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Abstract. We are interested in small-amplitude isolated periodic orbits, so-called limit
cycles, surrounding only one equilibrium point, that we locate at the origin. We develop
a parallelization technique to study higher order developments, with respect to the pa-
rameters, of the return map near the origin. This technique is useful to study lower
bounds for the local cyclicity of centers. We denote by M(n) the maximum number of
limit cycles bifurcating from the origin via a degenerate Hopf bifurcation for a polyno-
mial vector field of degree n. We get lower bounds for the local cyclicity of some known
cubic centers and we prove that M(4) ≥ 20, M(5) ≥ 33, M(7) ≥ 61, M(8) ≥ 76, and
M(9) ≥ 88.

1. Introduction

Hilbert early last century presented a list of problems that almost all of them are solved.
One problem that still is open is the second part of the 16th Hilbert’s problem: It consists
in determine the maximal number H(n) of limit cycles, and their relative positions, of
planar polynomial vector fields of degree n. In last years other related problems have
been proposed. In 1977, Arnol’d ([2]) suggested a weakened version, focused on the study
of the number of limit cycles bifurcating from the period annulus of Hamiltonian systems
perturbing with polynomials of fixed degree n. We are interested here in another local
version, that consists in providing the maximum number M(n) of small-amplitude limit
cycles bifurcating from an elementary equilibrium point of center or focus type, clearly
M(n) ≤ H(n). In other words, M(n) is an upper bound of the cyclicity of such equilibrium
points. More details on related problems about the cyclicity of homoclinic and heteroclinic
connections or of period annuli can be found in, for example, Roussarie’s book ([28]).

There are very few general families for which this local number M(n) is completely
determined. In 1954 Bautin ([5]) proved that M(2) = 3 and Sibirskĭı ([29]) and Blows
and Lloyd ([6]) studied the special cubic family without quadratic terms. But the first
complete proof that Mh(3) = 5 was obtained by Żo la̧dek ([33]) in 1994. The first evidence
that M(3) ≥ 11 was presented also by Żo la̧dek ([34]) in 1995, providing a cubic center
with very high local cyclicity. This problem was revisited by himself in 2016 ([36]). The
first and simplest proof that this lower bound is reached for the cubic family was given
by Christopher in 2005 ([12]). Although we will describe more precisely this mechanism
later, Christopher’s idea is based in choosing a point on the center variety and, at this
point, study the independence property of the first-order Taylor series with respect to

the perturbation parameters, denoted by L
(1)
k , of the Lyapunov constants. In fact, if

the point is (generically) chosen on a component of the center variety of codimension r,
then there exist perturbations which can produce r − 1 limit cycles. Apart from the fact
that the center problem for polynomial vector fields of degree n is unsolved, the main
problem is how to compute the codimension of each component of the center variety
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or, alternatively, how to find good center candidates to be perturbed for obtaining the
highest (local) cyclicity value. This last procedure is the one mostly used to provide the
best (highest) lower bounds for M(n). It is somewhat curious that both centers appear
listed in the same work of Żo la̧dek ([35]). We notice that the idea of studying only linear
developments, with respect to the parameters, near centers appears in some previous
works of Chicone and Jacobs ([10]) and of Han ([23]).

In 2012, Giné ([19, 20]) conjectured that M(n) = n2 + 3n − 7. This suggests a very
high value for M(n) for polynomial vector fields of low degree. In particular, for n = 4, it
asserts that M(4) ≥ 21. The local cyclicity problem in the quartic polynomial class was
studied in [19] using only second-order Taylor developments of the Lyapunov constants.
But, as we will describe in Section 5, orders 2 and 3 are not enough to prove this result.
Then, this lower bound remains to be proved. For degrees n = 5, 7, 8, 9 the best lower
bounds for M(n) were obtained in [25] providing examples exhibiting 28, 54, 70, and 88
limit cycles, respectively. Next result improves all these values increasing the known lower
bounds for M(n) for the respective degrees. Up to our knowledge, the highest value for
n = 6 is M(6) ≥ 48 and it is proved in [4]. This suggests that the value for M(n) should
be increased (at least) by one. The new conjectured value appears recently in [21]. A final
comment about the Giné’s conjecture for n = 5 is that the value M(5) ≥ 33 suggested
is reached in our main result. The proof will follow perturbing a quintic center with
homogeneous nonlinearities, appearing in [18], in the complete polynomial class of degree
5. The best result for general polynomial vector fields of degree n is M(n) ≥ n2 − 2. A
result of 2004 due to Movasati ([27]).

Theorem 1.1. The number of limit cycles bifurcating from a singular monodromic point
for vector fields of degree four, five, seven, eight and nine is at least M(4) ≥ 20, M(5) ≥
33, M(7) ≥ 61, M(8) ≥ 76, and M(9) ≥ 88.

A better description of the number of limit cycles in the cubic polynomial family can
be obtained studying lower bounds for the local cyclicity of some cubic Darboux centers.
We analyze here all those with codimension 12 and listed by Żo la̧dek in [35] but having
a real center. More concretely, we show that in almost all cases always 11 limit cycles
bifurcate from each studied center. The proofs show why sometimes a very high-order
study is necessary.

For proving our results first we extend, in Section 3, the parallelization technique intro-
duced by Liang and Torregrosa in [25] to higher-order developments. Second, following
the ideas in [12] for studying higher-order developments, we use a blow-up procedure to
get a complete unfolding of the return map near a polynomial center perturbing with
polynomials of the same degree. We remark that the parallelization technique drastically
reduces the computation time. In particular, in the proof of Theorem 1.1 when only
developments of order two are necessary to be used, instead of more than one month of
computation time, we need less than one hour. We have used a cluster of computers
with ninety processors simultaneously. All the computations have been made with the
Computer Algebra System Maple [26].

This paper is structured as follows. In Section 2, we recall the necessary definitions and
algorithms to get the coefficients of the return map, the so-called Lyapunov constants
among other preliminary results as the Poincaré–Miranda Theorem (see [24]) and the
Gershgorin Theorem (see [17]) about localization of eigenvalues of a matrix. In Section 3,
we present and prove the parallelization setting. The study of the local cyclicity of cubic
Darboux centers is developed in Section 4. Finally, in Sections 5 and 6 we prove our main
result Theorem 1.1. All the computations are analytic but, in some cases, we have used
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numerical approximations that, with Computer Assisted Proofs techniques, have allowed
us to obtain the analytical proof.

2. Degenerated Hopf bifurcation

In this section, we recall how to obtain the Lyapunov constants or focal values, that
is, the coefficients of the return map near an equilibrium point with differential matrix of
an elementary center type. As usual, it is not restrictive to assume that the equilibrium
point is located at the origin. So, following [1], we can consider the polynomial system of
degree n 

ẋ = λ0 x− y +
n∑
k=2

Pk(x, y),

ẏ = x+ λ0 y +
n∑
k=2

Qk(x, y),

(1)

being Pk and Qk homogeneous polynomials of degree k in the variables x, y. Writing the
above system in polar coordinates, (r, θ) = (r cos θ, r sin θ), we get

dr

dθ
= λ0 r +

∞∑
k=2

Sk(θ)r
k, (2)

being Sk(θ) trigonometric polynomials. Let r(θ, ρ) be the solution of system (2) such that
r(0, ρ) = ρ. The stability of the origin is clearly determined, using Hartman–Grobman
Theorem, when λ0 6= 0. When λ0 = 0 the stability problem is known as the center-focus
problem and there are some classical tools to distinguish when the origin is stable or
unstable. So, for λ0 = 0 and close to ρ = 0, we can develop this solution as a power series
in ρ

r(θ, ρ) = ρ+
∞∑
k=2

rk(θ)ρ
k,

where rk(0) = 0 for all k ≥ 2. Then, the Poincaré return map, Π(ρ), can be obtained
evaluating the above expression at θ = 2π, i.e.

Π(ρ) = r(2π, ρ) = ρ+
∞∑
k=2

rk(2π)ρk. (3)

When VK̃ = rK̃(2π) 6= 0 for some value K̃ we say that the origin of system (1) is a
weak-focus, otherwise we say that the origin is a center. In this context, it is well known
that the first nonzero value, when it exists, corresponds to an odd subscript K̃ = 2K + 1,
see [1, 9, 16], and consequently the K-Lyapunov constant is defined as LK = V2K+1 when
L1 = · · · = LK−1 = 0. Then, we say that the origin is a weak-focus of order K when
LK 6= 0 and L1 = · · · = LK−1 = 0. These constants are polynomials in the coefficients of
Pk and Qk defined in (1). For more details in the algebraic properties that they satisfy,
we refer the reader to [13].

When the first Lyapunov constant is negative (positive), L1 6= 0, a small-amplitude
stable (unstable) limit cycle bifurcates from the equilibrium when the trace parameter
λ0 moves from zero to positive (negative). Because the stability of the equilibrium point
changes and the limit cycle appears by using the Poincaré–Bendixson Theorem. This
phenomenon is known as the classical Hopf bifurcation. The results in this work are
dealing with the K-degenerated Hopf bifurcation. That is, when K small-amplitude limit
cycles bifurcate from a weak-focus of order K, for more details see for example [11].
According Roussarie in [28], at most K limit cycles can bifurcate from a weak-focus of
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order K under analytic perturbations. In the context of (1), the main difficulty is how
can we ensure the existence of polynomial perturbations such that the K limit cycles
bifurcate from a weak-focus of order K. To unify notation, we denote the trace parameter
in (1) by L0 := λ0. The fact that the coefficients of the return map (3) corresponding to
monomials of even degree in ρ do not play any role in the bifurcation phenomenon is due
to the property that the Bautin ideal is generated only by the coefficients of odd degree,
i.e. B = 〈L1, . . . , Ln, . . .〉 = 〈V3, V4, . . . , V2n, V2n+1, . . .〉. See more details also in [28]. This
property has been revisited recently in [14].

Another equivalent procedure to study the center-focus problem is to propose, for λ0 =
0, a function H(x, y) = x2 + y2 +O(||(x, y)||3) such that, using (1),

Ḣ =
∂H

∂x
ẋ+

∂H

∂y
ẏ = h4r

4 + h6r
6 + · · ·+ h2kr

2k + · · · ,

with r2 = x2 + y2. Then, the first nonvanishing coefficient of the above derivative, which
always has an even subscript, determines the stability of the origin of (1), being H a
Lyapunov function. In fact, both coefficients, h2K+2 and L2K+1, differ on a multiplicative
nonzero constant when the previous vanish. Here the center property reads as h2k = 0 for
all k. In complex variables, via the change of variables z = x+ i y and for λ0 = 0, system
(1) writes as

ż = R(z, z̄) = i z +
n∑
k=2

Rk(z, z̄),

where Rk(z, z̄) are homogeneous polynomials of degree k in (z, z̄). Consequently, the
above function H = zz̄ +O3(z, z̄) satisfies

Ḣ =
∂H

∂z
ż +

∂H

∂z̄
˙̄z =

∞∑
k=2

gk(zz̄)k,

being the coefficient gk+1 the k-Lyapunov constant.

