INVARIANT ALGEBRAIC CURVES OF GENERALIZED LIÉNARD POLYNOMIAL DIFFERENTIAL SYSTEMS

JAUME GINÉ¹ AND JAUME LLIBRE²

ABSTRACT. In this note we focus on the invariant algebraic curves of generalized Liénard polynomial differential systems x' = y, $y' = -f_m(x)y - g_n(x)$ where the degrees of the polynomials f and g are m and n respectively, and we correct some results previously stated.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In this work we study the generalized Liénard polynomial differential systems of the form

(1)
$$x' = y, \quad y' = -f_m(x)y - g_n(x),$$

where the degrees of the polynomials f and g are given by the subscripts m and n respectively.

Consider F(x, y) = 0 an *invariant algebraic curve* of the differential system (1) where F(x, y) is a polynomial, then there exists a polynomial K(x, y) such that

(2)
$$\frac{\partial F}{\partial x}y + \frac{\partial F}{\partial y}(-f_m(x)y - g_n(x)) = KF$$

The knowledge of the algebraic curves of system (1) allows to study the modern Darboux and Liouvillian theories of integrability, see [6] and references therein. In fact the existence of invariant algebraic curves is a measure of integrability in such theories. Another problem is finding a bound on the degree of irreducible invariant algebraic curves of system (1). This problem goes back to Poincaré for any differential system and is known as the *Poincaré problem*.

In 1996 Hayashi [8] stated the following result.

Theorem 1. The generalized Liénard polynomial differential system (1) with $f_m \neq 0$ and $m+1 \geq n$ has an invariant algebraic curve if and only if there is an invariant curve y - P(x) = 0 satisfying $g_n(x) = -(f_m(x) + P'(x))P(x)$, where P(x) or P(x) + F(x) is a polynomial of degree at most one, such that $F(x) = \int_0^x f(s) ds$.

Given P and Q polynomials, an algebraic curve of the form $(y+P(x))^2-Q(x)=0$ is called *hyperelliptic curve*, see for instance [9, 13, 14, 17]. In such works and others the hyperelliptic curves are used to determine algebraic limit cycles of the generalized Liénard systems (1).

²⁰¹⁰ Mathematics Subject Classification. Primary 34A05. Secondary 34C05, 37C10.

Key words and phrases. Liénard differential systems, invariant algebraic curve, first integrals.

J. GINÉ AND J. LLIBRE

Theorem 1 is also announced in [16] where the author seems not aware that the theorem is false. Theorem 1 is not correct as the following proposition shows. More precisely it shows the existence of hyperelliptic invariant algebraic curves for the generalized Liénard systems (1).

Proposition 2. Under the assumptions of Theorem 1 the generalized Liénard polynomial differential system (1) has the following hyperelliptic invariant algebraic curves:

- (a) $F(x,y) = -(b+ax)\lambda + (y-b-ax)^2 = 0$ for $f_0(x) = -3a/2$ and $g_1(x) = a(b+ax-\lambda)/2$ with $a \neq 0$.
- (b) $F(x,y) = -Ax^2 + (y ax)^2$ for $f_0(x) = -2a$ and $g_1(x) = (a^2 A)x$ with $aA \neq 0$.
- (c) $F(x,y) = -bc/(2a) cx acx^2/(2b) + (b + ax y)^2 = 0$ for $f_0(x) = -2a$ and $g_1(x) = (2ab - c)(b + ax)/(2b)$ with $ab \neq 0$.

Proposition 2 is proved in section 2.

In fact the correct statement of Theorem 1 is the following.

Theorem 3. The generalized Liénard polynomial differential system (1) with $f_m \neq 0$ and $m + 1 \geq n$ has the invariant algebraic curve y - P(x) = 0 if $g_n(x) = -(f_m(x) + P'(x))P(x)$, being P(x) or P(x) + F(x) a polynomial of degree at most one, where $F(x) = \int_0^x f(s) ds$.

Theorem 3 is proved in section 2.

Note that the mistake in the statement of Theorem 1 is the claim that the unique invariant algebraic curves are of the form y - P(x) = 0.

Demina in [3] also detected that Theorem 1 was not correct. She found counterexamples to Theorem 1 with invariant algebraic curves of degree 2 and 3 in the variable y.

Singer in [15] found the characterization of the systems that are Liouvillian integrable. Christopher [2] rewrite this result stating that if a polynomial differential system in \mathbb{R}^2 has an inverse integrating factor of the form

(3)
$$V = \exp\left(\frac{D}{E}\right) \prod_{i=1}^{p} F_{i}^{\alpha_{i}},$$

where D, E and F_i are polynomials in $\mathbb{C}[x, y]$ and $\alpha_i \in \mathbb{C}$, then this differential system is *Liouvillian integrable*. For a definition of (inverse) integrating factor see for instance section 8.3 of [6].

