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In the beginning of the Second World War, the French physicist, Yves Rocard, published a book
entitled Théorie des Oscillateurs (Theory of Oscillators). In Chapter V, he designed a mathemat-
ical model consisting of a set of three nonlinear differential equations and allowing to account for
economic crises. Numerical integration of his model has highlighted a chaotic attractor. Its analysis
with classical tools such as bifurcation diagram and Lyapunov Characteristic Exponents has con-
firmed the chaotic features of its solution. It follows that Rocard’s 1941 chaotic econometric model
has thus most likely preceded Lorenz’ butterfly of twenty-two years. Moreover, apart this historical
discovery which upsets historiography, it is also established that this “new old” three-dimensional
autonomous dynamical system is a new jerk system whose solution exhibits a chaotic attractor the
topology of which varies, from a double scroll attractor to a Möbius-strip and then to a toroidal
attractor, according to the values of a control parameter.

I. INTRODUCTION

According to the historiography, it is generally considered that the very first chaotic attractor has been designed
in 1963 by the late Edward Norton Lorenz [15]. But the winding road taken by the theory of nonlinear oscillations
sometimes leads to surprises. Long and deep investigations performed in this domain [4] have led us to the “discovery”
of a book entitled Théorie des Oscillateurs (Theory of Oscillators) and published by the French physicist Yves Rocard
(1903-1992) in 1941. In chapter V: “Les oscillateurs des théories économiques” (Oscillators of economics theories),
Rocard designed two mathematical models allowing to account for economic crises. In the first one, presented in
subsection B, Rocard proves that economic crises can be modeled by using a Van der Pol’s relaxation oscillator [22]
and obtained, to our knowledge, probably the very first relaxation econometric oscillator. Then, by considering that
the frequency of oscillations may strongly depends on the amplitude, Rocard modified his first model and obtained a
second one which is a chaotic relaxation econometric oscillator presented in subsection C. This latter model, which
is the subject of this present work, will be analyzed in Sec. II and III. Then, by using classical analysis tools such
as bifurcation diagram and Lyapunov Characteristic Exponents, it will be thus established that this model is a new
jerk system the solution of which exhibits not only one but several chaotic attractors according to the value of the
bifurcation parameter.

A. Rocard’s econometric oscillators

Starting from the analogy with a nonholonom oscillator, Rocard [17, p. 126] imagines an econometric model that
he describes as follows:

“Suppose that y is the price of a commodity, that y1 is the number of consumers of that commodity, or
its total consumption, and assume that y2 is the degree of tooling or mechanization, or rationalization,
involved in the manufacture of this commodity and tending to lower its price. We will reason less about
the quantities themselves than about their differences from a position of equilibrium that will not be
quantified.”
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Then, he obtained the following three-dimensional dynamical model consisting in linear ordinary differential equa-
tions: 

dy1
dt

= −ay1 + by,

dy2
dt

= K (y + y1) ,

m
dy

dt
= −y2.

(1)

where a is a positive parameter while b is negative and m and K are two unknown coefficients to be determined.
In this model: −a (a > 0) represents the decreasing rate of the number of consumers or decreasing rate of the total
consumption, b (b < 0) is the decreasing rate of a commodity price, K corresponds to the commodity price growth rate
and to the total consumption growth rate, m is the mass of investments. By taking the second time derivative of the
last equation of (1) and by making a linear combination of the two others, he obtains the following third-order linear
ordinary differential equation:

m
...
y + amÿ +Kẏ +K (a+ b) y = 0. (2)

B. Relaxation econometric oscillator

Then, Rocard explains that as long as b is negative, the dynamical system (1) or its corresponding linear differential
equation (2) cannot exhibit any self-oscillations, i.e., self sustained oscillations. As a consequence, in order to obtain
such kind of oscillations, he suggests to replace b by b[1− y2/y20 ] where y0 is a constant in the above equations (1-2).
Let’s notice that Rocard introduces this nonlinear oscillations characteristic “by hand” in his model, i.e., without
any economical justification. He obtains the following three-dimensional dynamical consisting in nonlinear ordinary
differential equations: 

dy1
dt

= −ay1 + b

(
1− y2

y20

)
,

dy2
dt

= K (y + y1) ,

m
dy

dt
= −y2,

(3)

that he transforms into:

m
...
y + amÿ +Kẏ +K

[
a+ b

(
1− y2

y20

)]
y = 0. (4)