Following the Christopher’s idea ([12]), to find good (or high) lower bounds for M(n),
instead of studying the local cyclicity of the origin of system (1), we consider perturbations
of a fixed center. That is, taking Pc, Qc, P, and Q as polynomials of degree n in (x, y) and
studying the perturbed system{

ẋ = Pc(x, y) + P (x, y, λ),
ẏ = Qc(x, y) +Q(x, y, λ),

(4)

with P,Q having only monomials of degree higher or equal than two. When λ = 0,
P (x, y, 0) = Q(x, y, 0) = 0, and the unperturbed system must be written as (1), i.e. for
λ0 = 0, the origin should be an elementary center. Thus, we are interested in finding limit
cycles of small-amplitude bifurcating from the origin of system (4).

In most cases, the explicit computation of the Lyapunov constants for system (1) is
very hard and impossible to do by hand. So a Computer Algebra System1 is necessary
to be used. Moreover, sometimes more specific algorithms can be developed to decrease
the computation time. Here, with the aim to reduce not only the computation time but
also the total memory requirements, we extend, in the next section, the parallelization
algorithm proposed by Liang and Torregrosa in [25] to higher-order developments but for
systems of type (4).

Next two results, which are proved in [12], provide conditions to get the bifurcation
of small-amplitude limit cycles near a polynomial center. The first uses only the linear
developments of the Lyapunov constants. We notice that as we are perturbing centers,

1We have used Maple for all our computations ([26])
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the Taylor approximations vanish at the origin (λ = 0) in the parameter space. So, the
first-order Taylor approximation is linear. As we have commented before, similar versions
of this result can be found in [10] and [23]. The second result uses higher-order Taylor
approximations.

Theorem 2.1 ([12]). Suppose that s is a point on the center variety and that the first
k Lyapunov constants, L1, . . . , Lk, have independent linear parts (with respect to the ex-
pansion of Li about s), then s lies on a component of the center variety of codimension
at least k and there are bifurcations which produce k limit cycles locally from the center
corresponding to the parameter value s. If, furthermore, we know that s lies on a compo-
nent of the center variety of codimension k, then s is a smooth point of the variety, and
the cyclicity of the center for the parameter value s is exactly k. In the latter case, k is
also the cyclicity of a generic point on this component of the center variety.

The scheme of the proof is as follows. Under the hypotheses of the above result, there
exists a change of variables such that the first Lyapunov constants write as

Li = ui +O2(u1, . . . , uk, . . . , um), i = 1, . . . , k, (5)

assuming that we have m ≥ k bifurcation parameters. Using the Implicit Function
Theorem it is clear that we can write Li = vi, for i = 1, . . . , k. Then the first coefficients of
the return map (3) are independent. It is clear that, when the trace parameter L0 = λ0 = 0
in (1) we get only k− 1 limit cycles. But adding the parameter L0 = λ0 we have an extra
limit cycle by the classical Hopf bifurcation, obtaining in total k, as the above result
ensures. In fact, this proves the existence of a variety, in the parameter space, of weak-
foci of order k ({λ0 = u1 = u2 = · · · = uk−1 = 0} and uk 6= 0) that unfolds k hyperbolic
limit cycles. Using the Weierstrass Preparation Theorem this is the maximal number near
such curve.

When the linear parts of the next Lyapunov constants are linear combination of the
first k we can use the higher developments to obtain more limit cycles. This is the aim
of the next result also proved by Christopher in [12, Theorem 3.1].

Theorem 2.2. Suppose that we are in a point s where Theorem 2.1 applies. After a
change of variables if necessary, we can assume that L0 = L1 = · · · = Lk = 0 and the
next Lyapunov constants Li = hi(u) + Om+1(u), for i = k + 1, . . . , k + l, where hi are
homogeneous polynomials of degree m ≥ 2 and u = (uk+1, . . . , uk+l). If there exists a line
`, in the parameter space, such that hi(`) = 0, i = k + 1, . . . , k + l − 1, the hypersurfaces
hi = 0 intersect transversally along ` for i = k + 1, . . . , k + l − 1, and hk+l(`) 6= 0, then
there are perturbations of the center which produce k + l limit cycles.

The above result is not written exactly as in the original Christopher paper because we
have adapted to include also the conclusion of Theorem 2.1. We have also included here
an alternative proof.

Proof of Theorem 2.2. The first step uses Theorem 2.1 to assume that the first k Lyapunov
constants together with the trace are the first k+ 1 coordinates (u0, u1, . . . , uk), that will
be taken as zero. The proof continues taking the blow-up change of variable uj = vjuk+l,

for j = k+1, . . . , k+l−1. Then v = (vk+1, . . . , vk+l−1) and we can write hi(u) = umk+lĥi(v),
for i = k + 1, . . . , k + l. Consequently,

Li(u) = umk+lL̃i(v) = umk+l

(
ĥi(v) +

∞∑
j=1

gij(v)ujk+l

)
.

The existence of a line ` as in the statement gets v∗ such that ĥi(v
∗) = 0, for i =

k + 1, . . . , k + l − 1, ĥk+l(v
∗) 6= 0, and the determinant of the Jacobian matrix of
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(ĥk+1, . . . , ĥk+l−1) with respect to v does not vanish at v∗, then the Implicit Function

Theorem applies, in a small neighborhood of v∗, and the change of variables wi = L̃i(v)
is well defined. The proof follows the same scheme explained in the comments before to
state this result but changing uj = wju

m
k+l. Because, now umk+l is a common factor of the

complete return and the polynomial provided by the Weierstrass Preparation Theorem

has ĥk+l(v
∗) 6= 0 as the coefficient of maximal degree monomial and the other are the

independent coefficients wj, for j = 1, . . . , k+ l−1. Finally, as above we can use the trace
parameter to have a complete unfolding of k + l limit cycles. �

We remark that, as in the previous result, this maximal number of limit cycles is
obtained only near the weak-foci curve. Consequently, the previous results provide only
lower bounds for the local cyclicity problem. Theorem 2.1 uses first order developments.
After removing them (using the Implicit Function Theorem) Theorem 2.2 imposes that all
the homogeneous principal parts at the origin of the remaining hi have the same degree.
Our proof of Theorem 2.2 suggests that we can study, restricting the parameter space if
necessary, how the intersection of the algebraic varieties SL = {L1(u) = L2(u) = · · · =
Lm(u) = 0} is near u = 0. This is equivalent to know if the function f : (Rn, 0)→ (Rn, 0)

(u1, . . . , un) 7→ (L1, L2, . . . , Ln)

is locally surjective at the origin (see the interesting comment on this fact in [28, Page 71]).
From the singularities classification theory, see [3], some properties used to compute the
local multiplicity of a function in a point, µ0[f ], are useful to study the local intersection
of system SL.

Proposition 2.3 ([3]). Let f : (Rn, 0) → (Rn, 0) be a finite map germ. Defining f =
(f1, . . . , fn) and Sf = {f1 = f2 = · · · = fn = 0} the next properties hold,

(i) if fi = hi +H.O.T., where hi is homogeneous of degree ki, then µ0[f ] ≥
∏n

i=1 ki and
µ0[f ] =

∏n
i=1 ki if and only if the system hi = 0, i = 1, . . . , n, has only the trivial

solution in Cn.
(ii) if gi = fi +

∑
j<iA

i
jfj, then µ0[f ] = µ0[g] and Sf = Sg.

Inspired by the Gauss algorithm to triangularize a matrix, we can use the second
property of the above result to convert the local intersection of the set SL in a simpler
one. For example, in (5) we have simplified with the first k linear terms. But, in general,
we will use also to simplify higher-orders terms and the restriction of Theorem 2.1 on
the same degree for all principal parts can be removed. Moreover, this simple mechanism
helps also to reduce the total computation time.

Next, we present a simple example of the application using the aim of the above propo-
sition. We assume that, up to an adequate linear change of variables in the parameter
space, the Taylor approximations up degree three for the first four Lyapunov constants
write as

L1(u) = u1 + u21 + u1u3 + u3u4 +O4(u),

L2(u) = u2 + u22 + u2u3 + u31 + u3u4 + u22u3 +O4(u),

L3(u) = u1 + u2 + 2u21 + 2u1u3 − 3u23 + 3u3u4 + u33 +O4(u),

L4(u) = u1 − u2 + 3u21 + u22 − u1u3 + u23 + Au3u4 +O4(u),

(6)

with u = (u1, u2, u3, u4) and A a free parameter. We notice that, as we have commented
above, the perturbation of a center implies that Lk(0) = 0, for k = 1, 2, 3, 4. Clearly, as

the linear developments of L
(1)
3 = u1 + u2 and L

(1)
4 = u1 − u2 are linear combinations of

L
(1)
1 = u1 and L

(1)
2 = u2, we have, up to this point and applying Theorem 2.1 considering

also the trace parameter, only two limit cycles of small amplitude. To get more we need
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to look at the higher-orders in the local intersection of the algebraic varieties defined by
all the considered Lyapunov constants, i.e. how the origin of SL = {L1(u) = L2(u) =
L3(u) = L4(u) = 0} looks like. Inspired by Proposition 2.3.(ii) and the fact that, near
the origin, L1 and L2 act as new coordinates, we can change L3 and L4 by L3 − L1 − L2

and L4 − L1 + L2, respectively, in SL and the local intersection at the origin remains
unchanged taking

L3(u) = u21 + u1u3 − u22 − u2u3 − 3u23 + u3u4 − u31 − u22u3 + u33 +O4(u),

L4(u) = 2u21 − 2u1u3 + 2u22 + u2u3 + u23 + Au3u4 + u31 + u22u3 +O4(u).

By abusing notation we have called the new ones again as L3 and L4. In the next step,
we remove the degree two terms having u1 or u2. Changing now L3 and L4 by L3− (L2

1 +
L1u3−L2

2−L2u3) and L4− (2L2
1−2L1u3 + 2L2

2 +L2u3), respectively. Then, the new local
expressions are

L3(u) = −3u23 + u3u4 − 3u31 − 3u21u3 − u1u23 − 2u1u3u4 + 2u32 + 2u22u3

+ u2u
2
3 + 2u2u3u4 + u33 +O4(u),

L4(u) = u23 + Au3u4 − 4u31 − 2u21u3 + 2u1u
2
3 − 4u1u3u4 − 4u32 − 4u22u3

− u2u23 − 4u2u3u4 + u23u4 +O4(u).

Similarly we can also remove the degree three terms having again u1 or u2. Therefore, we
get

L3(u) = −3u23 + u3u4 + u33 +O4(u),

L4(u) = u23 + Au3u4 + u23u4 +O4(u).
(7)

It is important to point out that the terms corresponding to linear independent parame-
ters, u1 and u2 in this example, should be removed degree by degree. That is, first degree
1, then degree 2, and so on.

In this particular example, when A = −1/3 we need an extra step for removing from L4

the degree two common part with L3, changing L4 by L4 +L3/3. Then, we finally obtain

L3(u) = −3u23 + u3u4 + u33 +O4(u),

L4(u) = u23(u3 + 3u4)/3 +O4(u).
(8)

We have computed the triangularized equivalent system STL corresponding to (6) changing
L3 and L4 by (7) or (8), depending on A 6= −1/3 or A = −1/3, respectively.

