) = ρ+
∞∑
i=2

r±i (θ, λ±)ρi, (6)
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with r±i (0) = 0 for i ≥ 2. As our piecewise systems are defined separated by the straight
line {y = 0}, the half-return maps close to the origin are given by

Π+(ρ) = ρ+
∞∑
i=2

r+
i (π, λ+)ρi,

(Π−)−1(ρ) = ρ+
∞∑
i=2

r−i (−π, λ−)ρi.

Therefore, as we have mentioned above, the Taylor series at ρ = 0 of the difference map
can be written as

∆(ρ) = (Π−)−1(ρ)− Π+(ρ) =
∞∑
i=2

(
r−i (−π, λ− − r+

i (π, λ+))
)
ρi =

∞∑
i=2

Liρ
i. (7)

As the systems (4) are analytic, the half-return maps Π± and consequently the return
map Π and the difference ∆ as well.

The coefficients Li in (7) are known as the generalized Lyapunov constants associated
to system (4). Consequently, the first nonvanishing Lk provides the stability of the origin
and we will say that the origin is a generalized weak-focus of order k and so ∆(ρ) =
Lkρ

k + O(ρk+1) in the piecewise context. For simplicity, when the piecewise context
perturbation is clear, we will avoid the word “generalized”. The above procedure follows
closely the classical Lyapunov algorithm described, for example, in [2] for analytic vector
fields. For them, we only have one differential equation and so r+

i = r−i , λ
+ = λ− = λ,

and the first nonvanishing coefficient has always an odd subscript. Therefore, the
difference map in the analytic context is ∆(ρ) = Lkρ2k+1 + O(ρ2k+2) and we say that
the origin is a weak-focus of order k. This property among others are proved in [2].
We recall that these constants appear solving the analytic center-focus problem for
nondegenerate centers. In [12] is shown that the Lyapunov constants Lk, after dividing
by π, are polynomials in the parameters λ with rational coefficients. Clearly, they are
defined when the previous vanish. The former property is also valid in the piecewise
context, but for the latter, it is a little different. The constants are polynomials in π
with rational coefficients. We emphasize that the main difference in the Taylor series
(7) between the analytic study versus the piecewise one is the fact that in the first, the
Lyapunov constants with even indices are zero while in the second not. This difference
will be shown in the examples of next sections.

In the classical Hopf bifurcation for analytic vector fields only one limit cycle bi-
furcates from a weak-focus of order 1 located at the origin, see [2]. In this case, the
trace of the Jacobian matrix of the vector field at the equilibrium point is zero, the
determinant is positive, and the Taylor development of the displacement map writes as
∆(ρ) = L1ρ

3 +O(ρ4). The limit cycle bifurcates from the origin adding a new parameter
that changes the stability of the equilibrium point. This can be done with a parame-
ter that controls the trace of such Jacobian matrix because in the Taylor series of the
displacement map, the coefficient in ρ appears. The next result, stated and proved in
[22], is the generalization of this property to piecewise analytic vector fields, where two
crossing limit cycles of small amplitude bifurcate from the origin. We have also added
here its proof by completeness. It follows from the study of the return map near the
origin in a similar way as the procedure described in [17]. In this case, the displacement
map writes as ∆(ρ) = L1ρ

2 + O(ρ3) and the two extra crossing limit cycles appear
when two new essential parameters are added. One is again the trace parameter and
another is the constant term. By convenience, the first is added in the upper differential
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system while the second in the lower one. As it can be seen in the proof, with these
new essential parameters, we can control the coefficient of ρ and the constant term of
the displacement map of the perturbed piecewise differential system.

Proposition 2.1 ([22]). Consider the perturbed system
ẋ = −(1 + c2)y +

∞∑
k+`=2

a+
k`x

ky`,

ẏ = x+ 2cy +
∞∑

k+`=2

b+
k`x

ky`,


ẋ = −y +

∞∑
k+`=2

a−k`x
ky`,

ẏ = d+ x+
∞∑

k+`=2

b−k`x
ky`,

(8)

for y ≥ 0 and y < 0, respectively. If a+
11 + 2b+

02 + b+
20 6= a−11 + 2b−02 + b−20 then there exist

c and d small enough such that two crossing limit cycles of small amplitude bifurcate
from the origin.

Proof. When c = d = 0 the piecewise differential equation in the statement write as (4)
with λ± = (a±20, . . . , b

±
20, . . .). Writing it in polar coordinates in the form (5), we can get

the first term in the sum of (6) as

r±2 (θ, λ±) =
1

3

(
−(a11 − b02 + b20) cos3 θ − (a02 − a20 + b11) sin θ cos2 θ

− b02 cos θ + (a02 + 2 a20 + b11) sin θ + a11 + 2b02 + b20

)
.

Hence, evaluating at ±π we get r±2 (±π, λ±) = 2(a±11 + 2b±02 + b±20)/3 and, consequently,
the first term of the difference map (7) is

L2 = −2

3

(
(a+

11 + 2b+
02 + b+

20)− (a−11 + 2b−02 + b−20)
)
.

Therefore, from the condition in the statement, the origin is stable or unstable because
the above coefficient is nonvanishing. So, for c, d small enough, computing the return
map similarly as in the proof of Proposition 7.3 of [17] we can write, for ρ 6= 0,

∆(ρ) = ∆0(c, d) + ∆1(c, d)ρ+ ∆2(c, d)ρ2 +O(ρ3),

where ∆0(c, d) = 2d, ∆1(c, 0) = 1 − eπc, and ∆2(0, 0) = L2. As c and d are arbitrary
parameters, two crossing limit cycles of small amplitude bifurcate from the origin. �

In the above result, when there is no sliding segment (d = 0 and ∆0 = 0), a unique
crossing limit cycle of small amplitude bifurcates (for c small enough) from the origin
when ∆1 and ∆2 have opposite sign. This bifurcation is described in [13] where the
return map of a focus-focus point is studied without the existence of a sliding segment.
This bifurcation phenomenon is exactly the same as the classical Hopf bifurcation (see
for example [2]) in the nonpiecewise scenario because, after the perturbation due to the
parameter c, inside the limit cycle of small amplitude there is only a unique equilibrium
point. After this bifurcation and due to the parameter d, a second limit cycle of small
amplitude can bifurcate from the equilibrium point. If this is the case, inside the
limit cycle of small amplitude, there is only a sliding segment. This second bifurcation
mechanism has recently called pseudo-Hopf bifurcation, see more details in [8, 15]. It
was previously presented in [17, 18] but without using this name. Although the proof
published in [18] was for piecewise linear differential equations, it can be used also for
the general case because it does not depend on the higher degree terms of the piecewise
perturbation.