According to Sprott [20], the third-order nonlinear ordinary differential equation (4) is a jerk equation and the
dynamical system (3) is jerk system. Then, Rocard [17, p. 128] explains that:

“The equations of the system (3) are no more linear, and their mathematical analysis becomes more
difficult. However, we have the study of relaxation oscillations to guide us, and we will quickly see that
we can conclude to the existence of self-sustaining oscillations of finite amplitude.”

Thus, Rocard [17, p. 130] performs a classical analysis of his third-order nonlinear ordinary differential equation,
i.e. his jerk equation (4) and plot its solution (see Fig. 1).
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FIG. 1: Solution of Rocard’s jerk equation (4).

Then, Rocard [17, p. 130] explains that the curves represented on Fig. 1 are “very similar to those of relaxation
oscillations”. From Fig. 1, he deduces that “for the variation of prices y over time we obtain a fairly characteristic law
of slow rise when prices are low, accelerated when they are high, then slowly fall, becoming a little faster when they
are. lower, etc . . . ”. Finally, Rocard [17, p. 131] states mathematically that the frequency decreases as the amplitude
increases and he considers that it would be interesting to analyze the case of an “oscillator whose frequency depends
much on the amplitude”. By posing:

ω2 =
K

m
; a = εω ; b = ηω ; y = y0z,

He obtains the following dimensionless third-order nonlinear ordinary differential equation:

...
z + εωz̈ + ω2ż + ω3

[
ε+ η

(
1− z2

)]
z = 0. (5)

Although Le Corbeiller [13] and Hamburger [8, 9] had suggested to apply Van der Pol’s relaxation oscillations to
Econometry, this is only in 1951 that Goodwin [6] proposed a prototype nonlinear differential equation exhibiting
maintained or self-sustained oscillations including relaxation oscillation. So, it appears that Rocard’s jerk equation
(5) which has preceded that of Goodwin of ten years can be considered as the paradigm of relaxation oscillations in
Econometry and also upsets the historiography.

C. Chaotic relaxation econometric oscillator

In the second section of chapter V, Rocard [17, p. 133] designed a second model which is an “oscillator whose
frequency depends much on the amplitude”. To this aim, he modified the nonlinear oscillations characteristic, i.e.,
the last term of Eq. (5), by replacing (1 − z2) with (1 − z2 − ż2/ω2). Thus, he obtains the following dimensionless
third-order nonlinear ordinary differential equation:

...
z + εωz̈ + ω2ż + ω3

[
ε+ η

(
1− z2 − ż2

ω2

)]
z = 0. (6)

Then, Rocard [17, p. 133] explains that:

“It would be interesting to provide a case study for which the frequency variation according to the ampli-
tude can even be totally abnormal.”

This last model, is, to our knowledge the first chaotic relaxation econometric oscillator. It will be analyzed in the
next section. We will show that what he considered as “abnormal” is in fact the expression of the chaotic behavior of
the solution of his jerk equation (6).
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II. ROCARD’S 1941 CHAOTIC RELAXATION OSCILLATOR

First, let’s notice that, according to D’Alembert [1], the third-order nonlinear ordinary differential equation (6) can
be cast in the form of a system of coupled first-order nonlinear differential equations as follows:

dx

dt
= −ω [εx+ ωy + ωz] ,

dy

dt
= ω

[
ε+ η

(
1− z2 − x2

ω2

)]
z,

dz

dt
= x.