After the triangularization, by using the Implicit Function Theorem in a small neighbor-
hood of the origin, we can change the first two parameters (u1, u2) by (v1, v2) := (L1, L2).
We notice that the local expressions of the degree three Taylor approximations of L3 and
L4 are not modified, only the terms in O4(u) change. Then, assuming v1 = v2 = 0, (7) and
(8) are valid writing u = (u3, u4). At this point, when A 6= −1/3 we can use Theorem 2.2,

with the degree two Taylor approximations L
(2)
3 = u3(−3u3 +u4) and L

(2)
4 = u3(u3 +Au4),

to get 4 limit cycles of small amplitude taking u4 = 3u3 as the straight line ` because

L
(2)
4 |{u4=3u3} = (3A + 1)u3 6= 0, for small enough u3. When A = −1/3 an extension of

Theorem 2.2 is needed, because we must work with orders (1, 1, 2, 3) instead of (1, 1, 2, 2).
But there are also 4 limit cycles of small amplitude, because the order 4 weak-foci curve

passing through the origin in the parameter space also exists: L
(3)
4 |{u4=3u3} = 10u33 6= 0

for small enough u3.
The versal unfolding follows as in the proof of Theorem 2.2 using an adequate weighted

blow-up. In fact we have described the usual desingularization procedure to classify the
local intersection of SL at the origin as it is usual in algebraic geometry, see [8, 31].
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As we will see in the proofs of the results of the next sections, sometimes the application
of Theorem 2.2 is not so simple as the above example. It depends on how the curve `
can be explicitly obtained and if the varieties in SL are transversal along it. In fact,
the above example shows that, in some cases, the straight line ` in Theorem 2.2 can be
changed by a line. The lines ` obtained from the intersection of the principal homogeneous
parts of the varieties, defined by the polynomials hi of degree m in Theorem 2.2, can be
computed just with a blow-up type change of coordinates. That is, reordering subscripts
if necessary, the line can be parameterized by ui = λvi, for i = k + 1, . . . , k + l − 1
and uk+l = λ. Then the main difficulty is to find an explicit transversal solution of the
system defined by l − 1 equations with l − 1 unknowns of degree m obtained dividing
each hi by λm. Moreover, at these solutions the last hk+l must be nonzero. In the above
example, the principal homogeneous parts have degree two (when A 6= −1/3) and there
are two (possible) lines `: u3 = 0 and u4 = 3u3. We have used the second one because on
the first one L4 also vanishes up to third-order analysis. So higher-order terms must be
computed and analyzed. In most cases, these special values could define a center curve
in the parameter space. Although this intersection point can be obtained numerically, we
use a computer assisted proof to prove analytically the existence of such point. This can
be done using Poincaré–Miranda’s Theorem together with the results of last section. For
the transversality property, we can use the Gershgorin circles Theorem. For completeness,
we have included both below.

Theorem 2.4 ([24], Poincaré–Miranda). Let c be a positive real number and S = [−c, c]n
a n-dimensional cube. Consider f = (f1, . . . , fn) : S → Rn a continuous function such
fi(S

−
i ) < 0 and fi(S

+
i ) > 0 for each 1 ≤ i ≤ n, where S±i = {(x1, . . . , xn) ∈ S : xi = ±c}.

So, there exists d ∈ S such that f(d) = 0.

Theorem 2.5 ([17], Circles of Gershgorin). Let A = (ai,j) ∈ Cn×n and αk its eigenvalues.
Consider for each i = 1, . . . , n

Di = {z ∈ C : |z − ai,i| ≤ ri},

where ri =
∑
i 6=j

|ai,j|. So, for all k, each αk ∈ Di for some i.

The Poincaré–Miranda’s Theorem was conjectured by Poincaré in the 19th century
and proved by Miranda in last century. Note that this result is a generalization of the
Bolzano’s Theorem for higher dimensions. The reader can get more details on Gershgorin
Circle Theorem in [22].

3. Parallelization

In [25], Liang and Torregrosa present a parallelization mechanism to compute the Taylor
linear approximation of the Lyapunov constants near centers. In this section, we extend
this result to compute also the terms of higher degree. We start recalling the linearization
result for completeness.

Theorem 3.1 ([25]). Let p(z, z̄) and Qj(z, z̄), j = 1, . . . , s be polynomials with monomials

of degree higher or equal than two such that the origin of ż = i z+p(z, z̄) is a center. If L
(1)
k,j

denotes the first-order Taylor approximation, with respect to λj ∈ R, of the k-Lyapunov
constant of equation

ż = i z + p(z, z̄) + λjQj(z, z̄), j = 1, . . . , s,
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then the first-order Taylor approximation of the k-Lyapunov constant, with respect to
Λ = (λ1, . . . , λN) ∈ RN , of equation

ż = i z + p(z, z̄) +
N∑
j=1

λjQj(z, z̄),

is L
(1)
k =

N∑
j=1

L
(1)
k,j.

In the following Theorem 3.3, we show how to get the terms up to degree ` > 1 of
the Lyapunov constants. The main idea is to decompose the global computation problem
into a collection of simpler problems. The advantage of the previous result is that each
perturbation parameter λj appears in only one problem. We remark that the authors were
interested only in the linear approximation. Now, because we study developments up to
degree `, we need to decompose the global problem in simpler problems having exactly
` parameters or monomials. But, as many parameters appear in more than one simple
perturbation problem we need to correct (multiplying by a factor adequately chosen)
the obtained coefficients of the developments of degree `. We will see that the idea of
parallelization only makes sense if the number of parameters is greater than the degree
up to which we want to compute. To further clarify the main idea of parallelization, we
present the next proposition where we perturb a quadratic center with four parameters
and we calculate the first three Lyapunov constants up to degree two.

Proposition 3.2. Consider the quadratic perturbed equation

ż = i z + z2 + (a20 + i b20)z
2 + (a11 + i b11)zz̄. (9)

Then the Taylor developments up to degree two of the Lyapunov constants of the above
system are

L
(2)
1 = −2a20b11 − 2b20a11 − 2b11,

L
(2)
2 = 36a20b11 + 12b20a11 + 32a11b11 + 8b211 + 12b11,

L
(2)
3 = −540a20b11 − 108b20a11 − 582a11b11 − 192b211 − 108b11.

Proof. We rename the four real parameters in the ordered list

λ = (λ1, λ2, λ3, λ4) = (a20, b20, a11, b11).

As system (9) is a holomorphic quadratic center when λ = 0, all the Lyapunov constants
vanish. Then, as we are interested in degree two developments and we have 4 parameters,
we will consider the six combinatorial (without repetition) pairs

S = {(λ1, λ2), (λ1, λ3), (λ1, λ4), (λ2, λ3), (λ2, λ4), (λ3, λ4)},

and 6 respective differential equations, one for each element in S, such that in (9) the
parameters that are not in the chosen pair are taken to be zero. For example, the corre-
sponding differential equation to S3 = (λ1, λ4) is equation E3: ż = i z+ z2 +λ1z

2 + iλ4zz̄.
For each equation Ej corresponding to each pair Sj we compute, with the mechanism

described in Section 2, the first three Lyapunov constants. We denote by Lk,j the k-

Lyapunov constant of equation Ej and by L
(2)
k,j the corresponding Taylor approximations

up to degree 2. Straightforward computations show L
(2)
k,j = 0, for k = 1, 2, 3 and j = 1, 2
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and
L
(2)
1,3 = −2λ1λ4 − 2λ4, L

(2)
1,5 = −2λ4,

L
(2)
2,3 = 36λ1λ4 + 8λ24 + 12λ4, L

(2)
2,5 = 8λ24 + 12λ4,

L
(2)
3,3 = −540λ1λ4 − 192λ24 − 108λ4, L

(2)
3,5 = −192λ24 − 108λ4,

L
(2)
1,4 = −2λ3λ2, L

(2)
1,6 = −2λ4,

L
(2)
2,4 = 12λ3λ2, L

(2)
2,6 = 32λ3λ4 + 8λ24 + 12λ4,

L
(2)
3,4 = −108λ3λ2, L

(2)
3,6 = −582λ3λ4 − 192λ24 − 108λ4.

We notice that we can not compute L
(2)
k by

6∑
j=1

L
(2)
k,j as in the linear case, because of

the repeated terms. The monomials having only one parameter, λl or λ2l , appear more
than once in different Ej, while the monomials having two, λlλm, only once. So, for

every fixed k, before considering the sum of all L
(2)
k,j we need to correct the corresponding

coefficient adequately. For example, the monomials λ4 and λ24 appear in S3, S5, and S6,
that is, exactly 3 =

(
3
1

)
times. Hence, these monomials will be divided by 3. But, as the

monomial λ1λ4 only appears in S3 the corresponding coefficient remains unchanged. So,
we need to multiply by a correction factor which depends on the number of repetitions. As
we have four perturbation parameters, we should divide each repeated term by 3 because
is the number of times that they appear in S.

Denoting by L̂
(2)
k,j the corrected k-Lyapunov constant corresponding to the pair Sj, we

can obtain L
(2)
k =

6∑
j=1

L̂
(2)
k,j. The statement follows because, in our case, we have L̂

(2)
k,j = 0,

for k = 1, 2, 3 and j = 1, 2 and

L̂
(2)
1,3 = −2λ1λ4 −

2

3
λ4, L̂

(2)
1,5 = −2

3
λ4,

L̂
(2)
2,3 = 36λ1λ4 +

8

3
λ24 + 4λ4, L̂

(2)
2,5 =

8

3
λ24 + 4λ4,

L̂
(2)
3,3 = −540λ1λ4 − 64λ24 − 36λ4, L̂

(2)
3,5 = −64λ24 − 36λ4,

L̂
(2)
1,4 = −2λ2λ3, L̂

(2)
1,6 = −2

3
λ4,

L̂
(2)
2,4 = 12λ2λ3, L̂

(2)
2,6 = 32λ3λ4 +

8

3
λ24 + 4λ4,

L̂
(2)
3,4 = −108λ2λ3, L̂

(2)
3,6 = −582λ3λ4 − 64λ24 − 36λ4.

�

Now we can state the main result of this section, the computation in a parallelized form
of the Taylor developments of the Lyapunov constants up to degree `, assuming that the
number of total parameters is ` ≤ N.

Theorem 3.3. Let p(z, z̄) and Qj(z, z̄), j = 1, . . . , N be polynomials with monomials of
degree higher or equal than two such that the origin of ż = i z + p(z, z̄) is a center. For

` ≤ N, we denote by L
(`)
k the Taylor approximation of k-Lyapunov constant up to degree

` of equation

ż = i z + p(z, z̄) +
N∑
j=1

λjQj(z, z̄), (10)
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with Λ = (λ1, . . . , λN) ∈ RN . Let S be the set of all combinations of the components of
Λ taken ` at a time. That is, S = {(λ1, . . . , λ`), (λ2, . . . , λ`+1), . . . , (λ`−N , . . . , λN)} and
having

(
N
`

)
elements. For each element Sj ∈ S, we denote by σ(j, ζ) the subscript of

the parameters in Sj at position ζ, i.e. Sj = (λσ(j,1), . . . , λσ(j,`)), and we denote by L
(`)
k,j

the Taylor approximation up to degree ` with respect to Λ of the k-Lyapunov constant of
equation

ż = i z + p(z, z̄) +
∑̀
l=1

λσ(j,l)Qσ(j,l)(z, z̄). (11)

Then

L
(`)
k =

N∑
l=1

L̂
(`)
k,j,

where L̂
(`)
k,j =

∑
p

µk,j,p(
N−s(p)
`−s(p)

)Λp
j , for Λp

j = λp1σ(j,1)λ
p2
σ(j,2) · · ·λ

p`
σ(j,`) and p = (p1, . . . , p`) writing

L
(`)
k,j =

∑
p µk,j,pΛ

p
j with s(p) =

∑̀
l=1

sgn(pl) where sgn(x) =

{
1, if x > 0,

0, if x = 0.

