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Abstract. In this paper we show a new way of using the averag-
ing theory for studying families of periodic orbits of a Hamiltonian
system. We do this study computing a new family of periodic or-
bits of the extension of the Van der Pol oscillator to a Hamiltonian
system of two degrees of freedom.

1. Introduction and statement of the main results

The classical Van der Pol oscillator is modeled by the second-order
differential equation

(1) ẍ− µ(1− x2)ẋ+ x = 0,

where x = x(t) is the position coordinate at time t, µ is a parameter,
and the dot denotes derivative with respect to the time t, see [9, 10, 11].

Initially the differential equation (1) allowed to Van der Pol to ex-
plain the stable oscillations observed in electrical circuits employing
vacuum tubes. Later on this differential equation has been used for
explaining different phenomena in biology, physics, . . . Thus in biology
was utilised as a model for studying the action potentials of neurons,
see for instance [3, 4, 7]. While in physics equation (1) was also used
in phonation to model the right and left vocal fold oscillators (see [6]),
and in seismology to model two plates in a geological fault (see [1]), . . .

More recently in 2015, see equations (9) of [8], the Van der Pol
oscillator was written in the Hamiltonian formalism by extending it to
a four-dimensional autonomous differential as follows

(2)
ẍ− µ(1− x2)ẋ+ x = 0,

ÿ + µ(1− x2)ẏ + y = 0.
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Observe that the motion of the Van der Pol oscillator (1) is not affected
because the evolution of the variable x(t) is independent of the variable
y(t).

Defining py = ẋ and px = ẏ+µ(1−x2)y from (2) we obtain that this
differential system of two differential equations of second order admits
the following Hamiltonian formalism

(3)

ẋ = py,

ẏ = px − µ(1− x2)y,

ṗx = −y − µ2xypy,

ṗy = −x+ µ(1− x2)py,

with the Hamiltonian

(4) H = pxpy + xy − µ(1− x2)ypy.

Of course px and py are the conjugate momenta of the variables x and
y, respectively. In [2] it is shown that the Hamiltonian system (3)
establishes a connection between the phase of the limit cycle of the
Van der Pol system with the Hannay angle of the Hamiltonian system.

In this paper our objective is to study analytically the periodic orbits
of the Hamiltonian system (3) using the averaging theory. In general
the periodic orbits of the Hamiltonian systems are studied numerically
because its analytical study is in general difficult and sometimes im-
possible. Here the technique used with the averaging theory can be
extended to many other Hamiltonian systems.

Our main result is the following.

Theorem 1. For µ sufficiently small the following statements hold for
the Hamiltonian system (3).

(a) For each h ∈ R there exists a periodic orbit

γh(t) =
(
x(t;µ, h), y(t;µ, h), px(t;µ, h), py(t;µ, h)

)
such that when the parameter µ → 0 satisfies that γh(t) tend to
the periodic orbit(
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of the Hamiltonian system (3) with µ = 0.
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(b) The periodic orbit γh(t) live on the energy level H = h, and
when h varies in R we get a family of periodic orbits.

Theorem 1 is proved in the section 3.

In section 2 we present the algorithm that we follow for studying the
families of periodic orbits of the Hamiltonian systems.

Since the differential system formed by the equations ẋ and ṗy is the
first order differential system associated to the Van der Pol oscillator
(1), and this differential system does not depend on the variables y and
py, it follows immediately from Theorem 1 the following corollary.

Corollary 2. For µ sufficiently small and for each h ∈ R the Van der
Pol oscillator has a periodic orbit

γh(t) =
(
x(t;µ, h), py(t;µ, h)

)
such that when the parameter µ → 0 satisfies that γh(t) tend to the
periodic orbit(

2 cos

(√
4− µ2

2
t

)
,−2 sin
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2
t

))
,

solution of the Van der Pol oscillator with µ = 0.

Of course, for a fixed value of µ sufficiently small the periodic orbit
γh(t) of Corollary 2 is the classical limit cycle of the Van der Pol oscil-
lator, because it is known that such a limit cycle is unique for a given
value of µ.

2. The algorithm

The algorithm that we will follow for studying the families of periodic
orbits of a Hamiltonian system has the following steps.

1. We select an equilibrium point of the Hamiltonian system having at
least one pair of complex conjugate eigenvalues and translate it to the
origin of coordinates.

2. We do a change of variables which writes the matrix of the linear
part of the Hamiltonian system at the origin of coordinates in its real
Jordan normal form. Then, in general the obtained differential system
have lost its Hamiltonian structure.