We say that $\exp(g/h)$, with g and $h \in \mathbb{C}[x, y]$, is an *exponential factor* of the polynomial differential system (1) if there exists a polynomial L(x, y) of degree at most d where $d = \max\{m, n-1\}$ such that

$$\frac{\partial \exp(g/h)}{\partial x}y + \frac{\partial \exp(g/h)}{\partial y}(-f_m(x)y - g_n(x)) = K \exp(g/h).$$

More information on exponential factors can be found in section 8.5 of [6].

 $\mathbf{2}$

The existence of an inverse integrating factor (3) for a polyomial differential system in \mathbb{R}^2 is equivalent to the existence of λ_i and $\mu_i \in \mathbb{C}$ not all zero such that $\sum_{i=1}^{p} \lambda_i K_i + \sum_{j=1}^{q} \mu_j L_j = \operatorname{div}(P, Q)$, where K_i and L_i are the cofactors of some invariant algebraic curves and exponential factors of the given polynomial differential system, respectively. See for more details statement (iv) of Theorem 8.7 of [6].

We remark that the two kind of invariant algebraic curves mentioned in Theorem 3 can appear simultaneously in some generalized Liénard polynomial differential systems (1) as the following example shows which already appeared in [7].

The generalized polynomial Liénard differential system

(4)
$$x' = y, \qquad y' = -ex^3 - e^2/3x - (3x^2 + 4e/3)y,$$

has the invariant algebraic curves $f_1 = y + ex/3 = 0$ and $f_2 = y + x^3 + ex/3 = 0$. Moreover system (4) is Liouvillian integrable because it has the inverse integrating factor $V = f_1 f_2^{1/3}$.

Let U be an open subset of \mathbb{R}^2 . A C^1 function $H: U \to \mathbb{R}$ is a *first integral* of system (1) if it is constant on the orbits of the system contained in U, or equivalently if

(5)
$$\frac{dH}{dt} = \frac{\partial H}{\partial x}y + \frac{\partial H}{\partial y}(-f_m(x)y - g_n(x)) = 0 \text{ on } U.$$

Consider W as an open subset of $\mathbb{R}^2 \times R$. A C^1 function $I: W \to \mathbb{R}$ is a *Darboux invariant* of system (1) if it is constant on the orbits of the system contained in W, or equivalently if

(6)
$$\frac{dI}{dt} + \frac{\partial I}{\partial x}y + \frac{\partial I}{\partial y}(-f_m(x)y - g_n(x)) = 0 \text{ on } W.$$

Moreover, given λ_i and $\mu_i \in \mathbb{C}$ not all zero such that $\sum_{i=1}^p \lambda_i K_i + \sum_{j=1}^q \mu_j L_j = -s$ for some $s \in \mathbb{C} \setminus \{0\}$, then the (multivalued) function

(7)
$$I = \prod_{i=1}^{p} F_i^{\alpha_i} \prod_{j=1}^{q} \left(\exp\left(\frac{g_j}{h_j}\right) \right)^{\mu_j} \exp(st)$$

is a *Darboux invariant* of the differential system, see for more details statement (vi) of Theorem 8.7 of [6].

Under the assumptions of Theorem 3 there are generalized Liénard polynomial differential systems (1) which are Liouvillian integrable as it is shown in the next result.

Proposition 4. Under the assumptions of Theorem 3 if the generalized Liénard polynomial differential system (1) has the invariant algebraic curve y - P(x) = 0. Then the following statements hold.

- (a) If P(x) = -F(x) + ax + b, then system (1) has the Darboux invariant $(y P(x))e^{at}$.
- (b) If P(x) = b, then system (1) is Liouvillian integrable with the first integral $H = e^{y+F(x)}(y-b)^b$ if $b \neq 0$, and the first integral H = y + F(x) if b = 0.

Proposition 4 is proved in section 2.

We note that Proposition 4 shows that Theorem 2 of [7] and Theorem 4 of [11] are not correct because their proofs are based in the wrong Theorem 1.

Proposition 5. Consider the generalized Liénard polynomial differential system (1). Let P(x) be a polynomial, then y - P(x) = 0 is an invariant algebraic curve of system (1) if and only if $g_n(x) = -(f_m(x) + P'(x))P(x)$.

Proposition 5 is proved in section 2. In fact the statement of Proposition 5 already appears in [17] without proof.

Note that in Proposition 5 there are no restrictions on the degrees of the polynomials f_m , g_n and P(x).