Proof. It is well known that the k-Lyapunov constant, Lk, of a differential equation (10)
is a polynomial in the parameters Λ = (λ1, . . . , λN), see [13]. Moreover, in our case each

Lk vanishes when Λ = 0. Consequently, L
(`)
k is the Taylor polynomial of Lk up to degree

` at Λ = 0 and L
(`)
k (0) = 0. We write it as

L
(`)
k =

∑
p

µk,pΛ
p, (12)

where Λp = λp11 λ
p2
2 · · ·λ

pN
N , p = (p1, . . . , pN), and

N∑
l=1

pl ≤ `. This last condition allows us

to decompose the total sum (12) in partial sums of ` parameters in Λ. Each partial sum is
in fact the Taylor polynomial of the k-Lyapunov constant up to degree ` of equation (11).
As each monomial can appear more than once in each partial sum, we need to correct the
corresponding coefficient with a multiplicative factor that controls how many times this
monomial appears. This factor depends on the number of different λl appearing in each
monomial besides the total number N and the degree `, in fact, the number of times that

it appears in the partial sums, that is the combinatorial number
(
N−s(p)
`−s(p)

)
. �

4. Applications to cubic centers

In this section, we study lower bounds for the local cyclicity of some Darboux cubic
centers, in particular those called of codimension 12 in [35], but having a real center. We
use the results and procedures described in Sections 2 and 3. Here we fix n = 3, the center
point is located at the origin and rescaling variables and time if necessary, we consider
the perturbed system (1), that writes in complex coordinates as

ż = (i +λ0)z + p(z, z̄) +
3∑

k+l=2

(akl + i bkl)z
kz̄l. (13)

Moreover, the corresponding unperturbed system ż = i z + p(z, z̄) has a cubic Darboux
center and we have, in general and among the trace parameter λ0, 14 real parameters

(a20, a11, a02, . . . , b20, b11, b02, . . .) ∈ R14.
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In the proofs, we have denoted by λ = (u1, u2, . . . , u11) ∈ R11 the relevant parameters
and there are three that have been chosen as zero to simplify the computations. This is
because in each center it can be seen that there are three that do not play any role. Using
Theorems 2.1 and 2.2, we first study the number of limit cycles appearing with these
parameters, and then we add an extra one using the trace λ0. In each result, we have
detailed why, the unperturbed system, is a center and which is the labeled name following
the notation in [35]. In some cases, we have described also what was known up to now.
Most of the considered centers are 1-parameter families depending on a special parameter
a. Following the ideas of Theorem 2.1, see also [12], most probably, the cyclicity results
are generic. That is, are valid for almost every value a, but for simplicity, we have chosen
only one value for it.

Proposition 4.1. There exist cubic polynomial perturbations such that from the origin
of system 

ẋ = −343

576
x3 − 7

72
x2 − 49

36
xy − 2 y,

ẏ =
343

72
x3 − 343

96
x2y +

49

24
x2 +

259

36
xy − 49

9
y2 + x,

(14)

bifurcate at least 11 limit cycles of small-amplitude.

This family is labeled as CD12
11 in [35] and as CD45 in [36]. System (14) has

H = − 81

245

(
5764801
23887872

x5 + 588245
331776

x4 + 132055
20736

x3 + 20335
2592

x2 + 1715
648

xy + 245
72
x+ 35

9
y + 1

)4(
117649
331776

x4 + 2401
1152

x3 + 1715
288

x2 + 49
18
x+ 28

9
y + 1

)5 (15)

as a first integral. In both previous works, Melnikov theory or order 2 and 3, respectively,
is used to prove the same statement. The first integral proposed in [35] depends on one
parameter, named a, that it is fixed to zero in [36]. For this value the corresponding
system has a real saddle equilibrium point at the origin but as the computations done
by Żo la̧dek are all in complex he comments that, generically, the result for real cyclicity
is also valid. Recently, in [30] this special parameter value is fixed to a = −3 where
the system has a real center at the point (3/2,−11/4). The proof uses developments of
seventh-order of the Lyapunov constants. The first integral (15) is obtained from the
one proposed in [30] but moving the equilibrium point and doing an affine change of
coordinates that writes the linear part simpler. This new expression reduces computation
time. Our proof, which is different, shows also that a Taylor approximation up to degree 7
is the minimum necessary to unfold 11 limit cycles but we have used developments of the
Lyapunov constants up to degree 10 for a better understanding of this local bifurcation
phenomenon.

Proof of Proposition 4.1. Clearly system (14) has a center at the origin because (15) is a
first integral well defined at the origin and the corresponding level curves in a neighbor-
hood of the origin are ovals. In fact H = −81/245 + x2 + 2y2 + · · · .

The first step is the computation of the Taylor approximations of the Lyapunov con-
stants, Lk, corresponding to a cubic perturbation of system (14) having only quadratic
and cubic terms. We will study which are the principal parts, near the origin in the
parameters space, of each Lyapunov constant when the previous vanish.

The second step is the study of linear parts of Lk. Unfortunately, we get only 9 linearly
independent. More concretely, the 10th and the 11th are linearly dependent with respect
to the first nine. Consequently, Theorem 2.1, adding the trace parameter, provides an
unfolding with 9 limit cycles. To obtain the remaining two as it is stated, we need to look
at higher-order developments. After a linear change of variables and doing the necessary
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transformations following the scheme detailed in Section 2, we get

Lk = uk +O2(λ), for k = 1, . . . , 9,

L10 = O2(λ),

L11 = O2(λ).

Here λ = (u1, u2, . . . , u11) ∈ R11 denotes the relevant parameters, the other are zero, and
Ok(λ) contains all monomials of degree at least k in λ.

In the third step, we study the higher-order developments, in particular, the ones
corresponding to L10 and L11. The Implicit Function Theorem ensures that there exists an
analytical local change of variables in the parameter space, well defined in a neighborhood
of the origin, such that Lk = vk, for k = 1, . . . , 9. With this change, doing an affine
change of variables, and following the scheme detailed in Section 2 we can write the
last two Lyapunov constants depending only on two parameters (v10, v11), except positive
multiplicative constants, as

L10 = v310 +O4(v10, v11),

L11 = −v310 +O4(v10, v11).

Here, taking v11 = 0, it is clear that we have a curve, in the parameters space, of weak-foci
of order 10, because L10 6= 0, that unfolds (using the linearity of v1, . . . , v9 and the trace
parameter) 10 limit cycles. This is also true taking v10 = 0, but with a higher development,
because L10 6= 0. In fact, except a positive multiplicative constant, L10 = v611 + O7(v11).
It is evident that, only with a third-order development, we can not unfold the eleventh
limit cycle.

The next step is the study, if they exist, of the different real branches near the origin
that has the algebraic curve L10 = 0 and if there exists one such that L11 6= 0. This is
done computing more terms in the development of L10 and L11. We can follow [8] to use
the Newton–Puiseux algorithm with different weights for the variables (v10, v11). With
weights (2, 1) the principal parts are

L10 = v310 + α22v
2
10v

2
11 + α14v10v

4
11 + α06v

6
11 +O

(2,1)
7 (v10, v11),

L11 = −(v310 + α22v
2
10v

2
11 + α14v10v

4
11 + α06v

6
11) +O

(2,1)
7 (v10, v11),

where O
(2,1)
m denotes the monomials with degree higher or equal than m with respect to

the weight (2, 1). With this weight, it is easy to see the different simple branches of the
intersection at the origin. In fact, the principal part of L10, with this specific choice of
weights, decomposes as a product of two factors, one simple and one double,

L10(v10, v11) = (v10 − a2v211)
(
v10 − b2v211

)2
+O

(2,1)
7 (v10, v11), (16)

with

a2 = −660160595890746

37506906889
and b2 = −487045680336990

37506906889
.

The study of the different branches, v
[j]
10(v11), of the curve L10(v10, v11) = 0 near the origin

is done using the weighted blow-up v10 = v211w10. Then the function (16), collecting in
v11, can be written as polynomials in v11 of degree m with coefficients polynomials in w10

of degree [m/2], for m ≥ 6, where [·] denotes the integer part function. Consequently,
dividing by v611, (16) writes as

L̃10(w10, v11) = (w10 − a2) (w10 − b2)2 +
∞∑
m≥1

Wm(w10)v
m
11,
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with Wm polynomials of degree [(m + 6)/2]. An equivalent expression, L̃11(w10, v11) can
be obtained for L11 but with different functions Wm(w10).

Now, we can write L̃10 = w̃10 in a neighborhood of (w10, v11) = (a2, 0) using the Implicit

Function Theorem, because L̃10(a2, 0) = 0 and the partial derivative

∂L10

∂w10

∣∣∣∣
(a2,0)

= (a2 − b2)2 6= 0.

Clearly, when w̃10 = 0, there exists an analytic branch, w10 = ω[1](v11) = a2 + O1(v11),

such that L̃10 and also L10 vanish on it. Consequently, v10 = v211ω
[1](v11) = a2v

2
11+O3(v11).

With this change of variables, after multiplying by v611, we write (16) as L10 = v611w̃10.
Additionally, except a positive multiplicative constant, we get

L11|L10=0 = L11|w̃10=0 = −v711 +O8(v11) 6= 0,

for v11 6= 0 small enough, and L11 = −v711(1 +O1(w̃10, v11)). We notice that the neighbor-
hood of (a2, 0) for the variables (w10, v10) is transformed to a neighborhood of the origin
for the variables (w̃10, v11).

This proves that there exists a curve, in the parameters space, for v11 small enough,
of weak-foci of order 11 that is born at the origin. The cubic perturbation mechanism
described in Section 2 following the scheme of Roussarie, see [28], proves that only 11 limit
cycles can bifurcate from the origin of system (14). This is because, from the Weierstrass
Preparation Theorem, see [31], the Poincaré return map is a polynomial with coefficients
the Lyapunov constants, that write, after all the changes of variables, as Lk = uk, for
k = 1, . . . , 9, L10 = v611w̃10 and L11 = −v711(1 + O1(w̃10, v11)). Finally, using the weighted
blow-up {u1 = z7z1, u2 = z7z2, . . . , u9 = z7z9, w̃10 = zz10, u11 = z}, after dividing by z7,
it is clear that we have constructed a versal unfolding, obtaining the maximal number of
limit cycles. As v11 can vanish this upper bound is in fact a lower bound for the cyclicity
of the center as we wanted to prove. �

As we have explained in Section 2, the above proof is a kind of generalization of the
result provided by Christopher in [12], see Theorem 2.2. After the simplification due to
the linear developments of the first 9 Lyapunov constants, the next two has not the same
order at the origin. It is also clear that the transversal straight line ` is now an analytic
curve.

