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Abstract. In this paper we present a criterion for determining
the formal Weierstrass non-integrability of some polynomial differ-
ential systems in the plane C2. The criterion uses solutions of the
form y = f(x) of the differential system in the plane and their asso-
ciated cofactors, where f(x) is a formal power series. In particular
the criterion provides necessary conditions in order that some poly-
nomial differential systems in C2 be formal Weierstrass integrable.
Inside this class there exists non-Liouville integrable systems. Fi-
nally we extend the theory of formal Weierstrass integrability to
formal Puiseux Weierstrass integrability.

1. Introduction

To determine when a differential system in C2 has or has not a first
integral is one of the main problems in the qualitative theory of differ-
ential systems. The Liouville integrability is one of the most important
theories of integrability starting with Darboux in [8, 9] and strongly de-
veloped during the last decades [10, 15, 29]. This theory is based on the
existence of invariant algebraic curves and their multiplicity through
the exponential factors. Recently generalizations on the Liouville inte-
grability theory have been done in several works, see [17, 18, 24, 25, 30].

Of course there exist differential systems which are integrable, i.e.
with an explicit first integral, and that are non–Liouville integrable,
an example is given below. Hence a natural question is: How to de-
tect these non–Liouville integrable systems? In this work we shall see
that this detection is possible for some class of polynomial differential
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systems through a new criterion that detects formal Weierstrass non–
integrability. We also apply the criterion to some polynomial differen-
tial systems. But we must start providing some preliminary definitions
and results.

Consider the polynomial differential system in the plane C2

(1) ẋ = P (x, y), ẏ = Q(x, y),

where the functions P and Q are polynomials in the complex vari-
ables x and y, i.e. P , Q ∈ C[x, y]. The degree of system (1) is
m = max{degP, degQ}. Obviously system (1) has the associated dif-
ferential equation

(2)
dy

dx
=
Q(x, y)

P (x, y)
,

and the associated vector field X = P (x, y)∂/∂x+Q(x, y)∂/∂y.

We say that f(x, y) = 0 with f ∈ C[x, y], is an invariant algebraic
curve of system (1), or equivalently of equation (2), if the orbital de-

rivative ḟ = X f = P∂f/∂x+Q∂f/∂y vanishes on f = 0. In particular
the algebraic curve f(x, y) = 0 is invariant if by the Hilbert’s Nullstel-
lensatz [3] there exists a polynomial K(x, y) ∈ C[x, y] of degree less
than or equal to m − 1, called the cofactor associated to the curve
f(x, y) = 0 such that

(3) X f = P
∂f

∂x
+Q

∂f

∂y
= Kf.

A non-locally constant function H : U ⊂ C2 → C is a first integral of
system (1) in the open set U if this function is constant in each solution
(x(t), y(t)) of system (1) contained in U . Clearly H ∈ C1(U) is a first
integral of system (1) on U if and only if XH = P∂H/∂x+Q∂H/∂y ≡ 0
on U .

A function R is an integrating factor associated to a first integral H
of system (1) if

RP = −∂H
∂y

, and RQ =
∂H

∂x
,

or equivalently

(4) P
∂R

∂x
+Q

∂R

∂y
= −

(
∂P

∂x
+
∂Q

∂y

)
R = −div(X )R.
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We recall that a polynomial differential system (1) has a Liouvillian
first integral H if its associated integrating factor is of the form

(5) R = exp

(
D

E

)∏
i

Cαi
i ,

where D, E and the Ci are polynomials in C[x, y] and αi ∈ C, see for
more details [5, 16, 27, 29]. The functions of the form (5) are called
Darboux functions. Note that the curves Ci = 0 are invariant algebraic
curves of the polynomial differential system (1), and the exponential
exp(D/E) is a product of some exponential factors associated to the
invariant algebraic curves of system (1) or to the invariant straight line
at infinity when such invariant curves have multiplicity greater than
one, for more details see [4, 6, 7] or Chapter 8 of [10].