The described notation for the Lyapunov constants was introduced in [11] in the
analytic scenario, where the first nonvanishing coefficient in the return map is labeled
as L1 and the trace of the Jacobian matrix is named as L0 to have a unified notation.
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In the piecewise scenario we have also used this unified notation: The first nonvanishing
Lyapunov constant is labeled with a subindex 2, that is L2, and it is only defined when
there are no constant terms (∆0 = 0) and the linear part has zero trace and positive
determinant (∆1 = 0). As in [11], if necessary and making abuse of notation, we also
denote the first two terms of the displacement map of the piecewise perturbed system
as L0 and L1.

The main advantage of the above notations and definitions is that the subscript of
the first nonvanishing Lyapunov constant determines not only the weak-focus order,
it also provides the maximal number of limit cycles of small amplitude that bifurcate
from an equilibrium point of monodromic type with finite order. Hence, we can easily
present what is called the degenerate Hopf bifurcation, that describes the birth of k
limit cycles of small amplitude from a weak-focus of order k. This result is well-known
for analytic vector fields, see [2, 35], and we will extend it to piecewise perturbations
in Theorem 2.4 and Corollary 2.6. We notice that although the results seem the same,
because in both cases k limit cycles will bifurcate, the definitions of weak-focus order
are not. From an analytic weak-focus of order k bifurcates k limit cycles with (generic)
analytic perturbations while 2k + 1 when the (generic) perturbations are piecewise
analytic of type (4). Because the weak-focus order of an analytic differential system
depends on which scenario is considered.

In qualitative theory of differential equations a very interesting and difficult problem
is the study of the maximal number of limit cycles of small amplitude bifurcating from
centers. The so-called cyclicity of a center. In this work we are mainly interested in
this problem but for nondegenerate centers and using piecewise perturbations. Due to
the difficulty to find upper bounds for this number, we will present here new results
to provide lower bounds of it. More concretely, to find upper bounds of the number
of limit cycles of small amplitude bifurcating from the center itself, the so-called local
cyclicity. We will consider only piecewise families of type (4) with perturbations of the
form {

ẋ = −y + Pc(x, y) + P±(x, y, λ±),
ẏ = x+Qc(x, y) +Q±(x, y, λ±),

(9)

being Pc, Qc, P
±, Q± polynomials without constant or linear terms such that when the

perturbation parameters λ = (λ+, λ−) vanish, the system has a center at the origin. So
P±(x, y, 0) = Q±(x, y, 0) ≡ 0 and the polynomial system (ẋ, ẏ) = (−y + Pc(x, y), x +
Qc(x, y) is a nonpiecewise polynomial nondegenerate center. Clearly, the Lyapunov
constants Lk of system (9) depend polynomially on λ and vanish at λ = 0. Therefore,

denoting by L
(`)
k (λ) the Taylor development of Lk up to order ` at λ = 0, we have that

also L
(`)
k (0) = 0 for every positive integer `.

Before presenting the general results of this section, we will show a simple example of
how acts the degenerate Hopf bifurcation perturbing a quadratic center with a specific
piecewise quadratic vector field. Moreover, it will be an illustration of how are the
usual computations appearing in the other results that we will not show because of
the size of the expressions. In Proposition 2.2 we will explain the main mechanism
to get a weak-focus of high-order at the origin and how the complete unfolding of
limit cycles of small amplitude is obtained. We notice that when the perturbation is
polynomial the unfolding may not be complete while it is for analytic perturbations. As
the Lyapunov constants can be very difficult to manage for providing such unfoldings,

we will show in Proposition 2.3 how the Taylor developments L
(`)
k (λ) of the Lyapunov

constants near fixed centers can be used to study lower bounds for the local cyclicity.
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We will see that the number of limit cycles bifurcating from the origin, in family (10),
is less when the parameters are big (Proposition 2.2) than when they are small enough
(Proposition 2.3). This is the mechanism recovered by Christopher in [11] but originally
developed by Chicone and Jacobs in [10].

Proposition 2.2. Consider the piecewise quadratic perturbed system{
ẋ = −y − c2y + x2 − y2 + a1x

2 + a2xy,
ẏ = x+ 2cy + 2xy,

for y ≥ 0,{
ẋ = −y + x2 − y2 + a3xy,
ẏ = d+ x+ 2xy + a4x

2,
for y ≤ 0.

(10)

Then, there exist parameters a1, a2, a3, a4, c, and d such that 6 crossing limit cycles of
small amplitude bifurcate from the origin. Moreover, when d = 0 the origin is a center
if and only if c = a2 = a3 = a4 = 0 or c = a1 = a2 − a3 = a4 = 0.

Proof. We start restricting our analysis to the case c = d = 0. After computing and
studying the displacement map we will characterize the center families. Then we will
prove that there exists a∗ = (a∗1, a

∗
2, a
∗
3, a
∗
4) such that the origin is a weak-focus of order

6 for which a generic unfolding inside (10) provides 4 limit cycles. The other 2 limit
cycles are provided by Proposition 2.1 choosing adequately small enough values for c
and d.

System (10), fixing c = d = 0, can be written in polar coordinates as (5) with

R+
2 (θ) =

1

4
((3a1 + 4) cos θ + a2 sin θ + a1 cos 3θ + a2 sin 3θ) ,

R+
3 (θ) =

1

32

(
4a1a2 + 2a1a2 cos 2θ + (5a2

1 + 3a2
2 − 16) sin 2θ

− 4a1a2 cos 4θ + 4a2
1 sin 4θ − 2a1a2 cos 6θ + (a2

1 − a2
2) sin 6θ

)
,

R−2 (θ) =
1

4
(4 cos θ + (a3 + a4) sin θ + (a3 + a4) sin 3θ) ,

R−3 (θ) =
1

32

(
−16a4 − 16a4 cos 2θ + (3a2

3 − 2a3a4 − 5a2
4 − 16) sin 2θ

− 4a4(a3 + a4) sin 4θ − (a2
3 + 2a3a4 + a2

4) sin 6θ
)
.