We notice that, as we have proved that the curve L10 = 0 has a real branch associated
to the simple factor, using the Weierstrass Preparation and Division Theorems, [31], we
can write (16), except for a nonvanishing multiplicative function, as

(v10 − v211ω[1](v11))(v
2
10 + v211φ1(v11)v10 + v411φ0(v11)), (17)

where φ0 and φ1 are analytic functions that vanish at zero. As we have computed the
Taylor approximations of the Lyapunov constants up to degree 10, using the Puiseux
series (see [8]), we can compute four extra terms of this analytic simple branch v10 =

v211ω
[1](v11) =

∞∑
m≥2

amv
m
11. In this case, the Puiseux series has only natural exponents then
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it is, in fact, a Taylor series. Straightforward computations show that

a3 =
16104570945819692121638226351

25209283713691672597112320
,

a4 =
386258251571578220793485476718239267056083732367

123628442038275561958744770186426115741450240
,

a5 = −7344527305232752838312438300220617202784745335855878366073914837

10802169913777097568319537676224431667868634439810816147456000
,

a6 = −1040667719410212727048282608984 · · · 195082403446045341049879843107

2913611107447792035945464752572 · · · 844814820535324990043586560000
.

Using the above coefficients and the developments up to degree 10 of L10 we can compute
the first terms of the Taylor series of the functions φ0 and φ1 in (17). It can be checked that
they provide the double factor appearing in (16) and that the discriminant, with respect
to v10, writes as φ2

1(v11) − 4φ0(v11) = Av811 + · · · with A > 0. This proves that there
exist another two real branches, tangent to the double factor in (16), v10 = v211ω

[j](v11) =
∞∑
m≥2

b
[j]
mvm11, for j = 2, 3. In the above proof we have got the first coefficient, that coincides

for both branches, b
[2]
2 = b

[3]
2 = b2. In fact, the second also coincides,

b
[2]
3 = b

[3]
3 = b3 = −30834092507446246450289832

9847376450660809608247
,

because the discriminant starts with terms of degree 8. The next coefficients b
[2]
4 and b

[3]
4 ,

which are different, are the zeros of the quadratic equation β2 + β1β + β0 = 0, where

β1 =
374029705710452551852715772722429520

369344631635866288497876795513583
,

β0 =
8566777417085455703175077527180594435196203104777368650266555098833382208

33421786944967271392447900695765062189771656497217124612800686982805
.

We observe that we have needed approximations up to degree 10 to distinguish the other
two real branches. Over them, we have checked that L11 vanishes up to this level of
approximation.

Proposition 4.2. There exist cubic polynomial perturbations such that from the origin
of system 

ẋ =
5

32
x3 − 15

64
x2y − 5

32
xy2 − y,

ẏ =
15

64
x3 +

35

32
x2y − 15

16
xy2 − 15

32
y3 + x,

(18)

bifurcate at least 11 limit cycles of small-amplitude.

This is the system CD12
12 in [35]. Christopher studies in [12] the local cyclicity for this

family fixing the free parameter to a = 2. He also needs developments up to degree two,
but with a high computational effort using Grobner Basis. The above system is obtained
taking a = 3/5, but doing an adequate affine change of coordinates. The computations
are simpler because the linear part at the equilibrium, which has been moved to the origin,
is in the normal form of an elementary center type point.

Proof of Proposition 4.2. System (18) has a center at the origin because it has the rational
first integral

H = −36

5

(625x4 + 1920x2 + 2560xy + 4096)3

(78125x6+360000x4+480000x3y+1044480x2+737280xy+491520y2+786432)2
,

which is well defined at the origin and with Taylor series −4/5 + x2 + y2 + · · · .
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Computing the Lyapunov constants, following the scheme explained in Section 3 up
to degree 1, corresponding to the perturbed system (13), we have that the first five
linear terms have rank five with respect to the parameters. Doing a linear change of

coordinates we have that they write L
(1)
k = uk, for k = 1, . . . , 5. Using the triangularization

procedure describe before Proposition 2.3 we can simplify the next Lyapunov constants

to get L
(1)
k = 0, for k = 6, . . . , 11. Consequently, up to first-order only five limit cycles

bifurcate from the origin.
The second step is the computation of the second-order terms. Using again Proposi-

tion 2.3 to eliminate the parameters uk, k = 1, . . . , 5, we obtain 6 homogeneous polyno-
mials of degree 2 for the second-order terms of Lk for k = 6, . . . , 11.

L
(2)
6 =

65234375

2491416576
a2
11 −

5695234375

226718908416
a02a11 +

187109375

32388415488
a11a20 +

1842265625

75572969472
a11b02

− 250390625

5813305344
a11b11 +

23046875

1937768448
a11b20 +

390625

899678208
b211 −

1466328125

75572969472
a02b11

− 250390625

75572969472
a20b11 −

950546875

75572969472
b02b11 +

266796875

25190989824
b11b20 −

141015625

18893242368
a2
02

+
21171875

4359979008
a02a20 −

20703125

25190989824
a02b02 +

708828125

75572969472
a02b20 +

390625

1349517312
a2
20

− 204921875

75572969472
a20b02 +

23046875

25190989824
a20b20 +

241796875

75572969472
b202 +

47421875

37786484736
b02b20 −

11328125

3598712832
b220,

L
(2)
7 = − 804296875

53150220288
a2
11 +

62870546875

4836670046208
a02a11 −

229296875

76772540416
a11a20 −

488059296875

43530030415872
a11b02

+
221214453125

14510010138624
a11b11 −

240866796875

43530030415872
b20a11 −

94140625

345476431872
b211 +

406132109375

43530030415872
a02b11

+
8782421875

3348463878144
a20b11 +

3529140625

537407782912
b02b11 −

26304296875

4836670046208
b11b20 +

9333203125

3627502534656
a2
02

− 1203359375

329772957696
a02a20 +

11367578125

43530030415872
a02b02 −

163425546875

43530030415872
a02b20 −

12109375

86369107968
a2
20

+
39773359375

14510010138624
a20b02 −

5510546875

4836670046208
a20b20 +

126171875

76772540416
b220 −

10987578125

7255005069312
b02b20 −

8826953125

14510010138624
b202,

L
(2)
8 =

205818359375

68341519613952
a2
11 −

27010282421875

15786891030822912
a02a11 +

566685546875

2255270147260416
a11a20

+
6561098046875

15786891030822912
a11b02 +

49375697265625

15786891030822912
a11b11 +

2022599609375

15786891030822912
b20a11

+
471892578125

5920084136558592
b211 −

6456421484375

15786891030822912
a02b11 −

4613353515625

5262297010274304
a20b11

− 47627121484375

47360673092468736
b02b11 +

33662533203125

47360673092468736
b11b20 +

733501953125

1315574252568576
a2
02

+
1488928515625

1315574252568576
a02a20 +

3438419921875

15786891030822912
a02b02 −

5852162890625

15786891030822912
a02b20

− 5248046875

140954384203776
a2
20 −

121922265625

103182294319104
a20b02 +

30685546875

53154515255296
a20b20

− 3643357421875

15786891030822912
b220 +

509573828125

607188116570112
b02b20 −

3731908203125

5262297010274304
b202,

L
(2)
9 =

4251095908203125

2742408499068665856
a2
11 −

1670155486328125

914136166356221952
a02a11 +

120403642578125

210954499928358912
a11a20

+
1678778216796875

747929590655090688
a11b02 −

43118063095703125

8227225497205997568
a11b11 +

9782838056640625

8227225497205997568
b20a11

+
144507529296875

9598429746740330496
b211 −

9930148478515625

5235507134585634816
a02b11 −

240089833984375

2742408499068665856
a20b11

− 757186115234375

914136166356221952
b02b11 +

14849983759765625

19196859493480660992
b11b20 −

377087236328125

436292261215469568
a2
02

+
143162263671875

685602124767166464
a02a20 −

1169718330078125

4430044498495537152
a02b02 +

62189059427734375

57590578480441982976
a02b20

+
2179873046875

28566755198631936
a2
20 +

9000880859375

210954499928358912
a20b02 −

210343720703125

2742408499068665856
a20b20

− 1433194228515625

6398953164493553664
b220 −

1701270740234375

9598429746740330496
b02b20 +

1006989326171875

1745169044861878272
b202,
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L
(2)
10 = − 16403503182763671875

11057391068244860731392
a2
11 +

6019489875693359375

4553043381042001477632
a02a11 −

4110241175146484375

11057391068244860731392
a11a20

− 226410773740234375

180423630484181876736
a11b02 +

1537815485986328125

781835732098121465856
a11b11 −

1853450635595703125

2866731017693112041472
b20a11

− 543782850048828125

19350434369428506279936
b211 +

27828407758955078125

25800579159238008373248
a02b11 +

719020527197265625

2866731017693112041472
a20b11

+
50925810357353515625

77401737477714025119744
b02b11 −

43579580815966796875

77401737477714025119744
b11b20 +

1929508851220703125

6450144789809502093312
a2
02

− 7638986422255859375

19350434369428506279936
a02a20 +

54847838720703125

505893709004666830848
a02b02 −

103268798154296875

216811589573428641792
a02b20

− 17619605615234375

460724627843535863808
a2
20 +

6869360360732421875

25800579159238008373248
a20b02 −

279467075634765625

2866731017693112041472
a20b20

+
4340212115087890625

25800579159238008373248
b220 −

15956755576171875

159262834316284002304
b02b20 −

3536245476904296875

25800579159238008373248
b202,

L
(2)
11 =

42718448752197265625

95184091534832953196544
a2
11 −

171788232009716796875

602832579720608703578112
a02a11 +

6210508852783203125

95184091534832953196544
a11a20

+
5259382308953564453125

37978452522398348325421056
a11b02 +

2996301505219970703125

12659484174132782775140352
a11b11 +

2217310253376220703125

37978452522398348325421056
b20a11

+
79495114489990234375

6329742087066391387570176
b211 −

4526167344325244140625

37978452522398348325421056
a02b11 −

1501926097403076171875

12659484174132782775140352
a20b11

− 2113627250105517578125

12659484174132782775140352
b02b11 +

8402376020751953125

67697776332260870455296
b11b20 +

170019216537353515625

3164871043533195693785088
a2
02

+
77972993629345703125

452124434790456527683584
a02a20 +

378160348073486328125

37978452522398348325421056
a02b02 −

344733712266748046875

37978452522398348325421056
a02b20

+
58214882568359375

32294602485032609120256
a2
20 −

2056445968159619140625

12659484174132782775140352
a20b02 +

56233442866943359375

744675539654869575008256
a20b20

− 371336987060546875

9568771106676328628224
b220 +

666554572872607421875

6329742087066391387570176
b02b20 −

930355010247314453125

12659484174132782775140352
b202.

We consider now the system {L(2)
6 = · · · = L

(2)
10 = 0}. Doing, for example, the blow-up

a02 = zv1, a11 = zv2, a20 = zv3, b02 = z, b11 = zv4, b20 = zv5, we can solve a system of five
equations of degree 2 with respect to 5 variables. Using a computer algebra system we
get that vk = pk(α)/q(α) with pk and q polynomials with rational coefficients of degree
27 and α being a solution of a given polynomial, Q(α), also with rational coefficients, of
degree 28. This polynomial has 20 simple real solutions,

{ − 1.460571830,−0.6718444255,−0.6670390163,−0.5158935998,−0.4874999611,

− 0.3970369469,−0.3874233159,−0.2401990480,−0.02992848475, 0.02384205186,

0.03979267840, 0.08015376288, 0.2087598950, 0.2131172755, 0.2232320471,

0.2463926997, 0.2995004189, 0.3312032992, 0.3788127882, 1.397031032}.
The next step is to check that the Jacobian of the five equations with respect to {v1, . . . , v5}
is different from zero. The size of the polynomials does not make possible to compute
directly the determinant of the Jacobian matrix in terms of α. Then, we do a Gauss
elimination to get a triangular matrix. The diagonal elements are now of the form
J11 = q1(α)/q(α) and Jkk = qk(α)/(qk−1(α)q(α)), for k = 2, . . . , 4, where all polynomials
have also rational coefficients and degree 27 in α, in particular q1 = p1. Consequently,

the determinant is q5(α)/q5(α). Moreover, it can be checked also that L
(2)
11 = p6(α)/q2(α).