However there are differential systems without a Liouvillian first in-
tegral, see for instance [11, 20, 26]. A simple example is the polynomial
Liénard differential system

(6) ẋ = −y + x4, ẏ = x,

that has no integrating factors of the form (5), and consequently is not
Liouvillian integrable, see [11] for more details.

These type of examples are included in the first generalization of the
Liouvillian theory of integrability where the cofactors for non–algebraic
invariant curves are defined, see [11]. The problem in this generaliza-
tion is how to detect these non–algebraic invariant curves. Later on the
Liouvillian theory of integrability has been extended to n–dimensional
autonomous or non-autonomous differential systems in [18]. A method
for detecting non–algebraic invariant curves for some polynomial dif-
ferential systems was given in [12].

The next question is whether a non-algebraic invariant curve has
always a polynomial cofactor. The answer to this question in general
is negative, see an example given in [18].

Let C[[x]] be the set of the formal power series in the variable x with
coefficients in C, and C[y] the set of the polynomials in the variable y
with coefficients in C. A function of the form

(7)
∑̀
i=0

ai(x)yi ∈ C[[x]][y]

is called a formal Weierstrass polynomial in y of degree `. Here we have
privileged the variable y but of course we can privileged the variable
x instead of y. A formal Weierstrass polynomial whose coefficients
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are convergent is called a Weierstrass polynomial, for more details see
[2, 17, 18].

The expression of a cofactor of an invariant curve y−g(x) = 0 where
g(x) is a formal Weierstrass polynomial is given in the following result
proved in [13].

Proposition 1. Let g(x) ∈ C[[x]]. An invariant curve of the form
y − g(x) = 0 of a polynomial differential system (1) of degree m has a
formal Weierstrass polynomial cofactor of the form

(8) K(x, y) = km−1(x)ym−1 + · · ·+ k1(x)y + k0(x).

In [17] it is given a generalization of the Liouvillian integrability
based in the following definition. A planar autonomous differential
system is (formal) Weierstrass integrable if admits an integrating fac-
tor of the form (5) where D, E and the Ci’s are (formal) Weierstrass
polynomials.

Note that there are systems which are Weierstrass integrable and
are not Liouvillian integrable, see for instance system (6) and example
2 below. In the papers [19, 20, 21, 23] are studied some Liénard dif-
ferential systems and Abel differential equations that are Weierstrass
integrable.

Let C[[x, y]] be the set of all formal power series in the variables x
and y with coefficients in C. The following result is given in [2].

Theorem 2. If f ∈ C[[x, y]] then it has a unique decomposition of the
form

(9) f = uxr
∏̀
j=1

(y − gj(x)),

where gj(x) are Puiseux series and r ∈ Z, r ≥ 0 and u ∈ C[[x, y]] is
invertible inside the ring C[[x, y]].

We note that a Darboux integrating factor (5) is analytic function
where it is defined consequently by Theorem 2 it can be written into
the form (9).

We say that a polynomial differential system (1) is weakly formal
Weierstrass integrable if it has an integrating factor of the form

(10) R =
∏̀
i=1

(y − fi(x))αi ,
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where the functions fi(x) ∈ C[[x]].

In this work we give a criterion for detecting when a polynomial
differential system (1) is not weakly formal Weierstrass integrable. We
note that in general to detect the non–integrability of a differential
system is a very difficult problem.

2. The criterion

The criterion is based in the following result which is an extension
of the results of Darboux integrability for formal invariant curves, see
for instance [10].

Theorem 3. Assume that the polynomial differential system (1) is
weakly formal Weierstrass integrable, that is, it has an integrating fac-
tor of the form (10). If Ki is the cofactor of any formal invariant curve
y − fi(x) = 0, then ∑̀

i=1

αiKi = −div(X ).