(7)

Although in the second section of his chapter V, Rocard [17, p. 133] did not assign any value to the parameter
set of his model, we have performed many preliminary tests to determine the parameters range within which chaotic
attractors may appear. This led us to use the following parameter set: ε = 0.5, ω = 2 and η ∈ [−1.34, 0.94] which
will be used in the next sections. These parameter values correspond in the non-dimensionless form to a = εω = 1,
b ∈ [−2.68, 1, 88] since b = ηω and K = ω2m = 4m. Let’s notice that they do have a real economic significance,
according to REF since...

III. STABILITY ANALYSIS

A. Equilibrium points

By using the classical nullclines method, we found that Rocard’s system (7) has the following three equilibrium
points:

O (0, 0, 0) ; I1

(
0,

√
ε+ η

η
,−

√
ε+ η

η

)
; I2

(
0,−

√
ε+ η

η
,

√
ε+ η

η

)
(8)

B. Jacobian matrix

The Jacobian matrix of Rocard’s dynamical system (7) reads:

J =


−εω −ω2 −ω2

−2η

ω
xz 0 −ηx2

ω
+ ω

(
ε+ η − 3ηz2

)
1 0 0

 (9)

By replacing the coordinate of the equilibrium point O (8) in the Jacobian matrix (9) one obtains the following
Cayley-Hamilton third degree eigenpolynomial:

λ3 + εωλ2 + ω2λ− ω3 (ε+ η) = 0. (10)

By using the Routh-Hurwitz criterion [10, 18] to state the stability of O, we obtain the following three determinants:
∆1 = εω,

∆2 = −ω3η,

∆3 = −ω6 (η + ε) η.

Since with our parameter set, ε = 0.5 and ω = 2, it follows that all these three determinants are strictly positive
provided that:

−ε < η < 0. (11)
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Thus, all the real parts of the eigenvalues of the eigenpolynomial (10) are negative and so, O is a stable equilibrium
point provided that condition (11) is verified. Now, by replacing the coordinate of the equilibrium points I1 or I2 (8)
in the Jacobian matrix (9) one obtains the following Cayley-Hamilton third degree eigenpolynomial:

λ3 + εωλ2 + ω2λ+ ω3 (ε+ η) = 0. (12)

Still using the Routh-Hurwitz criterion [10, 18] to state the stability of I1,2, we obtain the three determinants:
∆1 = εω,

∆2 = ω3 (3ε+ 2η) ,

∆3 = −2ω6 (3ε+ 2η) (ε+ η) .

Since with our parameter set, ε = 0.5 and ω = 2, it follows that all these three determinants are strictly positive
provided that:

−3ε

2
< η < −ε. (13)

Thus, all the real parts of the eigenvalues of the eigenpolynomial (12) are negative and so, I1,2 are stable equilibrium
points provided that condition (13) is verified. Then, by taking into account both conditions (11) and (13), we find
that if:

−3ε

2
< η < 0

at least one of the three equilbrium points is stable, but this does not imply that other attractors can coexist with
this local stable equilibrium, see for instance [21].

The characteristic polynomial (10) becomes the polynomial (λ− κ)(λ− σi)(λ+ σi) with κσ ̸= 0, and consequently
the equilibrium point at the origin of coordinates O has the possibility of exhibiting a Hopf bifurcation because then
the eigenvalues of its linear part are κ and ±σi for ω > 0 if and only if ε = −κ/σ, η = 0 and ω = σ. We can
expect to see a small-amplitude limit cycle biburcating from the equilibrium point O. In order to confirm that a Hopf
bifurcation appears at O we must compute the first Lyapunov coefficient ℓ1(O) of the differential system at O.
When ℓ1(O) ̸= 0 the equilibrium point O is a weak focus of the differential system (7) restricted to the central

manifold of O and the limit cycle that emerges from O is stable if ℓ1(O) < 0, and unstable if ℓ1(O) > 0. In the
first case we say that the Hopf bifurcation is supercritical, and in the second case we say that the Hopf bifurcation is
subcritical.