The last step is the computation of the resultants of all polynomials pk, qk with Q with
respect to α, checking that all are different from zero. So all the variables vk, among of

the determinant and the value of L
(2)
11 are nonzero real numbers.

It is clear that with the proposed blow-up, after dividing by z2 we can apply the Implicit

Function Theorem to find an analytic curve vk = Vk(z) where the varieties {L(2)
6 , . . . , L

(2)
10 }

intersect transversally and L
(2)
11 is nonzero. Then 6 extra limit cycles appear and the

statement follows.
The scheme of the proof is the same as the proof of Proposition 4.1. But, in fact, we

could apply Theorem 2.2. But the work to find the line ` is the same.
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We notice that all the computations in this proof have been made with Maple on a
personal computer in a few minutes. We have not shown the polynomials because of the
size of them. The coefficients are rational numbers with numerators and denominators
having more than 200 digits. �

Remark 4.3. An alternative proof of the above result can be done computing numerically
an approximation of a solution

v1 = 0.1924453833548429, v2 = 0.2384205185830677,

v3 = 0.1490077870024313, v4 = 0.7626068770346651,

v5 = 1.5437258992144801,

with enough digits to ensure that L
(2)
6 /z2 ≈ 6.80504529555082 · 10−9 and the Jacobian,

−4.45823335837756 · 10−10, are nonzero real numbers. This can be obtained using a
computer assisted proof with the Poincaré–Miranda Theorem, as we will do in some of
the following results.

The next proposition shows the difficulties to get more than 10 limit cycles. Our
computations do not provide a better result for the cyclicity of the next cubic polynomial
system. The unperturbed system is labeled as CD12

29 in [35] but we have not considered
it directly. To simplify the computations, we have made an affine change of coordinates.

Proposition 4.4. There exist cubic polynomial perturbations such that the origin of sys-
tem {

ẋ = 8x3 − 40x2y + 2x2 − 30xy − 5y,

ẏ =
24

5
x3 + 24x2y − 80xy2 + 4x2 + 10xy − 10y2 + x,

(19)

has cyclicity at least 10.

Proof. System (19) has a center at the origin because it has the rational first integral

(64x3 + 72x2 + 120xy + 30x+ 30y + 5)4

(128x4 + 192x3 + 320x2y + 128x2 + 240xy + 40x+ 40y + 5)3
,

which is well defined at the origin and the level curves are topologically circumferences.
Doing a first-order analysis of the Lyapunov constants, only the first 6 are linearly

independent. Then, as the previous studies, we can write L
(1)
k = uk, for k = 1, . . . , 6.

Applying the simplification algorithm described previously, using Proposition 2.3, we get

L
(2)
7 = A7u7u8,

L
(3)
8 = A8u7u9u10,

L
(3)
9 = u7u9(A9u7 +B9u10),

L
(3)
10 = u7u9(A10u7 +B10u10),

L
(3)
11 = u7u9(A10u7 +B10u10),

where Ak, Bk are nonvanishing rational numbers. We notice that L
(3)
11 = L

(3)
10 . To study

how is the local intersection of the varieties Lk, for k = 7, . . . , 11 we need to do an adequate
weighted blow-up using a privileged parameter. Here we have chosen u7 = z, u8 = z2z8,
u9 = zz9, u10 = zz10, u11 = zz11, the other three parameters are taken as zero. The Taylor
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development with respect to z, dividing by a nonzero rational number, is

L7 = z3(z8 + p2(z9, z10)) +
∑
j≥4

W7j(z8, z9, z10, z11)z
j,

L8 = z3z9z10 +
∑
j≥4

W8j(z8, z9, z10, z11)z
j,

L9 = z3z9p1(z9) +
∑
j≥4

W9j(z8, z9, z10, z11)z
j,

L10 = z3z29 +
∑
j≥4

W10j(z8, z9, z10, z11)z
j,

where p1 and p2 are polynomials of degree 1 and 2, respectively, p1(0) 6= 0, and Wk,j are
also polynomials.

The statement follows as in the previous studies because there exists a transversal
intersection of the varieties {z8 + p2(z9, z10) = 0, z9z10 = 0, z9p1(z9) = 0} with z9 6= 0.
Then, clearly, L10 is nonvanishing for z small enough. �

Remark 4.5. We remark that we have tried to improve the above result unsuccessfully.
We have used different weighted blow-ups, higher-order developments, and the study of
the Newton polyhedron.

Proposition 4.6. There exist cubic polynomial perturbations such that from the origin
of system

ẋ = −338

441
x3 +

4394

9261
x2y − 338

147
xy2 +

338

147
y3 − 26

21
x2 − 793

441
xy +

65

21
y2 + y,

ẏ =
338

3087
x3 − 338

343
x2y − 338

1323
xy2 − 338

1029
y3 − 65

147
x2 − 247

147
xy − 26

147
y2 − x,

(20)
bifurcate at least 11 limit cycles of small-amplitude.

Proof. System (20) has a center at the origin because it has the rational first integral

H =
324135

86528

(
2704x2

3087
− 5408xy

3087
+ 2704 y2

1323
− 208x

147
+ 416 y

147
+ 1
) (

104x
441

+ 104 y
147

+ 1
)3(

−2704x2

15435
+ 2704 y2

1715
− 52x

147
+ 52 y

21
+ 1
)2

which is well defined at the origin, H = 324135/86528 + x2 + y2 + · · · .
We consider the perturbed system (13) being (20) the unperturbed center. Follow-

ing the scheme explained in Section 3, the developments up to degree 1 of the first 8
Lyapunov constants are linearly independent. Then, after a linear change of the pertur-

bation parameters, we have that they write as L
(1)
k = uk, for k = 1, . . . , 8. Using the

properties detailed in Proposition 2.3 we can simplify the next Lyapunov constants to

get L
(1)
k = 0, for k = 9, . . . , 11. At this point we assume, to simplify computations, that

b03 = b12 = b30 = 0. Then, we can write

L
(2)
9 = −Au9u10,

L
(2)
10 = Bu9u10,

L
(2)
11 = −Cu9u10,

where A,B, and C are rational numbers having between 48 and 71 digits in the numerators
and between 68 and 86 digits in the denominators. So, we see clearly here that we have at
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least 9 limit cycles using the trace parameter together with uk, for k = 1, . . . , 8. In fact,
at most 9 with only order 2 developments.

Hence, if we want more limit cycles, we should compute up to degree 4 developments.

Because, after using again the simplification with L9 and Proposition 2.3, L
(3)
10 = L

(3)
11 = 0.

Doing the blow-up u9 = z, u10 = zz10, and u11 = zz11, we can divide L9 by z2 and
we can use the Implicit Function Theorem to write z10 as a function of z and z11. Then,

L
(4)
10 = z4p4(z11) and L

(4)
11 = z4q4(z11) where p4 and q4 are polynomial with rational

coefficients of degree 4 having both 4 different real roots. Moreover, z4 is a common
factor of the complete L10 and L11 and the resultant of p4 and q4 with respect to z11
is different from zero. Therefore, applying also the Implicit Function Theorem near the
simple zeros of p4, there exists values of the parameters, for small enough z, such that
L10 = 0 and L11 6= 0.

The statement follows because we have proved the existence of an analytic curve of
weak-foci of order 11 such that, along it and as in the previous proofs, 11 limit cycles of
small-amplitude bifurcate from the origin. �

Proposition 4.7. There exist cubic polynomial perturbations such that from the origin
of system{

ẋ = 2809
32946

x3 − 22472
49419

yx2 + 5618
16473

xy2 + 69695
98838

x2 − 66992
16473

xy + 636
289

y2 + x− 2112
289

y,

ẏ = 22472
247095

xy2 − 2809
16473

y3 + 86549
197676

xy − 20988
27455

y2 + 151447
247095

x− y,
(21)

bifurcate at least 11 limit cycles of small-amplitude.

This is the case labeled CD12
31 in [35]. Christopher in [12] provides with it the first

analytic proof that 11 limit cycles of small-amplitude exist for a cubic polynomial vector
field. Here we add it for completeness.

Proof of Proposition 4.7. The corresponding first integral of (21), which is well defined at
the origin, is

H =

(
xy2 +

280xy

53
+

342 y2

53
+

22409x

2809
+

95760 y

2809
+

7812755

148877

)5

(
x+

342

53

)3

F 2
6 (x, y)

,

where

F6(x, y) = xy5 +
700

53
xy4 +

342

53
y5 +

406045

5618
xy3 +

239400

2809
y4 +

30389450

148877
xy2

+
139611775

297754
y3 +

18788141215

63123848
xy +

10549512750

7890481
y2

+
150246782525

836390986
x+

826646189040

418195493
y +

26977377387858

22164361129
.

The proof of the above proposition follows computing the linear terms of the Lyapunov
constants and then using Theorem 2.1 to provide the complete unfolding of 11 limit
cycles. �

5. Order one studies to get lower bounds for M(8) and M(9)

This section is devoted to proving the statement of Theorem 1.1 corresponding to local
cyclicity of polynomial vector fields of degrees 8 and 9, using only linear developments. The
proofs follow from Theorem 2.1 just computing the Taylor approximations up to degree
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1 and computing how many are linearly independent. In both results, the unperturbed
systems are centers of degrees 7 and 8 having a straight line of equilibrium points, that,
for simplicity, we have fixed to {1− x− y = 0}.

We notice that the parallelization procedure described in Section 3 is indispensable to
get the results. The total computation time, in both cases, is less than one hour.

Proposition 5.1. Consider the perturbed system (4) of degree n = 8 with the center
(ẋ, ẏ) = (Pc(x, y), Qc(x, y)) given by

ẋ = (1− x− y)(−2527
3
x6y − 2968

3
x5y2 − 4186

3
x4y3 − 2800

3
x3y4 − 553x2y5

+56xy6 + 184
3
x3y + 88

3
x2y2 + 48xy3 − y),

ẏ = (1− x− y)(672x7 + 1484x6y + 2219
3
x5y2 + 5684

3
x4y3 − 742

3
x3y4 + 1148

3
x2y5

−315y6 − 28y7 − 58x4 − 44x3y − 104
3
x2y2 − 44

3
xy3 + 10y4 + x).

There are perturbation parameters λ such that at least 76 limit cycles of small-amplitude
bifurcate from the origin.

The above system, without the straight line of equilibrium points, is a center because
it has the first integral H(x(x2 + y2), y(x2 + y2)) where

H(x, y) =
(42x− 7y − 1)3 f3(x, y)

(448x2 + 336xy + 63y2 − 44x− 12y + 1)3 (1183x2 − 68x+ 1)
(22)

and f3(x, y) = 10752x3 + 29568x2y + 17640xy2 + 3024y3 − 1600x2 − 2760xy − 576y2 +
74x+ 57y− 1. The rational first integral (22) corresponds to the cubic polynomial center
provided by Bondar and Sadovskĭı in [7]. They prove that the cubic perturbations provide
also 11 limit cycles using only up to degree 1 Taylor approximations as for system (21).
Although we have also verified it, we have not included this result here.