The next functions Ri are not written here because of their size. Straightforward
computations show that the first coefficients in ρ of the solution (6) are

r+
2 (θ) =

1

12

(
4a2 − 3a2 cos θ + 3(3a1 + 4) sin θ − a2 cos 3θ + a1 sin 3θ

)
,

r+
3 (θ) =

1

576

(
72a1a2θ + 230a2

1 + 108a2
2 + 432a1 + 144 +−96a2

2 cos θ

+ 96(3a1 + 4)a2 sin θ − 3(57a2
1 − a2

2 + 128a1 + 48) cos 2θ

− 6(11a1 + 16)a2 sin 2θ − 32a2
2 cos 3θ + 32a1a2 sin 3θ

− 6(9a2
1 − 2a2

2 + 8a1) cos 4θ − 6(11a1 + 8)a2 sin 4θ

− 5(a2
1 − a2

2) cos 6θ − 10a1a2 sin 6θ
)
,

r−2 (θ) =
1

12

(
4(a3 + a4)− 3(a3 + a4) cos θ + 12 sin θ − (a3 + a4) cos 3θ

)
,

r−3 (θ) =
1

576

(
−288a4θ + 108a2

3 + 126a3a4 + 18a2
4 + 144− 96(a3 + a4)2 cos θ

+ 384(a3 + a4) sin θ + 3(a2
3 + 26a3a4 + 25a2

4 − 48) cos 2θ
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− 48(2a3 + 5a4) sin 2θ − 32(a3 + a4)2 cos 3θ + 6(2a2
3 + 7a3a4 + 5a2

4) cos 4θ

− 48(a3 + a4) sin 4θ + 5(a3 + a4)2 cos 6θ
)
.

Again, because of the size of them, the next functions ri are not explicitly written
here. The next step is its evaluation, respectively at ±π, and use the definition (7) to
calculate the first Lyapunov constants. Which can be written as

L2 = −2(a2 − a3 − a4)/3,

L3 = −π(a1a2 − 4a2 + 4a3)/8,

L4 = −(14a2
1a2 − 12a3

2 + 30a2
2a3 − 18a2a

2
3 − 30a2 + 30a3)/45,

L5 = −π(a3 − a2)(422a2
2 + 25a2a3 − 840a2

3 + 2161)/9408,

L6 = −(4320a5
2 − 42180a4

2a3 + 108168a3
2a

2
3 − 111780a2

2a
3
3

+ 41472a2a
4
3 − 139510a2

1a3 − 30704a3
2 + 103396a2

2a3

− 119702a2a
2
3 + 47010a3

3 + 129480a2 − 129480a3)/4862025.

(11)

Here we have used that each one is defined when the previous vanish.

Solving the system of algebraic equations {L2 = L3 = L4 = L5 = L6 = 0} we get only
the two families of centers in the statement. The first is a center because up and down
differential systems are invariant with respect to the change (x, y, t) → (−x, y,−t).
More concretely, the solutions and the respective half-return maps are symmetric with
respect to x = 0. For the second family, (10) is a nonpiecewise system because up and
down ones coincide, we have a Lotka-Volterra center. See the quadratic classification
of centers in [38]. Therefore, the center characterization is finished.

The weak-foci of order 6 are obtained solving {L2 = L3 = L4 = L5 = 0} and
removing the two families of centers previously studied. Straightforward computations
show that, in the restricted 4-parameter space, for each simple zero α of ϕ1(β) =
27β6 +1344β4−34158β2 +138304, we have that L2(a∗) = L3(a∗) = L4(a∗) = L5(a∗) = 0
and L6(a∗) = −αϕ2(α)/18234720000 6= 0. Being a∗ = (a∗1, a

∗
2, a
∗
3, a
∗
4),

a∗1 = (27α4 + 1680α2 − 9678)/3384216,

a∗2 = α,

a∗3 = −α(27α4 + 1680α2 − 20398)/10720,

a∗4 = 3α(9α4 + 560α2 − 3226)/10720.

and ϕ2(β) = 4291351539β4+277259653344β2−1572537916894. The condition L6(a∗) 6=
0 follows easily because the polynomials ϕ1 and ϕ2 have no common roots and α 6= 0.
In fact, the resultant of ϕ1 and ϕ2 with respect to β is a nonzero rational number.
The complete unfolding, and so the existence of four limit cycles of small ampli-
tude, is guaranteed by the Implicit Function Theorem. In particular, the determi-
nant of the Jacobian matrix of (L2, L3, L4, L5) with respect to (a1, a2, a3, a4) at a∗ is
αϕ3(α)π2/2500761600 6= 0 where ϕ3(β) = 32113869β4 + 2044570656β2 − 11609103778.
The nonvanishing condition follows because the polynomials ϕ1 and ϕ3 also have no
common roots and α 6= 0. In fact the polynomial ϕ1 has exactly 4 simple real roots.
Approximately they are ±2.2903752145 and ±3.7579140809. �

Proposition 2.3. Consider the piecewise quadratic perturbed system (10). Then, the
local cyclicity, considering λ = (a1, a2, a3, a4, c, d) small enough parameters, is at least
4 using Taylor series up to order 20 with respect to λ at λ = 0.
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Proof. As the previous proof, we will prove only that 2 limit cycles bifurcate from the
origin under the restriction c = d = 0. Finally, applying Proposition 2.1, the statement
follows.

From the proof of Proposition 2.2 the Lyapunov constants of system (10) are written
as (11) and their first-order developments are

L
(1)
2 = −2(a2 − a3 − a4)/3, L

(1)
5 = 2161π(a2 − a3)/9408,

L
(1)
3 = π(a2 − a3)/2, L

(1)
6 = 8632(a2 − a3)/15435.

L
(1)
4 = 2(a2 − a3)/3,

We remark that only the first two are linearly independent. Hence, up to first-order

development and with an adequate change of parameters, we can write L
(1)
2 = u2 and

L
(1)
3 = u3 considering that the parameters are now λ = (a1, u2, a3, u3). Clearly, when

L
(1)
2 = L

(1)
3 = 0 we have that also L

(1)
4 = L

(1)
5 = L

(1)
6 = 0. Using the Implicit Function

Theorem, there is a variety (in the parameter space) of weak-foci of order 3 when u2 = 0
and u3 6= 0. Moreover, a limit cycle of small amplitude bifurcates from the origin when
u2, u3 are small enough, 0 < |u2| � |u3|, and u2u3 < 0.

If we consider up to second-order developments we have

L
(2)
2 = −2(a2 − a3 − a4)/3, L

(2)
5 = 2161π(a2 − a3)/9408,

L
(2)
3 = π(a2 − a3)/2− πa1a2/8, L

(2)
6 = 8632(a2 − a3)/15435.