Here we use the following result presented in the pages 175–180 of the book [12] for computing ℓ1(O).

Lemma 1. Let ẋ = F (x) be a differential system with x ∈ R3 having O as an equilibrium point. Consider the third

order Taylor approximation of F around O given by F (x) = Ax +
1

2!
B(x,x) +

1

3!
C(x,x,x) +O(|x|4), where A is a

matrix, B is a bilinear function and C is a trilinear one. Assume that the matrix A has a pair of purely imaginary
eigenvalues ±σi. Let q be the eigenvector of A corresponding to the eigenvalue σi, normalized so that q · q = 1, where
q is the conjugate vector of q. Let p be the adjoint eigenvector such that AT p = −σip and p · q = 1. If I denotes the
3× 3 identity matrix, then

ℓ1(O) =
1

2σ
Re(p · C(q, q, q)− 2p ·B(q, A−1B(q, q)) + p ·B(q, (2σiI −A)−1B(q, q))).
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Some easy but tedious computations show that

A =

 κ −σ2 −σ2

0 0 −κ
1 0 0

 ,

q =

 iσ√
κ2

σ2 + σ2 + 1
,

iκ

σ
√

κ2

σ2 + σ2 + 1
,

1√
κ2

σ2 + σ2 + 1

 ,

p =

− 1

(κ+ iσ)
√

κ2

σ2 + σ2 + 1
,

iσ

(κ+ iσ)
√

κ2

σ2 + σ2 + 1
,

1√
κ2

σ2 + σ2 + 1

 ,

B((x1, y1, z1), (x2, y2, z2)) = (0, 0, 0),

C((x1, y1, z1), (x2, y2, z2), (x3, y3, z3)) =

(
0,−6η(x1x2z3 + x1z2x3 + z1x2x3)

ω
− 6ηωz1z2z3, 0

)
,

ℓ1(O) = −
3ησ3

(
σ2 + ω2

)
2ω (κ2 + σ2) (κ2 + σ4 + σ2)

.

In summary, by Lemma 1 it follows that when ℓ1(O) ̸= 0 the differential system (7) for ε = −κ/σ, η = 0 and
ω = σ > 0 exhibits a Hopf bifurcation at the equilibrium point O.

C. Bifurcation diagram

According to Rocard [17, p. 133], the amplitude of his jerk equation (6) and so, of the jerk system (7) much depends
on the parameter η. The same is true for existence of chaotic attractors for the jerk system (7). Thus, in order to
highlight how the changes of this control parameter impact the corresponding topology of the attractor, we have
built a bifurcation diagram for η ∈ [−1.34,−0.75] (see Fig. 2) and for η ∈ [0, 0.94] (see Fig. 3) since in the interval
η ∈ [−0.75, 0] one at least of the three equilibrium points is stable. On Fig. 2, we observe a reverse period doubling
cascade which confirms the existence of chaotic attractors for −1.34 ⩽ η ⩽ −0.75. As parameter η increases from
−1.34 to −0.75, the chaotic attractor becomes a limit cycle. Let’s notice on Fig. 2 the presence of several “windows”
within which the chaotic attractor becomes a limit cycle whose period is determined by the number of branches.
As an example, for η ∈ [−1.319,−1.308], the attractor becomes a limit cycle of period 9. On Fig. 3, bifurcation
diagram highlights a period doubling cascade for 0 ⩽ η ⩽ 0.94. Starting from η = 0 to η ≈ 0.72 the attractor is a
limit cycle and then becomes chaotic. There are also several windows within which the attractor topology changes
and we observe limit cycles whose period is given by the number of branches. As an example, for η ∈ [0.87, 0.92],
the attractor becomes a limit cycle of period 5. The attractor topology changes according to the control parameter
values of η may be represented as follows:

