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Abstract. In this work we summarize some well-known criteria
for the nonexistence of periodic orbits in planar differential sys-
tems. Additionally we present two new criteria and them illustrate
with examples these criteria.

1. Introduction and statement of the main results

We consider a planar differential system that we write as

(1)
dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y),

where P (x, y) and Q(x, y) are C1 real functions in the variables x and
y, and t is the independent variable.

The objective of this note is double, first we recall the more well-
known results for the nonexistence of periodic orbits of a differential
system (1). Second we provide two new criteria for the nonexistence of
periodic orbits of system (1).

As far as we know one of the first criterium of nonexistence is the
following one due to Poincaré.

Theorem 1 (Poincaré Method of Tangential Curves). Consider a fam-
ily of curves F (x, y) = C, where F (x, y) is continuously differentiable.
If in a region R the quantity

dF

dt
= P

∂F

∂x
+Q

∂F

∂y

has constant sign, and the curve

P
∂F

∂x
+Q

∂F

∂y
= 0
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(which represents the locus of points of contact between curves in the
family and the trajectories of (1), and is called a tangential curve) does
not contain a whole trajectory of (1) or any closed branch, then system
(1) does not possess a periodic orbit which is entirely contained in R.

For a proof of Theorem 1 see either Theorem 1.9 of [8], or Proposition
7.9 of [3].

Theorem 2 (Bendixson’s Theorem). Assume that the divergence func-
tion ∂P/∂x+ ∂Q/∂y of system (1) has constant sign in a simply con-
nected region R, and is not identically zero on any subregion of R.
Then system (1) does not have a periodic orbit which lies entirely in R.

For a proof of Theorem 2 see either Theorem 1.10 of [8], or section
3.9 of [6], or Proposition 1.133 of [2], or Theorem 7.10 of [3].

Theorem 3 (Dulac’s Theorem). If for system (1) there exists a C1

function B(x, y) in a simply connected region R such that ∂(BP )/∂x+
∂(BQ)/∂y has constant sign and is not identically zero in any subre-
gion, then this system (1) does not have a periodic orbit lying entirely
in R.

For a proof of Theorem 3 see either Theorem 1.12 of [8], or Theorem
4.8 of [9], or section 3.9 of [6], or Exercise 1.136 of [2], or Theorem 7.12
of [3].

The well-know Liénard differential equation [4]

ẍ+ f(x)ẋ+ g(x) = 0,

where f(x) and g(x) are C1 functions in the open subset R of R2 can
be written as the following first order differential system

(2) ẋ = y, ẏ = −g(x)− f(x)y.

Theorem 4 (Chen–Yang–Zhang–Zhang’s Theorem). Assume that the
differential system (2) satisfies the following conditions:

(i) g(x) = −g(−x) and xg(x) > 0 if x ̸= 0;
(ii) f(x) = f1(x) + f2(x) with f1(x) = f1(−x), f2(x) = −f2(−x)

and f1(x) ̸= 0.

Then this system (2) has no periodic orbits in R.

Theorem 4 is a particular case of Theorem 1 of [1].

As far as we know the next two criteria for the nonexistence of peri-
odic orbits are new.
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Let f(x, y) = 0 a curve, then a point (x0, y0) of this curve is a contact
point with system (1) if it satisfies (P∂f/∂x+Q∂f/∂y)(x0, y0) = 0.

Theorem 5 (Transversal divergence criterium). Let D(x, y) = ∂P/∂x+
∂Q/∂y be the divergence of system (1). If the curve D(x, y) = 0 has no
contact points of multiplicity even with the system (1), then this system
has no periodic orbits.

The proof of Theorem 5 is given in section 2.

Working in polar coordinates (r, θ) where x = r cos θ and y = r sin θ
system (1) writes

ṙ =
xP + yQ√
x2 + y2

∣∣∣
(x,y)=(r cos θ,r sin θ)

, θ̇ =
xQ− yP

x2 + y2

∣∣∣
(x,y)=(r cos θ,r sin θ)

.

Theorem 6 (Angular velocity criterium). Assume that the origin of
coordinates is an equilibrium point of a system (1), and that the compo-
nent γ of the curve xQ− yP = 0 pass through the origin of coordinates
and locally in one side of this curve we have xQ − yP > 0 and in
the other side xQ − yP < 0. Then system (1) has no periodic orbits
surrounding the origin crossing the component γ at a point with odd
mutiplicity.

Theorem 6 is proved in section 3.

2. Proof of Theorem 5

By the Bendixson Theorem any periodic orbit of system (1) must
intersect the curve D(x, y) = 0. But under the assumptions of The-
orem 5 the flow of this system is transversal in all the point of the
curve except at its possible contact points of odd multiplicity, but also
in this points the flow cross the curve D(x, y) = 0. Hence clearly a
periodic orbit cannot intersect the divergence curve D(x, y) = 0 and
consequently it does not exists. This completes the proof of Theorem
5.

Now we present an application of Theorem 5. We consider the
Selkov-Higgins system which is relevant in the study of the glycoly-
sis. This system when one of its parameters is equal to 2 writes

(3) ẋ = 1− xy2 = P (x, y), ẏ = ay(xy − 1) = Q(x, y).

The divergence of this system is D(x, y) = −a + 2axy − y2. Now
we study the transversality of the flow of system (1) on the curve
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D(x, y) = 0, that is

p(y) :=
∂D

∂x
P +

∂D

∂x
Q
∣∣∣
D=0

=
1

2
(−a2 + 4ay − 3y4).

Using the formulas of Lu Yang [7] for this quartic polynomial we have

D2 = 0, D3 = −2592a2, D4 = 6912a4(a2 − 9).

When |a| > 3 then D4 > 0 and D3 ≤ 0 or D2 ≤ 0, and the polynomial
p(y) has no real roots. Consequently by Theorem 5 system (3) has no
periodic orbits.

If a = ±3 then D4 = 0 and D3 < 0, and the polynomial p(y) has one
double real root. So system (3) again by Theorem 5 has no periodic
orbits.

If a = 0 then D4 = D3 = D2 = 0 and the polynomial p(y) has one
quadruple real root. Hence by Theorem 5 system (3) has no periodic
orbits.

Finally if a ∈ (−3, 0) ∪ (0, 3) then D4 < 0, and the polynomial p(y)
has two real simple roots. In this case we cannot apply Theorem 5
and system (3) could have periodic orbits for some of these values of a.
Indeed in the work [5] are given values of a ∈ (−3, 0)∪ (0, 3) for which
system (3) has periodic orbits.

3. Proof of Theorem 6

Assume that there exists a periodic orbit Γ surrounding the origin
which cross the component γ at a point p with odd multiplicity. Then
on this periodic orbit Γ in a neighborhood of p and in one side of γ we
have θ̇ > 0 and in the other side θ̇ < 0, this provides a contradiction
because in a small neighborhood of p the periodic orbit must be either
θ̇ ≥ 0, or θ̇ ≤ 0. This completes the proof of Theorem 6.

Now we present one application of Theorem 6. Consider the differ-
ential system
(4)
ẋ = −x(2+f(x, y))+y = P (x, y), ẏ = −y(2+f(x, y))+x = Q(x, y),

where the C1 function f is such that it, its first and second derivatives
vanish at the origin of coordinates. Then the origin of coordinates is
a stable node with eigenvalues −1 and −3, and xQ − yP = x2 − y2,
and consequently θ̇ = 0 is formed by the two straight lines y = ±x. So
by Theorem 6 system (4) cannot have periodic orbits surrounding the
origin.
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