L
(2)
4 = 2(a2 − a3)/3,

In this case, the term a1a2 in L
(2)
3 is the key point to get an extra limit cycle because

higher-order developments provide weak-foci of order 4 but not higher, at least studying
up to Taylor series of order 20 in the perturbation parameters. One way to see this
property, for each 2 ≤ ` ≤ 20, is using the Implicit Function Theorem for writing

(a2, a3, a4) as functions of new parameters (u2, u3, u4) such that L
(`)
2 = u2, L

(`)
3 = u3,

and L
(`)
4 = a1u4. The next step is to check that when u2 = u3 = 0 we have L

(`)
4 = a1u4

and L
(`)
k = a1u4M(a1, u4), for k = 5, . . . , 8, with M(0, 0) 6= 0. These computations

can be done easily with the help of a Computer Algebra System. Consequently, in a
neighborhood of λ = 0, taking u2 = u3 = 0 and a1u4 6= 0, we have a variety of weak-foci
of order 4 passing through the origin of the parameter space that unfolds four limit
cycles of small amplitude because of the independence of u2 and u3 from a1 and u4. In
addition, there are no weak-foci of higher-order because when a1 or u4 is zero we have

also L
(`)
k = 0, for k = 5, . . . , 8. �

An alternative way to do the higher-order study presented in the last proof is the
simplification mechanism described in [23]. Moreover, we have no computed more Lya-
punov constants because, with the center characterization presented in Proposition 2.2,
they are not necessary to be used. In addition, although higher-order study could be
developed, our interest here is not the study of the local cyclicity of such a fixed qua-
dratic system because it has nothing special. It is just a simple example of how the
two approaches work. In fact, the results of the following sections improve this local
cyclicity value for the quadratic polynomial piecewise family.

The following results are the natural extension for piecewise analytic vector fields of
the corresponding to analytic vector fields.
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Theorem 2.4. Consider the class of piecewise analytic systems (3) without sliding
segment and such that both Z± have equilibria at the origin. If Z has a (generalized)
weak-focus of order k at the origin then, the local cyclicity is at most k − 1. Moreover,
there are piecewise analytic perturbations inside the same class (3) without constant
terms, such that k− 1 hyperbolic crossing limit cycles of small amplitude bifurcate from
the origin.

Remark 2.5. As we have commented before, Theorem 2.4 also includes the case when
the unperturbed system is analytic and so k is always an odd number (k = 2`+ 1). We
notice that the piecewise perturbation exhibits k−1 = 2` limit cycles of small amplitude
bifurcating from the origin instead of the analytic one that only bifurcate `. See [35].

Corollary 2.6. Consider the class of piecewise analytic systems (3) and such that both
Z± have equilibria at the origin. If Z has a (generalized) weak-focus of order k at the
origin then, at least k hyperbolic crossing limit cycles of small amplitude bifurcate from
the origin.

The above corollary is a direct consequence of Theorem 2.4 together with the psedo-
Hopf bifurcation provided in Theorem 2.1. Because we allow the existence of an sliding
segment in the perturbed system having also constant terms. So, we only need to
prove the theorem. In fact, the proof follows closely the birth of k limit cycles of small
amplitude bifurcating from a weak-focus point of order k when the unperturbed and
the perturbed vector field are both analytic. This is clearly described in [2, 35]. We
only need to check that the proof can be adapted to our perturbed piecewise analytic
vector fields.

Proof of Theorem 2.4. We take a piecewise analytic vector field Z as in (3) having a
(generalized) weak-focus of order k. Then, it can be written in the form (4) for some fixed
values of the parameters λ = (λ+, λ−). We can assume that λ = 0, doing a translation in
the parameters if necessary. For using the mechanism described at the beginning of this
section we write it in polar coordinates as (5) with λ = 0. For simplicity, we will denote
it by Z̃0, just to indicate that the unperturbed system is written in polar coordinates and
λ = 0. By hypothesis, the difference map (7) can be written as ∆(ρ) = Lkρ

k + · · · , with
Lk 6= 0. Considering a general (analytic) perturbation (3) written in polar coordinates
(5) and denoted by Z̃λ we have that the difference map of the perturbed piecewise
differential system can be written as

∆(ρ, λ) = f1(λ)ρ+ f2(λ)ρ2 + · · ·+ fk−1(λ)ρk−1 + Lkρ
k +O(ρk+1).

Clearly ∆(0, λ) = 0, because we have no sliding segment by hypothesis. We have
also indicated the dependence on the parameters λ. Using the Weierstrass Preparation

Theorem, because ∂k∆
∂kρ

∣∣∣
(0,0)
6= 0, there exist analytic functions f̃k and F such that

∆(ρ, λ) = (f̃1(λ)ρ+ f̃2(λ)ρ2 + · · ·+ f̃k−1(λ)ρk−1 + f̃k(λ)ρk)F (ρ, λ),

where F (0, 0) 6= 0 and f̃k(0) = Lk. Then, clearly, the function ∆ can have at most k−1
nonvanishing zeros as the first statement ensures.

Next, we will prove that there exists a precise perturbation such that k − 1 limit
cycles bifurcate from the origin. Let us consider now λ = (λ1, . . . , λk−1) and a specific
perturbation Z̃λ = Z̃0 + W̃λ being W̃λ the piecewise vector field associated to the
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piecewise differential equation, in polar coordinates,
dr

dθ
= λ1r + λ2r

2 + · · ·+ λk−1r
k−1, θ ∈ [0, π],

dr

dθ
= 0, θ ∈ [π, 2π].

(12)

We observe that the perturbation only affects the system on y > 0. Therefore, for the
unperturbed system, λ = 0, we have ∆(ρ, 0) = Lkρ

k + O(ρk+1) and for the perturbed
system, λ ≈ 0, and using the mechanism described at the beginning of the section only
the half-return map Π+ defined on y > 0 is necessary to be computed. The half-return
map Π−, defined on y < 0, remains unchanged. Finally, we will explain how the values
λj should be chosen.