Proposition 5.2. Consider the perturbed system (4) of degree n = 9 with the center
(ẋ, ẏ) = (Pc(x, y), Qc(x, y)) given by

ẋ = (1− x− y)( 54
175
x8 + 18

35
x7y − 54

175
x6y2 + 894

175
x5y3 − 2x4y4 + 66

25
x3y5

−26
35
x2y6 − 342

175
xy7 + 16

25
y8 − y),

ẏ = (1− x− y)(−198
175
x7y − 1254

175
x6y2 − 586

175
x5y3 − 258

35
x4y4 − 22

5
x3y5

+18
25
x2y6 − 382

175
xy7 + 162

175
y8 + x).

There are perturbation parameters λ such that at least 88 limit cycles of small-amplitude
bifurcate from the origin.

The proof that the above system, without the straight line of equilibrium points, is a
center follows from an idea of Giné in [19]. We consider the center with homogeneous
quartic nonlinearities given in [19, System (6), Pag. 8857] taking c = 4/5 and s = 3/5.
The change of variables (x, y) = r3/7(cos θ, sin θ) in such a quartic system gets a system
of degree 8 having also a center at the origin.

We notice that for other degrees, n = 3, . . . , 7, adding a straight line of equilibria to a
center of degree n − 1, we have not obtained higher lower bounds for the local cyclicity
than the ones obtained previously, nor better than the ones given in the results of the next
section using higher-order Taylor series. For example, the best cubic system of Section 4
adding such curve provides a quartic system with only 19 limit cycles up to first and
second-order studies. For degree 6, we have not found any system to improve the highest
value found in [4], M(6) ≥ 48, which improves in 8 the best known value for M(6) in [25].
We remark that the number of total parameters for n = 6 is 50.
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6. Higher order studies to get lower bounds for M(4), M(5), and M(7)

This section is devoted to proving the statement of Theorem 1.1 for the local cyclicity
of polynomial vector fields of degrees 4, 5, and 7. In the proofs, we will use higher-order
Taylor developments.

Proposition 6.1. Consider the perturbed system (4) of degree n = 4 with the center
(ẋ, ẏ) = (Pc(x, y), Qc(x, y)),

ẋ =
1

25
(32x4 − 168x2y2 + 32xy3 + 24y4)− y,

ẏ =
1

25
(−32x3y − 192x2y2 − 24xy3 + 64y4) + x.

(23)

There are perturbation parameters λ such that at least 20 limit cycles of small-amplitude
bifurcate from the origin.

Proof. The system in the statement is presented in [19, 20]. In [19] it is proved that the
origin is a center because it has the polynomial inverse integrating factor

V (x, y) =(8xy − 4y2 + 10y − 5)(64x3 − 96x2y + 48xy2 − 8y3 − 25)×
(64x2y2 − 64xy3 + 16y4 − 80xy2 + 40y3 + 40xy + 80y2 + 50y + 25)

We need to compute the Taylor developments up to degree 4 of the Lyapunov constants.
Because we will see that up to degree 3 is not enough to prove the statement. As we have
detailed in the proofs of Propositions 4.1 and 4.2, simplifying as we have described in
Section 2 and up to multiplicative nonzero constants, we have the next triangularized
expressions up to degree two:

Lk = uk +O2(λ), for k = 1, . . . , 16, L19 = O3(λ),

L17 = −u17u19 + u218 +O3(λ), L20 = O3(λ),

L18 = u17u18 +O3(λ), L21 = u220 +O3(λ).

(24)

Here λ denotes the perturbation parameters and Ok(λ) are the monomials of degree at
least k in λ. Clearly, using only up to degree two of Taylor approximations there are two
Lyapunov constants that vanish. So, higher degrees must be computed.

Using the Implicit Function Theorem and after using adequately the expressions of
L1, . . . , L16, we can consider only Lk, for k = 17, . . . , 21 depending on (u17, . . . , u24).

With the Taylor approximation up to degree three, an adequate blow-up is

u17 = z, u18 = z2w1, u19 = z2w2, u20 = zw3,

u21 = zw4, u22 = zw5, u23 = zw6, u24 = zw7.

Then, after dividing by z3, we have

L̃
(3)
17 = w2 +

1

3402000
w2

3 +
79

4838400
w2

6 +
1

241920
w3w6,

L̃
(3)
18 = w1 −

387

39040
w6w7 +

9

2440
w4w6 +

1

1220
w5w6 −

1

1600
w3w7

− 22797130436674460681587504742109808816907484398453930617769

22599395017588000741825603692446552868781675590536155251513600
w6

− 9999644540025045050531707316918826074133709626587611529

217079229805212609584646551861359050353307590841471778158750
w3,

L̃
(3)
19 =

54197 · · · 00000

866211 · · · 28447
w3 +

362945 · · · 0000

28873 · · · 76149
w7,

L̃
(3)
20 = 0.
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From the above expressions is clear that only up to degree three is not enough to prove
the statement. But, as the above nonvanishing three terms have rank 3 with respect to

w1, w2, and w3, we can use also the Implicit Function Theorem to solve L̃
(3)
k = zk, with

respect to w1, w2, w3 and compute the Taylor approximation up to degree four we get

L
(3)
17 = z3z17, L

(3)
18 = z3z18, L

(3)
19 = z3z19, L

(4)
20 = z4w2

6.

From which it follows that a curve of weak-foci of order 20 exists. Moreover, it unfolds
20 limit cycles of small-amplitude at it is indicated in the statement. The proof finishes
as the proofs of Propositions 4.1 and 4.2. �

Remark 6.2. In [19], it is studied the homogeneous nonlinearities perturbation of degree
4 of (23). It is proved, with approximations up to degree two, that 7 limit cycles exist in
this special subclass. This proves that there exists a curve of weak-foci of order 21. This
can be seen intuited from (24) but it is necessary to prove, using only homogeneous degree
four perturbation terms, that L21 is nonvanishing. But it is not possible to find a complete
unfolding of the 21 limit cycles with degree two because there are no free parameters, in

fact L
(2)
19 = L

(2)
20 = 0. In the proof, we have shown that with degree three we get only 19

limit cycles and with degree four we get 20. The problem about the existence of a complete
unfolding of 21 remains open. The computations to go further in the order are very hard.

Proposition 6.3. Consider the perturbed system (4) of degree n = 5 with the center
(ẋ, ẏ) = (Pc(x, y), Qc(x, y)),

ẋ =
1

25
(42x5 − 12x4y − 476x3y2 − 68x2y3 + 266xy4 + 56y5)− y,

ẏ =
1

25
(−8x5 − 26x4y − 28x3y2 − 4x2y3 − 132xy4 + 6y5) + x.

(25)

There are perturbation parameters λ such that at least 33 limit cycles of small-amplitude
bifurcate from the origin.

Proof. As the previous result, system (25) appears also in [19, 20]. The system has a
center because

V (x, y) =(64x8 + 1600x7y + 13456x6y2 + 32000x5y3 − 99616x4y4 − 380800x3y5

+ 320656x2y6 + 548800xy7 + 153664y8 + 20000x4 + 85000x3y

− 10000x2y2 − 155000xy3 − 100000y4 + 15625)×

(−64x4 + 192x3y − 16x2y2 − 192xy3 − 64y4 + 25)
1
4

is an inverse integrating factor.
Computing the Lyapunov constants up to degree 2, we can check that the first 17 linear

parts are linearly independent. Then, up to a linear change of coordinates in the parameter

space we can write L
(1)
k = uk, for k = 1, . . . , 17, and L

(1)
k = 0, for k = 18, . . . , 33. Conse-

quently, using the same scheme as in the proof of Proposition 4.2, simplifying also with
triangularization scheme detailed after Proposition 2.3, and using the Implicit Function
Theorem we can restrict our study to see the intersection of 16 homogeneous polynomials
of degree 2,

L
(2)
k = Lk(λ̂), for k = 18, . . . , 33, (26)

with λ̂ = (u18, u19, . . . , u33) choosing three perturbation parameters as zero. We recall
that for degree 5 perturbations we have 36 parameters, but here only 33 will be relevant.
There are three that they do not play any role.
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The next step is to consider the blow-up uk = zzk, for k = 18, . . . , 32 and u33 = z in
(26), writing Lk(λ̂) = z2Lk(ẑ) with ẑ = (z18, z19, . . . , z32). Then, we need to show that this
system of 15 equations of degree 2 with respect to 15 variables has at least a transversal
intersection real point, ẑ∗. Moreover, we should check that L33(ẑ

∗) is nonvanishing. The
proof finishes applying Theorem 2.2 to provide the complete unfolding of 33 limit cycles
of small-amplitude. The main difference with respect to the proof of Proposition 4.2 is
that here we can not obtain the explicit solution in terms of polynomials in one privileged
variable. Because of the high number of variables and the size of the coefficients of the
polynomials Lk.

Numerically, we can get an approximate solution

z∗18 ≈ 0.414467055443, z∗19 ≈ 0.977703106281, z∗20 ≈ 0.831273897080,

z∗21 ≈ 10.87232453671, z∗22 ≈ 0.089114602089, z∗23 ≈ 5.803007782422,

z∗24 ≈ −13.46886905316, z∗25 ≈ −2.653100632593, z∗26 ≈ 0.071920750628,

z∗27 ≈ 1.279070836650, z∗28 ≈ −0.963042490919, z∗29 ≈ −7.708796674748,

z∗30 ≈ −0.27853535522, z∗31 ≈ −7.245147157590, z∗32 ≈ 2.513953010283.

(27)

Then, L33(ẑ
∗) = −5.28936073528 and the Jacobian matrix of (L18, . . . ,L32) with respect

to ẑ at ẑ∗ is 1.2572040284 · 1014. We have solved numerically with different number of
digits (up to 1000 digits) to ensure the convergence of the numerical solution. The above
numerical approximation is shown with only 12 digits.

Then we can use the Poincaré–Miranda Theorem, to prove analytically the existence
of the point ẑ∗. This will be doing with an interval analysis for applying Theorem 2.4.
Finally, we need to check that the Jacobian and L33 are nonvanishing at ẑ∗, also with
another accurate interval analysis. This can be done with a Computer Assisted Proof
mechanism using the technical lemmas of Section 8.

The first step is to convert the approximate solution (27) to the adequate rational
expression:

z∗18 ≈
8289341108806467679

20000000000000000000
, z∗19 ≈

97770310628309363091

100000000000000000000
,

z∗20 ≈
83127389707517527887

100000000000000000000
, z∗21 ≈

10872324536703550641

1000000000000000000
,

z∗22 ≈
22278650522188043761

250000000000000000000
, z∗23 ≈

14507519456029022899

2500000000000000000
,

z∗24 ≈ −
6734434526579186771

500000000000000000
, z∗25 ≈ −

26531006325905618217

10000000000000000000
,

z∗26 ≈
35960375313628249487

500000000000000000000
, z∗27 ≈

12790708366491310147

10000000000000000000
,

z∗28 ≈ −
240760622728448541

250000000000000000
, z∗29 ≈ −

38543983373719519357

5000000000000000000
,

z∗30 ≈ −
1740845970112931499

6250000000000000000
, z∗31 ≈ −

14490294315170358141

2000000000000000000
,

z∗32 ≈
25139530102793502293

10000000000000000000
.