Proof. The existence of the integrating factor R, given in (10), forces
that the curve y − fi(x) = 0, for i = 1, . . . , `, is invariant for system
(1), and consequently by Proposition 4 it has a formal Weierstrass
polynomial cofactor Ki such that

X (y − fi(x)) = Ki(y − fi(x)).

Since R is an integrating factor, from (4), we have

−div(X )R = X (R) = X

(∏̀
i=1

(y − fi(x))αi

)

=
∑̀
i=1

X ((y − fj(x))αj)
∏̀

i=1,i 6=j

(y − fi(x))αi

=
∑̀
i=1

αi(y − fj(x))αj−1X (y − fj(x))
∏̀

i=1,i 6=j

(y − fi(x))αi

=
∑̀
i=1

αi(y − fj(x))αj−1Ki(y − fj(x))
∏̀

i=1,i 6=j

(y − fi(x))αi

=
∑̀
i=1

αiKi

∏̀
i=1

(y − fi(x))αi =

(∑̀
i=1

αiKi

)
R.
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This completes of the proof of the theorem. �

Our criterion for detecting polynomial differential systems which are
not weakly formal Weierstrass integrable works as follows. First we
compute the solutions of the form y = fi(x) = gi(x) + O(xr+1) =∑r

j=0 ajx
j +O(xr+1) ∈ C[[x]] of the polynomial differential system (1)

through the equation Eq := ẋdy/dx − ẏ = 0 up to order r in the
variable x. After we compute the corresponding cofactor Li ∈ C[[x]][y]
of the invariant curve y − fi(x) = 0 up to order r, using the equality

X (y − gi(x)) = Li(y − gi(x)) +O(xr+1).

From Theorem 3 if the cofactors Li’s do not verify the equality

(11)
∑̀
i=1

αiLi = −divr(X ) +O(xr+1),

where divr(X ) is the divergence div(X ) up to order r in the variables x
and y, then system (1) cannot be weakly formal Weierstrass integrable
with fi(x) formal series.

3. Puiseux Weierstrass integrability

In this section we propose a generalization of the formal Weierstrass
integrability that contains all the Liouville integrability.

Let C((x)) be the set of series in fractionary powers in the variable x
with coefficients in C (these series are called Puiseux series), and C[y]
the set of the polynomials in the variable y with coefficients in C. We
call a function of the form

(12)
∑̀
i=0

ai(x)yi ∈ C((x))[y]

a Puiseux Weierstrass polynomial in y of degree `. Here we have priv-
ileged the variable y but of course we can privileged the variable x
instead of y. This definition is a generalization of the formal Weier-
strass polynomial introduced before.

The expression of a cofactor of an invariant curve y−g(x) = 0 where
g(x) is a Puiseux Weierstrass polynomial is given in the following result
which a generalization of Proposition 1.

Proposition 4. Let g(x) ∈ C((x)). An invariant curve of the form
y − g(x) = 0 of a polynomial differential system (1) of degree m has a
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Puiseux Weierstrass polynomial cofactor of the form

(13) K(x, y) = km−1(x)ym−1 + · · ·+ k1(x)y + k0(x).

Proof. The proof of this proposition is exactly the same than Proposi-
tion 1.4 of [13]. �

A planar autonomous differential system is Puiseux Weierstrass in-
tegrable if it admits an integrating factor of the form (5) where D, E
and the Ci’s are Puiseux Weierstrass polynomials. By definition the
Puiseux Weierstrass integrable systems include the Liouville integrable
systems.

The criterion based in Theorem 3 is also generalizable for such inte-
grable systems. In a future work we will compute the invariant solu-
tions y−fi(x) of a polynomial differential system (1) when the functions
fi(x) ∈ C((x)). The hard problem in this case is in what fractionary
power begins the Puiseux series fi(x).

4. Examples

Example 1. Now consider the polynomial differential system

(14) ẋ = −y + x2, ẏ = x+ ax2.