We start assuming, rescaling time if necessary, that the origin is an attracting equi-
librium point (Lk < 0). So there exists a neighborhood Uk of the origin such that all the
orbits in Uk go, in forward time, to the origin. Next we take λj = 0, for j = 1, . . . , k−2
and λk−1 < 0 small enough. Then, considering a small neighborhood Uk−1 ⊂ Uk, we
can compute the positive half-return map following the previously described mecha-
nism and, as the negative half-return map does not change, the displacement map is
∆(ρ) = −λk−1πρ

k−1 + O(ρk). So, the origin is a repelling equilibrium point and an
stable crossing limit cycle of small amplitude inside Uk−1 bifurcates from the origin as
λk−1 changes from 0 to a negative small value. This phenomenon is qualitatively equal
to a Hopf bifurcation. Repeating this reasoning for every j up to j = 1 and alternating
the signs of λj, we can obtain a new crossing limit cycle of “Hopf type” at each step
j. So the sequence of parameters in (12) must be decreasing in absolute value and
satisfying λjλj+1 < 0. We remark that in this mechanism, the birth of each limit cycle
is controlled by each λj. Then the second part of the statement is proved. �

As we have shown in the proof of Proposition 2.2, computing the first-order terms of
the Lyapunov constants we can use the Implicit Function Theorem to study the bifur-
cation of hyperbolic limit cycles of small amplitude from the origin. Next two results
generalize Theorems 2.1 and 3.1 given by Christopher in [11] to piecewise polynomial
vector fields. Although the proofs of Christopher follow in this piecewise context, an
alternative proof of the second one can be found in [23]. That is, with a direct use of
the Implicit Function Theorem or also using previously a specific blowup. An scheme of
the proof of this second result can be follow in the proofs of some of the results of next
section. Of course, in both cases, we will use at the end again Proposition 2.1. That
is, first studying the hyperbolic limit cycles bifurcating from the origin with c = d = 0
in (8) and then adding 2 extra hyperbolic limit cycles varying these two new essential
parameters.

Theorem 2.7. Consider the perturbed piecewise polynomial differential system of degree
n of the form (9), with Pc, Qc without linear or constant terms and the unperturbed
vector field, (ẋ, ẏ) = (−y+Pc(x, y), x+Qc(x, y)), has a center at the origin. If the first-
order Taylor developments with respect to the perturbation parameters at the origin

of the first k − 1 Lyapunov constants, (L
(1)
2 , . . . , L

(1)
k ), associated to (9) are linearly

independent, then there exist perturbation parameters (a±k`, b
±
k`) such that system

(ẋ, ẏ) =

(
−y + Pc(x, y) +

n∑
k+`=0

a+
k`x

ky`, x+Qc(x, y) +
n∑

k+`=0

b+
k`x

ky

)̀
for y ≥ 0,

(ẋ, ẏ) =

(
−y + Pc(x, y) +

n∑
k+`=0

a−k`x
ky`, x+Qc(x, y) +

n∑
k+`=0

b−k`x
ky

)̀
for y < 0,

(13)
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has at least k crossing limit cycles of small amplitude bifurcating from the origin.

Theorem 2.8. Consider the perturbed system of the form (9) with Pc, Qc without linear
or constant terms and the unperturbed vector field, (ẋ, ẏ) = (−y+Pc(x, y), x+Qc(x, y)),
has a center at the origin such that, after a change of variables in the parameter space
if necessary, the first k − 1 Lyapunov constants vanish (L2 = · · · = Lk = 0) and the
next l Lyapunov constants write as Li = hi(u) + Om+1(u), for i = k + 1, . . . , k + l,
where hi are homogeneous polynomials of degree m ≥ 2 and u = (uk+1, . . . , uk+l) are
the new parameter values. If there exists a line Υ, in the parameter space, such that
hi(Υ) = 0, i = k+1, . . . , k+ l−1, the hypersurfaces hi = 0 intersect transversally along
Υ for i = k + 1, . . . , k + l− 1, and hk+l(Υ) 6= 0, then there are perturbation parameters
(a±k`, b

±
k`) such that system (13) has at least k+ l crossing limit cycles of small amplitude

bifurcating from the origin.

3. Lower bounds for the local cyclicity

In this section, we illustrate how the degenerated Hopf bifurcation explained in the
previous section provides a good mechanism to obtain new lower bounds for the number
of limit cycles of small amplitude bifurcating from a monodromic equilibrium point that,
without loss of generality, we have located at the origin. That is, to get lower bounds
for the local cyclicity M c

p(n). We present the results for low degrees n = 2, 3, and 4.

Proposition 3.1. Consider the perturbed system of the form (13) with n = 2 and
Pc(x, y) = 18x2 + 8xy − 8y2 and Qc(x, y) = 4x2 + 14xy − 4y2. Then, there exist small
enough values of the parameters a±k`, b

±
k` such that at least 13 hyperbolic crossing limit

cycles of small amplitude bifurcate from the origin.

Proof. The origin of the unperturbed system (13) is a Darboux center with the rational
first integral, well defined at the origin,

H(x, y) =
(80x3 − 480x2y + 960xy2 − 640y3 + 120xy − 240y2 − 30y − 1)2

(20x2 − 80xy + 80y2 + 20y + 1)3
.

First we restrict our analysis to the case that the constant and linear perturba-
tion monomials are zero in (13), i.e. a perturbation of type (9). Under this as-
sumption and changing to polar coordinates, the algorithm described at the begin-
ning of Section 2 provides the coefficients Lk of the Taylor series of the displacement
map, (7), with respect to ρ. As we have already mentioned before, the first two co-
efficients in ρ, the corresponding to constant and linear ones, vanish. We will see
in the following that only L2, . . . , L13 are necessary to be computed. Moreover, as
we are perturbing a center, the Taylor developments, with respect to the parameters
λ = (a+

20, a
+
11, a

+
02, b

+
20, b

+
11, b

+
02, a

−
20, a

−
11, a

−
02, b

−
20, b

−
11, b

−
02) ∈ R12, start with linear terms and,

after some straightforward computations, we can write the first seven as

L
(1)
2 =− 2

3
(a+

11 − a−11 + 2(b+
02 − b−02) + b+

20 − b−20),

L
(1)
3 =− 5π

4
(−4a−11 + 6a+

11 − 13b−02 − 10b−20 + 7b+
02),

L
(1)
4 =− 8

15
(100(a+

02 − a−02) + 54(a+
20 − a−20)− 250(b+

02 − b−02)

+ 2(b+
11 − b−11)− 261(b+

20 − b+
20)),

L
(1)
5 =− 125π

6
(110a+

02 − 90a−02 + 60a+
20 − 48a−20 − 250(b+

02 − b−02) (14)
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− 4b−11 − 261(b+
20 − b−20)),

L
(1)
6 =− 32

21
(78120(a+

02 − a−02) + 42540(a+
20 − a−20)− 203043(b+

20 − b−20)

+ 194470(b+
02 − b−02)),

L
(1)
7 =− 625π

2127
(3675a+

02 − 152565a−02 − 85080a−20 − 173200b+
02

+ 215740b−02 − 139233b+
20 + 266853b−20),

L
(1)
8 =− 2560

402003
(1942830(a+

02 − a−02)− 21484712(b+
02 − b−02)

+ 1142229(b+
20 − b−20)).

