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Summary

David Hilbert in the year 1900, in the International Congress of Mathematics

proposed 23 problems that in his opinion would motivate advances in mathematics

during the 20th century. Among these problems, one is linked with the study of

ordinary differential equations. The 16th Hilbert problem, whose second part asking

about the maximum number and the relative position of the isolated periodic orbits,

also called limit cycles, of a planar polynomial system in function of its degree n.

Until nowadays, the 16th Hilbert problem remain unsolved. Over the years and

without one solution, weaker versions began to emerge to 16th Hilbert problem. We

are interested here in one of them, that consist in to provide the maximum number

M(n) of small-amplitude limit cycles bifurcating from an elementary center or an

elementary weak-focus.

In order to help to solve this problem, our contribution in this thesis is offer a

mechanism that simplifies the calculation of the Taylor developments of the Lya-

punov constants and to present a theory that help us to use the constants obtained

for classical differential system to the study of lower bounds for the value M(n). We

dedicate part of this work to study the same problem to piecewise systems. In this

work, we consider fixed vector fields and we present the parallelization tool that will

help us to calculate high order Taylor developments of Lyapunov constants near a

center different from the linear one and get some results about how to obtain limit

cycles using these developments. Moreover, we consider a family of vector fields

and we present a result that allows us to get k extra limit cycles if the unperturbed

system has a center having k free parameters. For piecewise systems, we consider

again fixed vector fields and using parallelization, we were able to calculate the nec-

essary Lyapunov constants for cubic and quartic systems to improve lower bounds

of limit cycles. We prove that M(3) and M(4) are bigger than or equal to 12 and

21, respectively. Moreover, we prove that if an analytic piecewise system has weak-

focus or order 2n + 1, we can unfold the total number of limit cycles perturbing in

the analytic piecewise class. This result is a natural extension of the classical result

showed by Andronov for analytic systems. Moreover, using the equivalence among

Lyapunov constants and Melnikov functions, we improve also the lower bounds for

the known values of the local cyclicity for sextic vector fields.



Introduction

From the moment that the human started to be aware of the natural events

around him, the humanity sought to understand such events. In addition, it also

find a way to predict them. Perhaps the most basic problem representing these

phenomena is the rain cycle. Trying to understand the period of greatest rainfall

would be useful to have a better and bigger planting. Taking this into account, the

mathematics is, without any doubt, the basic language that describes natural events.

For those who have faith, the mathematics is the language that God used to create

the universe and its laws. There is evidence that mathematics started around 1900

BC and until nowadays there is no signs that it is near its end. In the 17th century,

Isaac Newton and Gottfried Leibniz introduced the differential calculus. With this

new approach, some phenomena of nature started to gain greater understanding,

because it proved to be an important tool to model, in an abstract language, what

occurs in the real world over of time. This created the pillars of what would be the

study of ordinary differential equations.

We can write ordinary differential equations in the form

F (t, x, x′, x′′, . . . , x(n)) = 0, (1)

where x(n) denote the n−th derivative of x with respect to t. When F not depends

of t, we say that system is autonomous. If x is a vector instead of a real function,

equation (1) is called a differential system. Many problems can be modeled by ordi-

nary differential equations. We can cite the problem of n-bodies that was modeled

by Newton, the problem prey-predator modeled by Vito Volterra and Alfred Lotka

in 1925.

Almost two centuries later, the study of differential system gets a new ap-

proach with Henry Poincaré in “Mémoire sur les courbes définies par une équation

différentielle”. Here, Poincaré introduces a more qualitative study on ordinary dif-

ferential equations. Using geometric and topological techniques, Poincaré was able

to investigate qualitative properties of the solutions of a differential equation with-

out such solutions having to be determined explicitly. Among the contributions of

Poincaré, we can mention the concept of phase portrait, the concepts such as re-

turn map or the Annular Region Theorem, which are fundamental for classifying

orbits with particular behaviors. These results would be the pillars of Qualitative

Theory of Differential Equations.
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The notion of limit cycle was also introduced by Poincaré that defines a limit cy-

cle as a periodic orbit such that at least one trajectory of the vector field, approaches

in positive or negative time. Usually, when the vector field is of class C1 an alterna-

tive definition is given. A limit cycle is a closed orbit isolated from the other periodic

orbits. Years later, in the early twentieth century, a swedish mathematician named

Ivar Otto Bendixson presents a result showing that the principal solutions are called

singular or minimal sets (critical points, periodic orbits and separatrix) defined a

differential equation on a compact set has the property that the other solution goes

to a singular solution. This results would come to be known as Poincaré–Bendixon

Theorem. Stimulate by this result, Lyapunov studied the behavior of solutions in

a neighborhood of an equilibrium position. Because of his work, Lyapunov is will

know as the founder the modern theory of stability of motion.