−1.34 −−−−−−−−−−→
Chaos / LCn

−0.75
HB

−−−−−−−−−−→
SFP

0
HB

−−−−−−−−−−→
LC1

0.65 −−−−−−−−−−→
Chaos / LCn

0.94

where LCn means limit cycle of period n, SFP, Stable equilibrium Points and HB, Hopf Bifurcation.
For −1.34 ⩽ η ⩽ −0.75, a reverse period doubling cascade occurs (see Fig. 3) till the control parameter η reaches

the vale of the Hopf bifurcation ηHopf = −0.75. Thus, we observe for −1.34 ⩽ η ⩽ −1.15 a chaotic double-scroll (see
Fig. 4a & 4c). Within this interval, several windows appear on the bifurcation diagram (see Fig. 2) and correspond
to limit cycles of period n. As another example, for η = −1.25 the attractor becomes a limit cycle of period 5 (see
Fig. 4b). Then, starting for −1.05 ⩽ η ⩽ −0.995, the topology of the attractor changes and it becomes a Möbius-strip
(see Fig. 4d-4f). For η ⩾ −0.75, the attractor is a limit cycle of period 1.

For −0.75 ⩽ η ⩽ 0, one of the three equilibrium points is stable. As highlighted on the bifurcation diagram (see
Fig. 3), from η = 0 to η ≈ 0.72 the attractor is a limit cycle. Then, a period doubling cascade occurs. From η ≈ 0.77,
we observe a toroidal chaotic attractor (see Fig. 5a, 5b, 5d & 5e). Again, there are several window within which some
limit cycles of period n appear. As an example, Fig. 5c highlights a limit cycles of period 7 for η = 0.825 while a
limit cycles of period 5 for η = 0.9 (see Fig. 5e).
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FIG. 2: Bifurcation diagram xmax as function of η for η < 0.

FIG. 3: Bifurcation diagram xmax as function of η for η > 0.

In order to confirm the topology of these attractors, Lyapunov exponents have been computed in each case.

D. Numerical computation of the Lyapunov exponents

The algorithm developed by Sandri [19] for Mathematica® has been used to perform the numerical calculation of
the Lyapunov characteristics exponents (LCE) of dynamical system (7) in each case. LCEs values have been computed
within each considered interval (η ∈ [−1.34,−0.75] and [0, 0.94]). Then, following the works of Klein and Baier [11],
a classification of (autonomous) continuous-time attractors of dynamical system (12) on the basis of their Lyapunov
spectrum, together with their Hausdorff dimension is presented in Tab. 1. LCEs values have been also computed with
the Lyapunov Exponents Toolbox (LET) developed by Siu for MatLab® and involving the two algorithms proposed
by Wolf et al. [24] and Eckmann and Ruelle [3] (see https://fr.mathworks.com/matlabcentral/fileexchange/233-let).
Results obtained by both algorithms are consistent.

We observe on figures 4 that the topology of the attractor of Rocard’s chaotic relaxation econometric oscillator (7)
varies. For −1.34 ⩽ η ⩽ −1.15 the attractor is a double scroll (see Fig. 4a & 4c) which may become for particular
values of η, a limit cycle (see Fig. 4b), the period of which is given by the number of “branches” observed in the
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(a) η = −1.34 (b) η = −1.25

(c) η = −1.15 (d) η = −1.05

(e) η = −1 (f) η = −0.995

FIG. 4: Rocard’s chaotic relaxation econometric oscillator (7) in the phase space for various values of η < 0.
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(a) η = 0.77 (b) η = 0.8

(c) η = 0.825 (d) η = 0.865

(e) η = 0.9 (f) η = 0.925

FIG. 5: Rocard’s chaotic relaxation econometric oscillator (7) in the phase space for various values of η > 0.
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TABLE I: Lyapunov characteristics exponents of Rocard’s dynamical system (7) for various values of η.