We do not write here the next six because of their size but they have similar expressions

as the above ones. We point out that L
(1)
2 , . . . , L

(1)
8 are linearly independent with respect

to λ and L
(1)
9 , . . . , L

(1)
13 can be written as linear combinations of L

(1)
2 , . . . , L

(1)
8 .

From Theorem 2.7 we can only ensure the existence of 8 limit cycles of small ampli-
tude using a perturbation of type (13). So, we need to use second-order analysis in the
parameter space for proving the statement using Theorem 2.8. With this aim, we change
some of the old parameters a±k`, b

±
k` by some new ones, namely {u2, u3, . . . , u8}, such that,

after a linear change of variables in the parameter space we can write L
(1)
k = uk, for

k = 2, . . . , 8. To unify notation, we denote by {u9, . . . , u13} the remaining old parameters
a±k`, b

±
k` that were not changed. Naming the parameters by u = (u2, u3, . . . , u13) ∈ R12,

we have that the first Lyapunov constants can be written as Lk = uk + O2(u), for
k = 2, . . . , 8. Where O2(u) denotes all monomials in the components of u with degree
at least 2. In the next step we take a new change of coordinates again in the param-
eter space, which is analytic and introduces new parameters {v2, v3, . . . , v8} instead of
{u2, u3, . . . , u8}, such that, using the Implicit Function Theorem, we get Lk = vk, for
k = 2, . . . , 8. Naming vk = uk for k = 9, . . . , 13, the perturbation parameters are now
v = (v2, . . . , v13) ∈ R12. In fact, after this analytic change in the parameter space, the
first seven Lyapunov constants are the first seven components in v.

The next step uses the second-order Taylor developments, L
(2)
k , of Lk with respect

to v, for k = 9, . . . , 13. Using vk = 0 for k = 2, . . . , 8, and simplifying as in the proof

of Proposition 2.3, we obtain that L
(2)
k for k = 9, . . . , 13, are homogeneous polynomials

of degree 2 on the relevant parameters v̂ = (v9, . . . , v13) ∈ R5. Note that under the
vanishing conditions on the first components of v, we have reduced the problem to
a 5-dimensional parameter space. The statement follows using Theorem 2.8 proving

that the varieties {L(2)
k = 0, k = 9, . . . , 13}, intersect transversally along a straight line

Υ ∈ R5 passing through the origin.

Parameterizing the straight line Υ by v̂ = (w9z, w10z, w11z, w12z, z), we have that

L
(2)
k = z2Lk(w9, . . . , w12), for k = 9, . . . , 13. Then, straightforward computations show

that there exist two real solutions of {L9 = L10 = L11 = L12 = 0} such that
L13 6= 0. These solutions write as w∗9 = α, w∗10 = p4(α)/q3(α), w∗11 = p2(α)/q1(α),
w∗12 = p̂1(α)/q̂1(α), where pj, qj, p̂j, q̂j are polynomials of degree j with coefficients poly-
nomials in π with rational coefficients, and α is a real root of a given polynomial φ of
degree 2 with coefficients polynomials of degree 2 in π also with rational coefficients.
We have not write here the polynomials pj, qj, p̂j, q̂j, or the polynomial φ because of
their size. Moreover, there are only two solutions because φ has only two real solu-
tions, which are simple. Additionally, we need to compute L∗13 = L13(w∗9, w

∗
10, w

∗
11, w

∗
12)
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and the determinant, D∗, of the Jacobian matrix of (L9,L10,L11,L12) with respect to
(w9, w10, w11, w12) evaluated at (w∗9, w

∗
10, w

∗
11, w

∗
12) which are both rational functions of

α. We notice that the involved rational functions are well defined because all the de-
nominators are polynomials not vanishing at α. Even the numerators of L∗13 and D∗.
These conditions are satisfied by computing all the resultants with φ, with respect to
α, and checking that are nonzero. Hence, the transversality of each straight line Υ is
proved and so all the conditions for using Theorem 2.8 are satisfied.

We finally remark that the two straight lines in the restricted parameter space are trans-
formed into two analytic curves of weak-foci of order 13 that, with a versal unfolding, 13 limit
cycles of small amplitude bifurcate from the origin. So the proof is complete. �

Remark 3.2. In the last proof we have seen that from the origin of the quadratic center
in Proposition 3.1, under a perturbation of type (9) having 12 parameters, bifurcate 11
limit cycles of small amplitude from the origin. As with a perturbation of type (13) we
have more parameters but only two are relevant (see Proposition 2.1) we obtain in total
13 limit cycles of small amplitude. So, we think that we have obtained the maximum
number of limit cycles that bifurcate from the origin because we have used (after a
rescaling) all the essential parameters.

Remark 3.3. From the expressions of the first-order Taylor developments of the Lya-
punov constants (14) it is clear that when the perturbation is not piecewise (a+

k` = a−k`
and b+

k` = b−k`) the Lyapunov constants having an even subscript vanish. Consequently,

we have only 3 linearly independent (L
(1)
3 , L

(1)
5 , L

(1)
7 ) and three limit cycles of small am-

plitude bifurcate from the origin as it is well-known. This is one simple example showing

that the upper bound M(2) = 3 is reached. In this case, L
(1)
8 vanishes. But this is not

the case when the perturbation is of piecewise type as we have already seen in the above
proof.

The first-order analysis of the system studied in the next proposition was done in
[22]. Here we improve the result considering higher-order analysis, increasing the local
cyclicity of the center perturbing also with piecewise polynomials of degree three.

Proposition 3.4. Consider the perturbed system of the form (13) with n = 3 and
Pc(x, y) = −yx(−68 + 1183x) and Qc(x, y) = −58x2−44xy+ 30y2 + 672x3 + 1484x2y−
945xy2−84y3. Then, there exist small enough values of the parameters a±k`, b

±
k` such that

at least 26 hyperbolic crossing limit cycles of small amplitude bifurcate from the origin.