This system has a focus at the origin because the first Poincaré-Liapunov
constant is V4 = a, see for more details on the Liapunov constants the
Chapter 4 of [10]. Now we study if system (14) can be weakly for-
mal Weierstrass integrable, that is, with fi(x) ∈ C[[x]]. Following the
criterion we propose a solution curve of the form

(15) y = f(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + · · ·
up to a fixed order r in the variable x. Substituting this solution in
the first ordinary differential equation Eq := ẋdy/dx − ẏ = 0 we get
an infinite system of equations. In order to determine the coefficients
ai up to certain order we fix the developments of f(x) and Eq. If we
do that up to order 5 and we solve the finite system of equations, we
find the following four solutions curves for system (14):

1) y = y1(x) =
3(−5 +

√
1− 8a2)

(8(3 + a2)
+

1

6
(5 +

√
1− 8a2)x2 +

1

9
a(5 +

√
1− 8a2)x3 +

1

27
(2(−1 +

√
1− 8a2) − a2(9 +

√
1− 8a2))x4 −

4

405
a(−29− 25

√
1− 8a2 + a2(57 + 5

√
1− 8a2))x5 +O(x6),
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2) y = y2(x) =
3(−5−

√
1− 8a2)

(8(3 + a2)
+

1

6
(5−

√
1− 8a2)x2 +

1

9
a(5−

√
1− 8a2)x3 +

1

27
(2(−1 −

√
1− 8a2) − a2(9 +

√
1− 8a2))x4 −

4

405
a(29− 25

√
1− 8a2 + a2(−57 + 5

√
1− 8a2))x5 +O(x6),

3) y = y3(x) = −ix−i(i+a)x2/3+i(2−ia+a2)x3/18−i(−8i+6a−
9ia2+5a3)x4/270+i(−12−76ia+3a2−66ia3+25a4)x5)/3240+
O(x6),

4) y = y4(x) = ix+ i(−i+a)x2/3− i(2+ ia+a2)x3/18+ i(8i+6a+
9ia2+5a3)x4/270−i(−12+76ia+3a2+66ia3+25a4)x5)/3240+
O(x6).

Next we compute their Weierstrass polynomial cofactors up to order 5
and we find that

1) K1 =
1

81

(
x(135+135ax−24x2−108a2x2+116ax3−228a3x3)+

√
1− 8a2 x (−27− 27ax− 24x2 + 12a2x2− 100ax3 + 20a3x3)

)
+

O(x6),

2) K2 =
1

81

(
x(135+135ax−24x2−108a2x2+116ax3−228a3x3)−

√
1− 8a2x(−27− 27ax− 24x2 + 12a2x2− 100ax3 + 20a3x3)

)
+

O(x6),

3) K3 =
1

3240

(
2(1080x + 270ax2 − 192x3 − 216a2x3 + 190ax4 +

165a3x4) + i(3240 + 2160ax − 1080x2 − 540a2x2 + 288ax3 +

240a3x3 + 60x4 − 15a2x4 − 125a4x4)
)

+O(x6),

4) K4 =
1

3240

(
2(1080x + 270ax2 − 192x3 − 216a2x3 + 190ax4 +

165a3x4) + i(−3240 − 2160ax + 1080x2 + 540a2x2 − 288ax3 −
240a3x3 − 60x4 + 15a2x4 + 125a4x4)

)
+O(x6).

Now we try to see if there is a linear combination of them equal to
minus the divergence, that is

(16) c1K1 + c2K2 + c3K3 + c4K4 = −div5X +O(x6),

and this equation does not have any solution. Hence by the criterion
system (14) has not an integrating factor of the form (10). Conse-
quently system (14) is not weakly formal Weierstrass integrable.
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When a = 0 equation (16) has the solution

c1 = c2 = −5

2
(1 + c4) c3 = 1 + c4.