η LCE spectrum Dynamics of the attractor Hausdorff dimension

−1.34 ⩽ η ⩽ −0.995 (+, 0,−) Chaos 2.04 ⩽ D ⩽ 2.22

−0.95 ⩽ η ⩽ −0.75 (0,−,−) Limit cycle of period 1 D = 1

0 ⩽ η ⩽ 0.72 (0,−,−) Limit cycle of period 1 D = 1

0.72 ⩽ η ⩽ 0.94 (+, 0,−) Chaos 2.04 ⩽ D ⩽ 2.17

bifurcation diagram (see Fig. 2). Then, for η ≈ −1.09, one the two scrolls of the attractor disappears giving rise to
the Möbius-strip (see Figs. 4d, 4e & 4f). This latter disappears on its turn to become a limit cycle according to the
reverse period doubling cascade scenario presented on the bifurcation diagram (see Fig. 2). For 0 ⩽ η ⩽ 0.94 the
attractor slips from a limit cycle to a Möbius-strip (see Fig. 5a & 5b) via a period doubling cascade route to chaos as
highlighted in the bifurcation diagram (see Fig. 3). Moreover, it may become for particular values of η, a limit cycle
(see Fig. 5c & 5e), the period of which is given by the number of “branches” observed in the bifurcation diagram (see
Fig. 3). Then, for η ≈ 0.825, the attractor becomes toroidal (see Fig. 5d & 5f).

IV. CONCLUSIONS

Deep investigations of applications of‘nonlinear oscillations theory in the domain of Econometric induced by one
of us (F.J.) have led us to the “discovery” of a book entitled Théorie des Oscillateurs (Theory of Oscillators) and
published by the French physicist Yves Rocard (1903-1992) in 1941. In chapter V: “Les oscillateurs des théories
économiques” (Oscillators of economics theories), Rocard designed two mathematical models allowing to account for
economic crises. Each of these two models consists of a set of three nonlinear differential equations which allows to
account for economic crises and which can be transformed into a third-order nonlinear ordinary differential equation,
that is to say into a jerk equation according to Sprott [20]. With the former model (3), Rocard proved that economic
crises can be modeled by using a Van der Pol’s relaxation oscillator [22] and obtained, to our knowledge, probably
the very first relaxation econometric oscillator (5). Till recently, the historiography [23] considered that this is
only in 1951 that the American mathematician and economist, Richard Goodwin [6], proposed a prototype nonlinear
differential equation exhibiting maintained or self-sustained oscillations including relaxation oscillation. Then, Rocard
modified his first equation (5) in order to have an “oscillator whose frequency depends much on the amplitude”. Thus,
he obtained the third-order nonlinear ordinary differential equation or jerk equation (6) the investigations of which
led him to the conclusion that the “frequency variation according to the amplitude can even be totally abnormal”.
Nevertheless, he neither further analyzed this jerk equation (6) nor assign any value to the parameter set. So, by
considering a realistic range of parameter set, from the econometric point of view, we performed many preliminary
tests and determined that for ε = 0.5, ω = 2 and η ∈ [−1.34, 0.94] several chaotic attractors may appear. Then, we
have transformed the third-order nonlinear ordinary differential equation or jerk equation (6) into a dynamical system
that we have analyzed by using classical tools such as, equilibrium points stability, occurrence of Hopf bifurcations,
bifurcation diagram and Lyapunov Characteristic Exponents. Such mathematical and numerical analysis has enabled
to confirm that the solution of this “new old” three-dimensional autonomous dynamical system or new jerk system
(7) exhibits a chaotic attractor the topology of which varies, from a double scroll attractor to a Möbius-strip and then
to a toroidal attractor, according to the values of a control parameter η via a reverse period doubling cascade and
period doubling cascade. Thus, it appears that Rocard [17] has stated in 1941, twenty-two years before Edward Norton
Lorenz [15], the very first chaotic attractor. This result upsets the historiography [2, 5, 7, 14] who considered till now
that Lorenz [15] had been the first to propose a nonlinear dynamical system the solution of which was exhibiting the
famous butterfly. So, in this work, we have shown that contrary to what one thought, the very first chaotic attractor
has not been designed for modeling atmospheric convection in the domain of Meteorology but for modeling great
amplitude variations of relaxation oscillations in Econometry.
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