Proof. The rational first integral

H(x, y) =
(42x− 7y − 1)3h(x, y)

(448x2 + 336xy + 63y2 − 44x− 12y + 1)3(1183x2 − 68x+ 1)
,

with h(x, y) = 10752x3 + 29568x2y + 17640xy2 + 3024y3 − 1600x2 − 2760xy − 576y2 +
74x + 57y − 1, well defined at the origin, associated to the unperturbed system (13)
provides the existence of a Darboux center at the origin.

The proof follows the same scheme as the proof of Proposition 3.1 but here we will
need to compute more Lyapunov constants because more limit cycles bifurcate from
the origin. First we start restricting the analysis to a perturbation of type (9) and we
will need to work with L2, . . . , L26. But due the difficulty of the computations we will
not compute the complete expressions. Only the Taylor developments up to second-
order with respect to the perturbative parameters, as we have done in the proof of
Proposition 3.1. Here, again as we are perturbing centers, the Lyapunov constants
vanish when all the perturbation parameters vanish.
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In [22] we explain that, straightforward computations show that the first-order Tay-

lor series of the first Lyapunov constants, L
(1)
2 , . . . , L

(1)
24 , are linearly independent with

respect to the perturbation parameters. In fact it can be proved that L
(1)
25 and L

(1)
26 are

linear combinations of L
(1)
2 , . . . , L

(1)
24 . Hence, Theorem 2.7 ensures only the existence of

24 limit cycles. We do not show here the complete expressions of L
(1)
k because of their

size. To complete the proof of the statement we need a higher-order analysis.

Using the same strategy than in the proof of Proposition 3.1 and using the linearity
property of the paragraph above we can use a linear change of coordinates, from pa-
rameters a±k`, b

±
k` to u = (u2, . . . , u29) ∈ R28 such that Lk = uk +O2(u) for k = 2, . . . , 24.

Because we have 28 perturbative parameters in (9) but only L
(1)
2 , . . . , L

(1)
24 are linearly

independent. Then, there is a small neighborhood of the origin in the parameter space
such that, using the Implicit Function Theorem for introducing the new parameters
v, Lk = vk, for k = 2, . . . , 24, after an analytic change of coordinates. In fact, as we
will use the second-order developments of L25 and L26 this last change of variables is
necessary to be obtained also up to second-order.

Up to this change of coordinates and using that vk = 0, for k = 2, . . . , 24, we can
restrict our analysis to v̂ = (v25, v26) taking two extra conditions v27 = v28 = 0 to

obtain L
(2)
25 and L

(2)
26 as homogeneous polynomials of degree 2 depending only on the

two relevant parameters named v25 and v26. Then we parameterize the straight line Υ

by v̂ = (w25z, z) and we have L
(2)
k = z2Lk(w25), for k = 25, 26 with Lk polynomials of

degree 2 in w25 with coefficients polynomials of degree 2 in π with rational coefficients.
Moreover, L25 has simple real zeros where L26 is nonvanishing. Hence, the conditions
of Theorem 2.8 are satisfied and the statement follows. �

We notice that the cubic center that we have used to perturb in Proposition 3.4 is
of Darboux type and it provides 11 limit cycles in the non-piecewise scenario. In fact,
the limit cycles also appear only computing the linear parts of the Lyapunov constants
and also considering the trace as another perturbation parameter. See [6]. As in
Proposition 3.1, the local cyclicity in the piecewise scenario is higher but second-order
analysis is also required.

In the following results we have only used first-order Taylor developments of the
corresponding Lyapunov constants due to the difficulties in the computations.

Proposition 3.5. Consider the perturbed system of the form (13) with n = 4 and
Pc(x, y) = x4−6x2y2+y4+x3−3xy2+x2−y2 and Qc(x, y) = 4x3y−4xy3+3x2y−y3+2xy.
Then, there exist small enough values of the parameters a±k`, b

±
k` such that (13) has at

least 36 hyperbolic crossing limit cycles of small amplitude bifurcating from the origin.

Proof. The unperturbed system (13) with Pc and Qc as in the statement writes as the
holomorphic differential system ż = i z+z2 +z3 +z4 in complex coordinates z = x+i y.
By the results in [19] it has an integrating factor and, consequently, a center at the
origin.

The proof follows using Theorem 2.7 from the computation of the first-order Taylor
developments of the corresponding Lyapunov constants Lk, for k = 2, . . . , 36. Because

L
(1)
2 , . . . , L

(1)
36 are linearly independent. We show only the expressions of the first three

Lyapunov constants, because of their size,

L
(1)
2 = −2

3
(a+

11 − a−11 + b+
20 − b−20),
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L
(1)
3 = −1

8
π(a+

02 + a−02 + a+
12 + a−12 + 3a+

30 + 3a−30 + 3b+
03 + 3b−03

− 4b+
20 − 4b−20 + b+

21 + b−21),

L
(1)
4 = −2(4b+

20 − 4b−20 + 2a+
02 − 2a−02 − 3b+

21 + 3b−21 + 2b+
22 − 2b−22 − a+

11

+ a−11 + 2a+
12 − 2a−12 + 2a+

13 − 2a−13 − 8a+
20 + 8a−20 + 3a+

30

− 3a−30 + 3a+
31 − 3a−31 − 2b+

03 + 2b−03 + 8b+
04 − 8b−04 − 7b+

11 + 7b−11).

�

Proposition 3.6. Consider the perturbed system of the form (13) with n = 4 and
Pc(x, y) = (1 − x − y)y(1183x2 − 68x + 1) − y, and Qc(x, y) = (1 − x − y)(−672x3 −
1484x2y+ 945xy2 + 84y3 + 58x2 + 44xy− 30y2− x) + x Then, there exist small enough
values of the parameters a±k`, b

±
k` such that (13) has at least 40 hyperbolic crossing limit

cycles of small amplitude bifurcating from the origin.

Proof. The unperturbed system (13) where the polynomials Pc and Qc are the ones
defined in the statement is the same cubic system given in Proposition 3.4 but multiplied
by a straight line of equilibrium points that does not passes through the origin. Then,
we have also a center at the origin.