The Liouvillian integrability of the generalized Liénard polynomial differential system has been studied by several authors. The main result of [10] is that under the restriction $2 \le n \le m$, then system (1) has a Liouvillian first integral if and only if $g_n(x) = af_m(x)$, where $a \in \mathbb{C}$, see also [1] for a shorter proof. Later on it was studied the Liouvillian integrability of the differential systems (1) having hyperelliptic curves of the form $(y + Q(x)P(x))^2 - Q(x)^2 = 0$, see [12].

In summary, the Liouvillian integrability in the case n > m is still open. In fact the characterization of the invariant algebraic curves of system (1) for this case is not complete. Recently it has been solved the case m = 1 and n = 2, see [5].

The case n = m + 1 is the still objective of several recent works. Thus, for instance in [3, 4] some particular cases for m = 2 and n = 3 have been solved.

2. Proofs

Proof of Proposition 2. Assume that system (1) has the hyperelliptic invariant curve $F = (y + P(x))^2 - Q(x) = 0$. Then from (2) denoting by K = K(x, y) the cofactor of F = 0 we get

$$2g_n(x)P(x) + K(-P(x)^2 + Q(x)) + y(-2g_n(x) + 2P(x)(K + f_m(x) + P'(x)) - Q'(x)) - y^2(K + 2f_m(x) + 2P'(x)) = 0.$$

From this equality we see that $K = K(x) = -2(f_m(x) + P'(x)),$

$$f_m(x) = -P'(x) - \frac{P(x)Q'(x)}{2Q(x)}$$
, and $g_n(x) = -\frac{1}{2}Q'(x) + \frac{P^2(x)Q'(x)}{2Q(x)}$,

where fm(x) and $g_n(x)$ must be polynomials.

If we assume that deg P = p and deg Q = q, we get that deg $f_m = p - 1$ and deg $g_n = \max\{q - 1, p^2 - 1\}$. Since $m + 1 \ge n$ we obtain $p \ge \max\{q - 1, p^2 - 1\}$ which implies p = 1. Consequently $1 \ge q - 1$, which implies q = 1, 2.

If q = 1 then P(x) = ax + b with $a \neq 0$ and Q(x) must be proportional to P(x), that is, $Q(x) = \lambda P(x)$. So $f_m = -3a/2$ and $g_n = a(ax + b - \lambda)/2$, and $F = (b + ax - y)^2 - (b + ax)\lambda$. So statement (a) follows.

4

If q = 2 then we have P(x) = ax + b and $Q(x) = Ax^2 + Bx + C$ with $aA \neq 0$, and since f_m must be a polynomial we obtain that $f_m = -2a$, and in order that g_m be a polynomial we obtain either b = B = C = 0, or A = aB/(2b) and C = (bB)/(2a)with $ab \neq 0$.

If b = B = C = 0 then $g_n = (a^2 - A)x$ and $F = -Ax^2 + (y - ax)^2$. Therefore statement (b) is proved.

If A = aB/(2b) and C = (bB)/(2a) then g(x) = (2ab - B)(b + ax)/(2b) and $F(x, y) = -bB/(2a) - Bx - aBx^2/(2b) + (b + ax - y)^2$. Renaming B by c we get statement (c).

Proof of Proposition 5. First we suppose that $g_n(x) = -(f_m(x) + P'(x))P(x)$, and we shall prove that y - P(x) = 0 is an invariant algebraic curve. From equation (7) we have

$$-P'(x)y - yf_m(x) - g_n(x) = K(y - P(x)).$$

Substituting $g_n(x)$ we obtain

$$-P'(x)(y - P(x)) - f_m(x)(y - P(x)) = K(y - P(x)).$$

Dividing by y - P(x) the previous equality we get $K = -P'(x) - f_m(x)$, which is a cofactor of degree p - 1 + m of system (1). Note that the degree of the polynomial Liénard differential system is the degree of, i.e. the maximum of m + p and 2p - 1.

Now we assume that y - P(x) is an invariant algebraic curve of system (1) with cofactor K, then from (7) we have

$$-P'(x)y - yf_m(x) - g_n(x) = K(y - P(x)).$$

From this equality we obtain that K = K(x), then we have

$$(K(x) + f_m(x) + P'(x))y = K(x)P(x) - g_n(x)$$

Therefore $K(x) = -(f_m(x) + P'(x))$ and $g_n(x) = K(x)P(x)$. Hence $g_n(x) = -(f_m(x) + P'(x))P(x)$, and the proposition is proved.

Proof of Theorem 3. By Proposition 5 we only need to prove that P(x) or P(x) + F(x) are polynomial of degree at most one. Since $m+1 \ge n$ and n is the maximum of m+p and 2p-1 where p is the degree of the polynomial P(x), we have that $m+1 \ge m+p$, consequently $p \le 1$, and the theorem is proved.