3. The coordinates of the differential system whose linear part at the
origin of coordinates produce complex eigenvalues are changed to polar
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coordinates. More precisely, if the real Jordan normal form of the linear
part at the origin of coordinates has the block

(
α −β
β α

)
,

associated to the coordinates x and y with α non identically zero.
Then we do the change of variables (x, y) → (r, θ), where x = r cos θ
and y = r sin θ. We shall take α as the small parameter µ necessary
for applying the averaging theory, see the appendix.

But if there are more than one block associated to complex eigenval-
ues, for all the other blocks different from the first we do the following
change of variables. Take one of these blocks, for instance

(
a −b
b a

)
,

associated to the coordinates u and v and do the change of variables
(u, v) → (R,φ), where x = R cos(φ + kθ), y = R sin(φ + kθ), and
the constant k is chosen in such a way that the differential system in
the new coordinates must satisfy φ̇ = O(α), with α sufficiently small.
This step will become more clear when we apply the algorithm to the
Hamiltonian system (3) in the next section.

4. Now we take the angle variable θ as the new independent variable.

5. Since generically the periodic orbits in the Hamiltonian systems
appear in families of periodic orbits parametrized by h, being h the
different values of the energy levels H = h of the Hamiltonian H, and
the averaging theory only detects isolated orbits, we must apply the
averaging theory in the energy levels H = h, eliminating one variable
using the relation H = h. If the Hamiltonian H is the unique inde-
pendent first integral of the Hamiltonian system the differential system
obtained on the energy level H = h is into the normal form (14) of the
appendix, ready for applying to it the averaging theory for studying its
periodic orbits.

6. In case that the Hamiltonian system has additional independent
first integrals Fk, also independent with the Hamiltonian H of the
Hamiltonian system, we need to fix them, i.e. Fk = fk and work on
these invariant subspaces in order that we can apply the averaging
theory and to study the periodic orbits of the Hamiltonian system.
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3. Proof of Theorem 1

Now we apply the algorithm described in section 2 to the Hamilton-
ian system (3) for proving Theorem 1. We will indicate all the steps of
the algortihm using its numbers.

1. It is easy to verify that the Hamiltonian system (3) has a unique
equilibrium point localized at the origin of coordinates, and that its
four eigenvalues are (±µ±

√
µ2 − 4)/2.

2. Now we write the matrix
0 0 0 1
0 −µ 1 0
0 −1 0 0
−1 0 0 µ


of linear part of the Hamiltonian system (3) into its real Jordan normal
form 
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,

doing the change of variables (x, y, px, py) → (X, Y, Z, V ), where

(x, y, px, py) =

(
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1
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.

Then the Hamiltonian system (3) becomes

(5)
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√
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and the Hamiltonian (4) becomes the first integral

(6)
H =

1

4

(
µZ −

√
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)(
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)
−

1

2
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)
+XZ.

of the differential system (5).

3. We do the change of variables (X, Y, Z, V ) → (r, θ, R, φ) where

(X, Y, Z, V ) =
(
r cos θ, r sin θ, R cos(φ+ kθ), R sin(φ+ kθ)

)
,

and the differential system (5) writes in the new variables as

(7)

ṙ = µ
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)
,
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(
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(
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(
3µ cos(φ+ θ)√
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− sin(φ+ θ)

)

− µ cos3 θ√
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− 2 sin θ cos2(φ+ θ) + sin θ cos2 θ

)
r2,

where we have take k = 1 in order that φ̇ = O(µ). The first integral
H given in (6) in the variables (r, θ, R, φ) writes

(8)

H = rR cos θ cos(φ+ θ)− 1

2
µR cos(φ+ θ) (1− r2 cos2 θ)(

µr cos θ −
√
4− µ2r sin θ

)
+

µr cos θ −
√
4− µ2r sin θ

4(
µR cos(φ+ θ)−

√
4− µ2R sin(φ+ θ)

)
.
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4. We take now the variable θ as the new independent variable and
the differential system (7) becomes
(9)

r′ =
µ

2

(
r − 2r3 sin2 θ cos2 θ

)
+O(µ2),

R′ = −µ

2
(1 + r2 cos θ cos(φ+ θ)(cosφ− 3 cos(φ+ 2θ)))R +O(µ2),

φ′ =
µr2

4
cos θ(sin(2φ+ θ)− 3 sin(2φ+ 3θ)− 3 sin θ + sin(3θ)) +O(µ2),

where the prime denotes derivative with respect to the variable θ.

5. From (8) and H = h we obtain that

(10) φ = arccos

(
h

rR

)
+O(µ).