Then, we consider an affine change of parameters such that the linear part of f =
(L18, . . . ,L32) will be the new variables. Then, the Jacobian matrix at this point will
be near the identity. Next, we apply Theorem 2.4 with n = 15, c = 10−9 to f =
(L18, . . . ,L32). The conditions about the sign of the components of f on the faces S±i
are obtained from Lemmas 8.1 and 8.2. The existence of ẑ∗ is guaranteed because
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fi(S
−
i ) ⊂ [−2.01 · 10−9,−1.99 · 10−9] and fi(S

−
i ) ⊂ [1.99 · 10−9, 2.01 · 10−9]. We notice

that the numerator and denominators of Li, for i = 18, . . . , 32 are integer numbers hav-
ing between 138 to 152 digits each. Moreover, L33 ∈ [−5.482536,−5.0966185] and its
numerator and denominator have more than 120 digits each, so we have L33 < 0. Fi-
nally, we must show that the determinant of the Jacobian matrix, Jf(ẑ), of f with
respect to ẑ does not vanish at ẑ∗. This determinant, as it is a 15 × 15 matrix, needs
a very high computational cost. Alternatively, we can use the Gershgorin result, Theo-
rem 2.5, to show that its eigenvalues are in a ball centered at 1 with radius 10−3. That is
|λ − 1| < 10−3. Calling Ji,j the i, j-element of Jf(ẑ∗), and using again Lemmas 8.1 and
8.2, we can check that Ji,i ∈ [0.999919, 1.000009] and, for i 6= j, Ji,j ∈ [0.000018, 0.00212]
or Ji,j ∈ [−0.0002926,−5.7414588× 10−7] when Ji,j are positive or negative, respectively.
Therefore, all eigenvalues are nonzero and, consequently, also the determinant of Jf(ẑ∗).
Then, the result follows. �

Proposition 6.4. Consider the perturbed system (4) of degree n = 7 with the center
(ẋ, ẏ) = (Pc(x, y), Qc(x, y)),

ẋ = (1− x)
(
− y +

8

45
(2x− y)(24x5 − 12x4y − 32x3y2 + 12x2y3 − 42xy4 − 5y5)

)
,

ẏ = (1− x)
(

2x− 16

45
y(2x− y)(28x4 + 66x3y + 6x2y2 + 19xy3 + 6y4)

)
.

(28)

There are perturbation parameters λ such that at least 61 limit cycles of small-amplitude
bifurcate from the origin.

Proof of Proposition 6.4. A similar system as the unperturbed one, without the straight
line of equilibria 1−x = 0, appears in [19] in the study of local cyclicity for homogeneous
nonlinearities perturbation. Giné proposes to start with a quartic system as (23) having a
center at the origin because it has an integrating factor. Then, we should change to polar
coordinates and transform variable r to a new radial variable R3/5. With these changes the
new system has degree 6 and we get system (28) after adding a straight line of equilibria.
So, it has a center at the origin. Moreover, it has the next inverse integrating factor

V (x, y) =(2x2 + y2)−2/3(128x5 − 192x4y + 160x3y2 − 112x2y3 + 48xy4 − 8y5 − 9)×
(2048x7y3 − 3072x6y4 + 3584x5y5 − 3328x4y6 + 2048x3y7 − 1024x2y8

+ 384xy9 − 64y10 + 864x3y2 + 432xy4 − 27).

Using only linear developments of the Lyapunov constants, see Theorem 2.1, we get
only 58 limit cycles of small-amplitude because there exists a linear change of variables in

the parameter space such that L
(1)
k = uk, for k = 1, . . . , 58 and L

(1)
k = 0, for k = 59, 60, 61.

Computing up to degree two of Taylor approximations of the Lyapunov constants and
doing the simplifications as in the previous proofs, we can remove uk for k = 1, . . . , 58

from L
(2)
k , for k = 59, 60, 61. Vanishing the nonrelevant parameters and doing the adequate

simple blow-up u59 = z z1, u60 = z z2, and u61 = z, we get

L
(2)
59 = A59 z

2L1(z1, z2), L
(2)
60 = A60 z

2L2(z1, z2), L
(2)
61 = A61 z

2L3(z1, z2),

where Lk are polynomials of degree 2 and Ak rational nonvanishing numbers. These
polynomials have rational coefficients with numerators and denominators of around 1900
digits each. Approximately, they write as

L1 ≈ z21 + 77.576637z1z2 + 22.493284z22 + 107.76288z1 + 1038.9032z2 + 1265.0912,

L2 ≈ z21 − 2.6270001z1z2 + 0.27770877z22 + 25.446941z1 − 35.950489z2 + 160.06265,

L3 ≈ z21 + 3.4484543z1z2 + 2.9923181z22 + 32.128183z1 + 44.721607z2 + 248.24137.
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The last step is to show that there exists at least a transversal real solution, z∗ = (z∗1 , z
∗
2),

of {L1 = 0,L2 = 0} such that L3(z
∗) is nonvanishing. Then, Theorem 2.2 applies and the

proof follows.

With an algebraic manipulator we can find the solution of SL = {L1 = 0,L2 = 0}.
It writes as (z∗1 , z

∗
2) = (p3(α), α) where p3(α) is a polynomial of degree 3 with rational

coefficients and α is a real root of a given polynomial of degree 4, p4(α). The polynomials
p3 and p4 have rational coefficients with numerators and denominators of around 6000
and 4000 digits each, respectively. Approximately they write as

p4(α) ≈ α4 + 0.87600811α3 − 1.97816765α2 − 3.22558688α− 1.29759793,

p3(α) ≈ 3.43467644α3 − 0.51633002α2 − 6.541427002α− 17.7666993.

As the polynomial p4 has only 2 real roots, the system SL has only two real solutions

(z∗1a, z
∗
2a) ≈ (−14.693346428044632240,−0.85248929481003427092),

(z∗1b, z
∗
2b) ≈ (−13.701549420630826548, 1.6907716352120896856).

As a function of α, we can find explicitly the values det J(L1,L2)(z∗1 ,z∗2 ) and L3(z
∗
1 , z
∗
2).

They are also polynomials of degree 3 in α with rational coefficients that approximately
write as

det J(L1,L2)(z∗1 ,z∗2 ) ≈ 611.007749α3 + 530.704211α2 − 846.328099α− 1100.76580,

L3(z
∗
1 , z
∗
2) ≈ 1.53111109α3 + 0.80160181α2 − 3.66450101α− 3.44764247.

It can be seen that all the polynomials of degree 3, p3, det J(L1,L2)(z∗1 ,z∗2 ), and L3(z
∗
1 , z
∗
2)

have no common zeros with p4 because their respective resultants, with respect to α, are
nonzero rational numbers. This proves the transversality and that the last Lyapunov
constant, L61, is nonvanishing.

In Figure 1, we have drawn the zero level curves of the polynomials Lk, for k = 1, 2, 3,
in a neighborhood of the intersection points. Graphically, the transversality is also clear.

�

Figure 1. The level curves L1 = 0, L2 = 0, and L3 = 0 in red, green,
and blue, respectively. The middle and right pictures are the corresponding
zooms near the intersection points

7. Final comments

Taking a look at all analyzed systems, it is clear that we need new good examples to
get higher lower bounds for the local cyclicity. The main difficulty is to know how to get
them to ensure that only with developments of first-order it is enough to get the value
originally conjectured by Giné ([19, 20]) and recently updated in [21]. In the language of
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Żo la̧dek, see [32], this is equivalent to find systems with maximal codimension. It should
also be noted that the solution of the center problem is still open, even for polynomial
vector fields of degree 3. It is also clear that with this mechanism we will never provide
upper bounds.

We notice that the importance of Christopher work in [12] is that he pointed out that
the computation of high-degree Taylor developments of the Lyapunov constants near a
fixed center can be done without knowing their explicit and complete expressions. In no
case have we calculated, because of the difficulties for their sizes, the constants first and
then we have computed the Taylor developments. This fact has been crucial to perform
all the computations made in this work and allow us to go further in determining the best
lower bounds for M(n) for lower degrees n. In particular, to design our parallelization
algorithm.

For studying this local problem, the parallelization mechanism has been really a good
tool. It has two computational advantages, the first is the decreasing of the total com-
putation time, the second is the decreasing of memory necessities. Because partial com-
putations require less time and less memory. Among these advantages, the difficulties
now do not depend on the computation mechanisms. They are the size of the objects of
higher developments, the knowledge of the local intersection of the varieties, and the high
number of variables.

Finally, numerical computations are also not easy. Because as the degrees are quite
high, to have small approximation errors we need to work with very high precision.

8. Accurate interval analysis

Next two technical results will help us to find upper and lower bounds for a polynomial
of n variables in a n-dimensional cube. Their proofs can be found in [15].

Lemma 8.1 ([15]). Consider h > 0, p > 0, q real numbers such that p ∈ [p, p], with
pp > 0, and q ∈ [q, q], with qq > 0.

(i) Then, σl(q, p) ≤ qp ≤ σr(q, p), where

σl(q, p) =

{
qp, if q > 0,
qp, if q < 0,

σr(q, p) =

{
qp, if q > 0,
qp, if q < 0.

(ii) If uj ∈ [−h, h], for j = 1, . . . , n, and denoting ui = ui11 · · ·uinn , for i = (i1, . . . , in) 6=
0, we have X l(q, ui) ≤ qui ≤ X r(q, ui), where

X l(q, ui) =

 0, if q > 0 and ik even for all k = 1, . . . , n,
−qhi1+···+in , if q > 0 and ik odd for some k = 1, . . . , n,
qhi1+···+in , if q < 0,

and

X r(q, ui) =

 −qh
i1+···+in , if q > 0 and ik even for all k = 1, . . . , n,

0, if q < 0 and ik odd for some k = 1, . . . , n,
qhi1+···+in , if q < 0.

Furthermore, X l(q, 1) = q and X r(q, 1) = q.
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Lemma 8.2 ([15]). Let h > 0 and pj be positive nonrational numbers such that pj ∈
[pj, pj] with pj, pj rational numbers satisfying pj, pj > 0, for j = 1, . . . ,m. Consider the

polynomial

U(u1, . . . , un) =
M∑

i1+···+in=0

(
m∑
j=1

Uj,i pj

)
ui

with ui = ui11 · · ·uinn , for i = (i1, . . . , in), and Uj,i rational numbers. Then

U l
i ≤

m∑
j=1

Uj,i pj ≤ U r
i ,

with U l
i =

∑m
j=1 Uj,iσ

l(Uj,i, pj) and U r
i =

∑m
j=1 Uj,iσ

r(Uj,i, pj). Moreover, if uj ∈ [−h, h],

for j = 1, . . . , n, and U l
i > U r

i then

U =
M∑

i1+···+in=0

X l(U l
i , u

i) ≤ U(u1, . . . , un) ≤
M∑

i1+···+in=0

X r(U r
i , u

i) = U .
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Rio Preto, Brazil

Email address: fernandosg@mat.uab.cat, fernando.gouveia@unesp.br
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