In fact for a = 0 the differential system (14) is a time-reversible system
because is invariant by the the symmetry (x, y, t)→ (−x, y,−t). Hence
it has a center at the origin. Moreover it has a Darboux integrating
factor of the form R = (1 + 2y − 2x2)−1. So for a = 0 system (14) is
Liouvillian integrable.

Example 2. Consider the differential system (6). This system is
time-reversible because it is invariant under the symmetry (x, y, t) →
(−x, y,−t). Hence it has a center at the origin of coordinates. Moreover
it has not a Liouvillian first integral, see [11].

Now we are going to apply the criterion to detect if system (6) has
an integrating factor of the form (10) with fi(x) ∈ C[[x]].

We propose a solution curve of the form y =
∑4

j=0 ajx
j +O(x5) and

substituting this solution into the differential equation Eq := ẋdy/dx−
ẏ = 0 we get an infinite system of equations. If we stop this system
taking into account the equations up to order 4, and solve this finite
system of equations we obtain the following five solutions curves:

1) y = y1(x) = −ix+ x4/5 +O(x5),

2) y = y2(x) = ix+ x4/5 +O(x5),

3) y = y3(x) = 1/2(−3)1/3 + (−1)2/3x2/31/3 + x4/3 +O(x5),

4) y = y4(x) = −31/3/2 + x2/31/3 + x4/3 +O(x5),

5) y = y5(x) = −1/2(−1)2/331/3 − (−1)1/3x2/31/3 + x4/3 +O(x5).

Now we are going to compute the Weierstrass polynomial cofactors of
these solution curves up to order 4. Since system (6) is of degree 4 the
Weierstrass polynomial cofactors are of the form K = k0(x) +k1(x)y+
k2(x)y2 + k3(x)y3. Applying equation (3) to the invariant solutions
y−yk(x) = O(x5) for k = 1, . . . , 5, we obtain for each of these solutions
curves their Weierstrass polynomial cofactor up to order 4, i.e.

1) K1 = (−5i+ 4x3)/5 +O(x5),

2) K2 = (5i+ 4x3)/5 +O(x5),

3) K3 = (37/6ix− 32/3x+ 4x3)/3 +O(x5),

4) K4 = 2(32/3x+ 2x3)/3 +O(x5).

5) K5 = (−37/6ix− 32/3x+ 4x3)/3 +O(x5),
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Now we study if system (6) satisfies equation (11). Solving the equa-
tion

c1K1 + c2K2 + c3K3 + c4K4 + c5K5 = −div4X +O(x5),

we get the solution c3 = c4 and

c1 =− 15i− 5
√

3 + 6ic4 − 2
√

3c4 + 10ic5

5(−i+
√

3)
,

c2 =
10
√

3 + 4
√

3c4 + 5ic5 + 5
√

3c5

5i− 5
√

3
.

Consequently system (6) could have an integrating factor of the form
(10) with fi(x) ∈ C[[x]]. We claim that this system is Weierstrass
integrable because it has the integrating factor

(17) R(x, y) = f−22 (x, y).

Indeed, if Ai(z) and Bi(z) are the two independent Airy functions, see
a definition in [1], then we know that system system (6) is integrable
because it has the first integral H(x, y) = f1f

−1
2 , where

f1(x, y) = −(−2)1/3x2Ai((−2)2/3y) + Ai′((−2)2/3y),

f2(x, y) = (−2)1/3x2Bi((−2)2/3y)− Bi′((−2)2/3y).

The non–algebraic curves fi(x, y) = 0 are invariant curves by the flow
of system (6), satisfying the corresponding equation (3) for the vector
field X associated to system (6) with cofactors K1 = K2 = 2x3. Con-
sequently it has the integrating factor given in (17), which is which is
not of the form (5). In short the polynomial differential system (6) is
formal Weierstrass integrable but not Liouvillian integrable.
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60–96; 123–144; 151–200.

[9] G. Darboux, De l’emploi des solutions particulières algébriques dans l’inté-
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