In this work, let is consider a first-order autonomous planar differential systems

in the form {
ẋ = X(x(t), y(t)),

ẏ = Y (x(t), y(t)),
(2)

where x(t), y(t), X(x, y) and Y (x, y) are real functions and the dot means the deriv-

ative with respect to the time t.

David Hilbert in the year 1900, in the International Congress of Mathematics

proposed 23 problems that in his opinion would motivate advances in mathematics

during the 20th century. Among these problems, one is linked to the study of

differential equations. The 16th Hilbert problem, whose second part asking about

the maximum number (by convention this number is called H(n)) and the position

of the limit cycles of a polynomial planar system in function of its degree, that is,

a system like (2) with X and Y polynomials of degree n. Until nowadays, the 16th

Hilbert problem remain unsolved, even for the simplest case n = 2.

Henri Dulac, in 1923 took the first steps in the direction of 16th Hilbert problem.

His work goes in the direction of proving the finitude of the number of limit cycles in

a polynomial vector field in the plane. In 1970, Yulij Ilyashenko observed that the

proof given by Dulac was false. Some years later and independently, Ilyashenko and

Écalle provided a correct proof. Although the proof given by Dulac was wrong, the

ideas given by him were very fruitful and generated results like the classical Dulac

Theorem and its generalization, known as the Bendixon–Dulac Theorem.

During the last decades many mathematicians have contributed to better under-

stand 16th Hilbert problem. We highlight the works of A. Andronov, C. Christopher,

F. Dumortier, J. Écalle, J.P. Françoise, A. Gasull, J. Giné, Y. Ilyashenko, J. Llibre

C. Li, M. Peixoto, R. Roussarie, J. Sotomayor, J. Torregrosa, A. Varchenko, Y. Ye,

Z. Zhang, H. Zoladek.
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Over the years and without one solution, weaker versions began to emerge to 16th

Hilbert problem. One of them is the so-called Arnold–Hilbert problem, however it

is still unsolved. Arnold–Hilbert problem says that if H, P and Q be polynomials of

degree n and V an inverse integrating factor, given Γ(h) a level curve {H(x, y) = h}
of the system 

ẋ = −∂H
∂y

+ εP (x, y, ε, λ),

ẏ =
∂H

∂x
+ εQ(x, y, ε, λ),

and given

M(h) =

∫
Γ(h)

Q(x, y, 0, λ)dx− P (x, y, 0, λ)dy

V (x, y)
,

what is the number of zeros of M(h)? The function M(h) is known as Abelian

integral or Melnikov’s function. The maximum number of simple zeros of M(h) is

also closed to two related problems: the highest multiplicity of a weak-focus and

the maximal cyclicity (the maximum number M(n) of small limit that we get from

an equilibrium point by a given polynomial perturbation) of an equilibrium point.

Clearly M(n) ≤ H(n). In this work, we are interested in this version of the problem.

For n = 2, Bautin proved that M(2) = 3. Sibirskii proved that for cubic systems

without quadratic terms there are no more than five limit cycles bifurcating from

one critical point. In fact these are the unique general families for which this local

number is completely determined. The first evidence that M(3) ≥ 11 was presented

by Zoladek in 1995. Recently, Giné, conjectures that M(n) = n2 + 3n − 7. This

suggests a high value for M(n) for polynomial vector fields of lower degree. For

degree n = 5, 7, 8, 9 the best lower bounds for M(n) until now were obtained by

Liang and Torregrosa providing examples exhibiting 28, 54, 70, and 88 limit cycles

of small amplitude, respectively.

For the reader to get an idea of the difficulty to solve 16th Hilbert problem, there

is another version more restricted, which consists in determining the number H(n)

but for the Liénard family {
ẋ = y − F (x),

ẏ = −x,
where F is a real polynomial of degree n and F (0) = 0. This weaker version is still

unsolved.

One way to approach Arnold–Hilbert problem is using Lyapunov constants.