Proof of Proposition 4. We have system (1) with $g_n(x) = -(f_m(x) + P'(x))P(x)$ and with the invariant algebraic curve y - P(x) = 0 being P(x) = -F(x) + ax + b. Then using equation (2) we obtain that the cofactor of the invariant algebraic curve y - P(x) = 0 is K = -a. Consequently system (1) has the Darboux invariant (7), which in our case becomes $I = (y - P(x))e^{at}$. Hence statement (a) is proved. Assume now that P(x) = b. Therefore g(x) = -bf(x) and the differential system becomes $\dot{x} = y$ and $\dot{x} = -(y + b)f(x)$, which has the Darboux first integral $H = e^{y+F(x)}(y-b)^b$ if $b \neq 0$, and the Darboux first integral H = y + F(x) if b = 0, as it is easy to check using (6).

J. GINÉ AND J. LLIBRE

Acknowledgements

The author is partially supported by the Agencia Estatal de Investigación grant PID2020-113758GB-I00 and an AGAUR (Generalitat de Catalunya) grant number 2017SGR 1276. The second author is partially supported by the Agencia Estatal de Investigación grant PID2019-104658GB-I00, and the H2020 European Research Council grant MSCA-RISE-2017-777911.

References

- G. CHÈZE, T. CLUZEAU, On the nonexistence of Liouvillian first integrals for generalized Liénard polynomial differential systems, J. Nonlinear Math. Phys. 20 (2013), no. 4, 475–479.
- [2] C.J. CHRISTOPHER, Liouvillian first integrals of second order polynomial differential equations, Electron. J. Differential Equations 1999, No. 49, 7 pp.
- [3] M.V. DEMINA, Invariant algebraic curves for Liénard dynamical systems revisited, Appl. Math. Lett. 84 (2018), 42–48.
- [4] M.V. DEMINA, Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems, Phys. Lett. A 382 (2018), no. 20, 1353–1360.
- [5] M.V. DEMINA, C. VALLS, On the Poincaré problem and Liouvillian integrability of quadratic Liénard differential equations, Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 6, 3231– 3251.
- [6] F. DUMORTIER, J. LLIBRE, J.C. ARTÉS, Qualitative theory of planar differential systems, UniversiText, Springer-Verlag, New York, 2006.
- [7] J. GINÉ, A note on: The generalized Liénard polynomial differential systems $\dot{x} = y$, $\dot{y} = -g(x) f(x)y$, with deg $g = \deg f + 1$, are not Liouvillian integrable, Bull. Sci. math. 139 (2015), 214–227; Bull. Sci. Math. 161 (2020), 102857.
- [8] M. HAYASHI, On polynomial Liénard systems which have invariant algebraic curves, Funkc. Ekvacioj, 39 (1996), 403–408.
- C. LIU, G. CHEN, J. YANG, On the hyperelliptic limit cycles of Liéenard systems, Nonlinearity 25 (2012), 1601–1611.
- [10] J. LLIBRE, C. VALLS, Liouvillian first integrals for generalized Liénard polynomial differential systems, Adv. Nonlinear Stud. 13 (2013), no. 4, 825–835.
- [11] J. LLIBRE, C. VALLS, The generalized Liénard polynomial differential systems x' = y, y' = -g(x) f(x)y, with deg g = deg f + 1, are not Liouvillian integrable, Bull. Sci. Math. 139 (2015), 214–227.
- [12] J. LLIBRE, C. VALLS, Liouvillian first integrals for a class of generalized Liénard polynomial differential systems, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 6, 1195–1210.
- [13] X. QIAN, J. YANG, On the number of hyperelliptic limit cycles of Liénard systems, Qual. Theory Dyn. Syst. (2020) 19:43.
- [14] X. QIAN, Y. SHEN, J. YANG, Invariant algebraic curves and hyperelliptic limit cycles of Liénard systems, Qual. Theory Dyn. Syst. 20 (2021), no. 2, Paper No. 44, 14 pp.
- [15] M.F. SINGER, Liouvillian first integrals of differential equations, Trans. Amer. Math. Soc. 333 (1992), 673–688.
- [16] X. ZHANG, Integrability of dynamical systems: algebra and analysis, Developments in Mathematics, 47. Springer, Singapore, 2017.
- [17] H. ZOLĄDEK, Algebraic invariant curves for the Liénard equation, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1681–1701.

 1 Departament de Matemàtica, Universitat de Lleida, Avda. Jaume II, 69; 25001 Lleida, Catalonia, Spain

Email address: gine@matematica.udl.cat

 2 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08
193 Bellaterra, Barcelona, Catalonia, Spain

Email address: jllibre@mat.uab.cat