Straightforward computations show that the first-order Taylor developments with
respect to the parameters of the first Lyapunov constants, Lk, for k = 2, . . . , 40, are
linearly independent. Hence, the statement follows as the previous results using Theo-
rem 2.7. Here, we show only the expressions of the first three Lyapunov constants up
to a first-order Taylor development, because of their size,

L
(1)
2 = −2

3
(a+

11 − a−11 + 2b+
02 − 2b−02 + b+

20 − b−20),

L
(1)
3 =

π

8
(129a−0,2 + 46a−1,1 + a−1,2 + 187a−2,0 + 3a−3,0 + 129a+

0,2

− 44a+
1,1 + a+

1,2 + 187a+
2,0 + 3a+

3,0 + 137b−0,2 + 3b−0,3

+ 29b−1,1 + 90b−2,0 + b−2,1 − 43b+
0,2 + 3b+

0,3 + 29b+
1,1 + b+

2,1),

L
(1)
4 =

2

45
(−9b−4,0 − 4164a+

0,2 + 774a+
0,3 − 82a+

1,2 + 6a+
1,3 + 11318a+

2,0 + 381a+
2,1

+ 141a+
3,0 + 9a+

3,1 − 17988b+
0,2 + 24b+

0,3 + 24b+
0,4 + 4096b+

1,1 − 6b+
1,2

− 1013b+
2,0 + 182b+

2,1 + 111b+
3,0 + 9b+

4,0 + 4164a−0,2 − 774a−0,3 + 82a−1,2

− 6a−1,3 − 11318a−2,0 − 381a−2,1 − 141a−3,0 − 9a−3,1 + 17988b−0,2 − 24b−0,3

− 24b−0,4 − 4096b−1,1 + 6b−1,2 + 1013b−2,0 − 182b−2,1 − 111b−3,0)

�

Proposition 3.7. Consider the perturbed system of the form (13) with n = 5 and
Pc(x, y) = x5 − 10x3y2 + 5xy4 + x4 − 6x2y2 + y4 + x3 − 3xy2 + x2 − y2, and Qc(x, y) =
5x4y − 10x2y3 + y5 + 4x3y − 4xy3 + 3x2y − y3 + 2xy. Then, there exist small enough
values of the parameters a±k`, b

±
k` such that (13) has at least 58 hyperbolic crossing limit

cycles of small amplitude bifurcating from the origin.

Proof. The unperturbed system (13) where the polynomials Pc and Qc are the ones
defined in the statement, in complex coordinates z = x + i y, writes as ż = i z + z2 +
z3 + z4 + z5. As in Proposition 3.5, it is an holomorphic planar differential system with
an equilibrium point of monodromic type. Consequently, it has a center at the origin.
See also [19].
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The statement follows as the previous results, using again Theorem 2.7, because first-
order Taylor developments of the first Lyapunov constants, L2, . . . , L58, are linearly
independent. The computations are straightforward. Because of their size, we only
show the first-order developments of the first three Lyapunov constants.

L
(1)
2 =

2

3
(−(a+

11 − a−11)− 2(b+
02 − 2b−02)− (b+

20 − b−20)),

L
(1)
3 = −1

8
π(a+

12 + a−12 + 3(a+
30 + a−30)− (b+

02 + b−02) + 3(b+
03 + b−03)

− 4(b+
20 + b−20) + b+

21 + b−21),

L
(1)
4 = − 2

15
(3b+

40 − 3b−40 + 3b−21 − 3b+
21 + 4b+

20 − 4b−20 + 2b−03 − 2b+
03 − 7b+

11 + 7b−11

− 3a−30 + 3a+
30 − 8b−04 + 8b+

04 − 8a+
20 + 8a−20 + 3a+

31 − 3a−31 + 2a+
13 − 2a−13

− 6b−02 + 6b+
02 + 2a+

12 − 2a−12 + 2b+
22 − 2b−22 − a+

11 + a−11 − 12a+
02 + 12a−02).

�

4. How to deal with the computational difficulties

The main computational difficulty found in this paper is directly related to the mech-
anism itself to obtain the Lyapunov constants. That is, the computation of the series
expansion of the solution in polar coordinates, with respect to the initial condition
in the x-axis. This method needs a high computational effort because of the huge
trigonometrical expressions appearing in the functions r±i (θ) defined in (6) solving the
differential equation (5). We have shown some of them in the proof of Proposition 2.2.
This obstacle can be skipped in analytic vector fields using other mechanisms like the
Poincaré or the normal form methods, see more details of them in, for example, the book
of Romanovsky and Shafer [34]. But, up to our knowledge, for piecewise differential
type systems, the Lyapunov mechanism is the only valid.

Another hurdle is the huge size that the Lyapunov constants have, even for ana-
lytic vector fields. In fact, the Lyapunov constants for cubic polynomial systems have
been obtained very recently in [37] and they are unknown even for piecewise quadratic
polynomial systems. In our context, as it can be seen in Section 2, both the size and
the number of constants needed to be calculated are doubled. As our objective is to
study the local cyclicity, in fact lower bounds of it, we study center perturbations.
So, as Christopher showed in [11], we do not need to compute the complete Lyapunov
constants. Only the first or second-order Taylor developments with respect to the per-
turbative parameters is necessary to be obtained. We have used this advantage in [21]
for proving the best lower bounds for the local cyclicity problem in polynomial vector
fields of low degree.

The computation of the Taylor developments can be also simplified using the par-
allelization procedure described in [23]. The main goal of this technique, originally
developed only for first-order developments in [30], is to decompose the total compu-
tation in a collection of simpler problems. We will explain here the case when we
have a perturbation with m parameters and such that only first-order developments
are needed. Denoting by λ = (λ1, . . . , λm) the perturbation parameters, the first-order
Taylor development of each k-Lyapunov constant can be written as a linear combina-

tion of the components of λ, that is L
(1)
k (λ) =

m∑
i=1

αiλi. We notice that we have used

that, as we are perturbing centers, Lk(0) = 0. Then each αi can be obtained considering
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the perturbation problem that has only the perturbation monomial corresponding to λi,
vanishing all the others, and computing the first-order Taylor development with respect
to this λi. The strategy decrease the total computation time because, having a cluster
of computers, we can get all αi simultaneously. Even if we use this important improve-
ment, we have only worked with piecewise polynomial vector fields up to degree n = 4
and only the Taylor series up of first and second-orders, because both the computation
time and the memory requirements are very high. For example, in the proof of the last
result, the total computation time has been around 4 days, working with 5 computers
using the parallelization method. In particular, the memory requirements for the com-
putation of the first-order Taylor series forces us to use only 4 perturbative monomials
in each computer. The advantage of parallelization here was clear because without it
the calculations would have been impossible to obtain. Therefore, to go further in a
higher degree analysis, it is necessary to develop a new mechanism for calculating the
coefficients of the return map.

The last trick has been the computation of r(θ, ρ, λ) and then evaluating at ±π
but changing λ by λ±. Considering r±(θ, ρ, λ±) in (6) as two different expressions the
computation time would be doubled.
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