From the study of the return map, Liapunov consider the importance of the terms

of the series expansion of this application. The problem with this approach, is the

difficult of calculations. In order to help to solve this problem, our contribution in

this thesis is offer a mechanism that simplifies the calculation of the Taylor devel-

opments of the Lyapunov constants and to present a theory that help us to use the
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constants obtained for classical differential system to study lower bounds for M(n).

Moreover, we improve the known values of M(n) for 3 ≤ n ≤ 9.

We dedicate a part of this work to study the Arnold–Hilbert problem to piecewise

systems. The study of piecewise linear systems started by Andronov and has been

widely studied in the last years, since many problems of engineering, physics, econ-

omy and biology can be modeled by such systems. One of the most studied problem

is given by two vector fields defined in two hapf-planes separated by a straight line.

Moreover, a large set of classical theorems are not satisfied by the piecewise sys-

tems. Among others, we can cite the Existence and Uniqueness Theorem and the

Poincaré–Bendixson Theorem.

In this work, we are interested in the study of limit cycles of small amplitude

bifurcating from the origin, for piecewise differential equations of the form{
(x′, y′) = (P+(x, y, λ), Q+(x, y, λ)), when y ≥ 0,

(x′, y′) = (P−(x, y, λ), Q−(x, y, λ)), when y < 0,

with P±(x, y, λ) and Q±(x, y, λ) are polynomials. The straight line Σ = {y = 0}
divides the plane in two half-planes Σ± = {(x, y) : ±y > 0} and the trajectories on

Σ are defined following the Filippov convention. We call of M c
p(n) the maximum

number of limit cycles bifurcating from a monodromic singular point and Hc
p(n)

the maximum number of limit cycles of polynomial piecewise systems of degree n.

Clearly M c
p(n) ≤ Hc

p(n). It is well-know that linear systems have no limit cycles,

so H(1) = M(1) = 0. This is not the case for piecewise linear systems defined in

two zones separated by a straight line. There are works showing Hc
p(1) ≥ 3. For

quadratic vector fields is also well known that H(2) ≥ 4. But for piecewise quadratic

systems there are few works providing good lower bounds. Using averaging theory

of order five, and perturbing the linear center, Llibre and Tang in proved that

Hc
p(2) ≥ M c

p(2) ≥ 8. Recently, da Cruz, Novaes and Torregrosa provide a better

lower bound, Hc
p(2) ≥ M c

p(2) ≥ 16. The best known lower bound for the number

of limit cycles in cubic systems is H(3) ≥ 13,. For piecewise cubics a recent work

provides Hc
p(3) ≥ 18 in two nests of nine limit cycles each.

The work has been developed in collaboration with Joan Torregrosa, and it is

structured in an introduction and then four chapters where the results and proofs

are developed. As it is explained in the title, the main results are concerning to

limit cycles of small amplitude for differential and piecewise differential systems in

the plane.

In Chapter 1, considering fixed vector fields, we present the concept of Lyapunov

constants, the Parallelization tool that will help us to calculate high order Taylor

developments of Lyapunov constants near a center different from the linear one and

get some results about how to obtain limit cycles using these equations. With these
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tools, we present a new cubic system having also 11 limit cycles of small amplitude

and we have improved the valuee for M(n) for 4, 5, 7, 8 and 9.

In Chapter 2, considering a family of vector fields, we present a theorem that

allows us to get k extra limit cycles if the unperturbed system has a center having

k free parameters. Using this result, we show that M(3) ≥ 12 and M(4) ≥ 21.

We present also two new families of cubic vector fields such that M(3) ≥ 11. This

chapter has been done in collaboration with Jaume Giné.

In Chapter 3, again considering fixed vector fields, we dedicate our effort to

cyclicity but in piecewise systems. Using also Parallelization, we were able to calcu-

late the necessary Lyapunov constants for cubic and quartic systems to show that

M c
p(3) ≥ 26 and M c

p(4) ≥ 40. Moreover, we prove that if an analytic piecewise sys-

tem has weak-focus or order 2n+ 1, we can unfold the total number of limit cycles

perturbing in the analytic piecewise class. This result is a natural extension of the

classical result showed by Andronov for polynomial systems.

In Chapter 4, using the equivalence among Lyapunov constants and Melnikov

functions, we improve that M(n) for n = 6. Moreover, we also extend this result to

piecewise systems.

Finally, we dedicate the last chapter to conclusions of this work and future works.

We notice that all our calculations were made using the Computer Algebra Sys-

tem MAPLE on a cluster with 9 machines that have 128 CPUs with 725 MB of ram

memory.