Substituting this φ given in (10) we obtain the following expression for
the differential system (9) restricted to the energy level H = h
(11)

r′ = µ
(r
2
− r3 sin2 θ cos2 θ

)
+O(µ2)

= µF11(θ, r, R) +O(µ2),

R′ =
µ

2

(
−hr cos θ cos

(
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(
h

rR

)
+ θ

)
−R

)
+

3r2R cos θ cos

(
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)
cos

(
arccos

(
h
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)
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)
+O(µ2)

= µF12(θ, r, R) +O(µ2).

The differential system (11) is already written in the normal form
(14) of the appendix for applying the averaging theory. Here us-
ing the notation of the appendix we have that F = (F11, F12), x =
(r, R) and T = 2π then we compute the averaged function f(x) =
(f11(r, R), f12(r, R)) defined in (16) of the appendix, and we get

(12)

f11(r, R) =
1

2

(
r − r3

4

)
,

f12(r, R) =
1

8
(3r2 − 4)R− h2

4R
.

The real solutions of the system f11(r, R) = 0 and f12(r, R) = 0 with
r and R positive are r = 2 and R = |h|/2. Moreover, on this solution
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the Jacobian (17) for our differential system (12) is
(13)

det


1

8
(4− 3r2) 0

3rR

4

1

8

(
2h2

R2
+ 3r2 − 4

)

∣∣∣∣∣∣∣∣
(r,R)=(2,|h|/2)

= −8π2 ̸= 0.

From Theorem 3 of the appendix we get for µ sufficiently small that
for each h ∈ R we have the periodic solution

γ1
h(θ;µ, h) =

(
r(θ;µ, h), R(θ;µ, h)

)
of the differential system (12) such that γ1

h(θ;µ, h) → (2, |h|/2), when
µ → 0.

The periodic orbit γ1
h(θ;µ, h) provides the following periodic orbit of

the differential system (9)

γ2
h(θ;µ, h) =

(
r(θ;µ, h), R(θ;µ, h), φ(θ;µ, h)

)
,

such that γ2
h(θ;µ, h) → (2, |h|/2, φ∗), when µ → 0, where φ∗ = 0 if

h > 0 and φ∗ = π if h < 0.

The periodic orbit γ2
h(θ;µ, h) provides the following periodic orbit of

the differential system (7)

γ3
h(t;µ, h) =

(
r(t;µ, h), θ(t;µ, h), R(t;µ, h), φ(t;µ, h)

)
,

such that γ3
h(t;µ, h) →

(
2,
√
4− µ2t/2, |h|/2, φ∗

)
, when µ → 0.

The periodic orbit γ3
h(t;µ, h) provides the following periodic orbit of

the differential system (5)

γ4
h(t;µ, h) =

(
X(t;µ, h), Y (t;µ, h), Z(t;µ, h), V (t;µ, h)

)
,

such that

γ4
h(t;µ, h) →

(
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t

)
, 2 sin
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2
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when µ → 0.

The periodic orbit γ4
h(t;µ, h) provides the following periodic orbit of

the differential system (3)

γh(t;µ, h) =
(
x(t;µ, h), y(t;µ, h), px(t;µ, h), py(t;µ, h)

)
,
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such that

γh(t;µ, h) →

(
2 cos

(√
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t

)
,
|h|
2

cos
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when µ → 0. This completes the proof of Theorem 1.

Appendix

Here we summarize the basic results from averaging theory for com-
puting periodic orbits that we shall use for proving Theorem 1, for a
proof see Theorem 11.5 of [12], or Theorem 1.2.1 of [5].

First we consider the initial value problem

(14) ẋ = µF (θ, x) + µ2R(θ, x, µ), x(0) = x0,

with x ∈ U where U is an open subset of Rn, and θ ≥ 0. We assume
that F (θ, x) and R(θ, x, µ) are periodic functions in θ of period T . Of
course the dot in (14) denotes derivative with respect to the variable
θ.

Second we consider in the open set U the following initial value
problem for the averaged differential system

(15) ẏ = µf(y), y(0) = x0,

where f(x) is the averaged function of the function F (θ, x), i.e.

(16) f(x) =
1

T

∫ T

0

F (θ, x)dθ.

Theorem 3. For the two initial value problems (14) and (15) we as-
sume:

(i) the function F is C2 and bounded by a constant which does not
depend on µ in [0, ∞)× U for all µ ∈ (0, µ0].

(ii) the functions F and R are periodic in θ of period T , and T is
independent of µ.

(iii) the solution y(θ) of (15) belongs to U for all θ ∈ [0, 1/µ].

Then for each equilibrium point p of the averaged system (15) satisfying

(17) det

(
∂f

∂y

)∣∣∣∣
y=p

̸= 0,
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there is a periodic solution x(θ, µ) of period T for the system (14)
verifying x(θ, µ) → p as µ → 0.
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