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Abstract

In this paper, we are interested in how the local cyclicity of a family of centers depends on the parameters. 
This fact was pointed out in [21], to prove that there exists a family of cubic centers, labeled by CD12

31 in 
[25], with more local cyclicity than expected. In this family, there is a special center such that at least twelve 
limit cycles of small amplitude bifurcate from the origin when we perturb it in the cubic polynomial general 
class. The original proof has some crucial missing points in the arguments that we correct here. We take 
advantage of a better understanding of the bifurcation phenomenon in nongeneric cases to show two new 
cubic systems exhibiting 11 limit cycles and another exhibiting 12. Finally, using the same techniques, we 
study the local cyclicity of holomorphic quartic centers, proving that 21 limit cycles of small amplitude 
bifurcate from the origin, when we perturb in the class of quartic polynomial vector fields.
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1. Introduction

The study of limit cycles began at the end of the 19th century with Poincaré. Years later, in 
1900, Hilbert presents a list of unsolved problems. From the original 23 problems of this list, 
the 16th is still open. The second part of this problem consists in determining a uniform bound 
of the maximal number of limit cycles (named H(n)), and their relative positions, of a planar 
polynomial system of degree n. However, there are also weak versions of 16th Hilbert’s problem. 
Arnol’d in [1] proposed a version focused on studying the number of limit cycles bifurcating 
from the period annulus of Hamiltonian systems. In this paper, we are interested in providing the 
maximal number M(n) of small amplitude limit cycles bifurcating from an elementary center or 
an elementary focus, in special for degrees 3 and 4. The main idea is to study the local cyclicity 
of families of centers depending on a finite number of parameters.

As it is well known, for n = 2, Bautin proved in [2] that M(2) = 3. The case n = 3 but 
without quadratic terms (homogeneous cubic perturbation) was studied in [3,19] and solved in 
[23], then Mh(3) = 5. In [24,26] Żoła̧dek shown that M(3) ≥ 11. Christopher, in [5], gave a 
simple proof of Żoła̧dek’s result perturbing another cubic center with a rational first integral, 
using only the linear parts of the Lyapunov constants. The interest of this result is that we can 
compute these linear parts [5], in a parallelized way [13,17], near a center without having the 
complete expressions of the Lyapunov constants. Basically the used technique consists in to 
choose a point on the center variety and at this point consider the linear term of the Lyapunov 
constants, if the point is chosen on a component of the center variety of codimension k, then the 
first k linear terms of the Lyapunov constants are independent. This is a direct application of the 
Implicit Function Theorem to prove that M(n) ≥ k. Usually, we use this technique to provide 
lower bounds for the local cyclicity problem in the class of polynomial vector fields of degree n. 
In [10,11], Giné presents a conjecture that the number M(n) is bounded below by n2 + 3n − 7
and studies the cyclicity of different families of centers presented in [9]. In [14,13] new lower 
bounds for M(n) and n small have been obtained. The new values are M(4) ≥ 20, M(5) ≥ 33, 
M(6) ≥ 44, M(7) ≥ 61, M(8) ≥ 76, and M(9) ≥ 88.

In [21], Yu and Tian point out that the 1-parameter family of centers labeled by CD12
31 in [25]

is quite special because it can exhibit one more limit cycle than expected in Giné’s conjecture. 
This family has the next rational first integral

H(x,y) = (xy2 + x + 1)5

x3(xy5 + 5xy3/2 + 5y3/2 + 15xy/8 + 15y/4 + a)2
(1)

and it has, following Żoła̧dek computations, codimension 12. The original proof has some crucial 
missing points in the arguments that we correct here, proving effectively that there exist some 
special values of the parameter a in (1) such that 12 limit cycles of small amplitude bifurcate 
from the origin when we perturb in the class of complete cubic polynomial vector fields. This 
family was also studied by Christopher in [5] and it was the first clear proof about the existence of 
at least 11 limit cycles of small amplitude bifurcating from an equilibrium in polynomial vector 
fields of degree three.

The main result of this paper is the following.

Theorem 1.1. The number of limit cycles of small amplitude bifurcating from an equilibrium of 
monodromic type in the classes of polynomial vector fields of degrees 3 and 4 is M(3) ≥ 12 and 
M(4) ≥ 21, respectively.
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After the above result, clearly, the commented general lower bound for M(n) should be up-
dated to be n2 + 3n − 6. We remark that the total number of parameters for polynomial vector 
fields of degree n is n2 + 3n + 2. Then, the new conjecture removes 8 to this total number of 
parameters. Six corresponding to an affine change of variables that writes the linear part in its 
normal form, one corresponding to a rotation and another to a rescaling. The previous conjecture 
took into account that the number of limit cycles in a center component does not change. But this 
is only generically. In this work, we will provide examples where this property fails. Hence we 
establish the following conjecture.

Conjecture 1.2. The number of limit cycles of small amplitude bifurcating from an equilibrium 
of monodromic type in the class of polynomial vector fields of degree n is M(n) = n2 + 3n − 6.

The proof of the above theorem is based on an extension of Christopher results ([5]) for 
linear and higher-order studies when the considered center has parameters. This new result, The-
orem 3.1, is proved in Section 3. For completeness we also include here the Christopher results, 
see Theorems 2.2 and 2.4 in the next section, where we have also added a detailed description 
of how they should be used together. We remark that the parallelization algorithm introduced in 
[13,17] is crucial to get the results because facilitates all the needed computations. In Section 4
we do the proof of the statement of Theorem 1.1 corresponding to degree 3 vector fields. More-
over, we study also the bifurcation diagrams of limit cycles of small amplitude bifurcating from 
three families of centers. The first is 1-parametric and it is the rational reversible center family 
labeled by CR17

12 in [25]. The second is a 2-parameter holomorphic cubic center family. The third 

is labeled by CD
(11)
10 in [25], it has also 2 parameters and no maximal codimension 12 but, from 

it, also 12 limit cycles bifurcate from the center inside the cubic polynomial class. In Section 5
we study the bifurcation diagram for a 2-parameter center family of degree 4 that allows us to 
prove the statement of Theorem 1.1 corresponding to vector fields of degree 4. Finally, we also 
study partially the bifurcation diagram for a 4-parameter quartic holomorphic family of centers.

We have used a cluster of computers with 128 processors simultaneously with 725 GB of total 
ram memory. All the computations have been made with Maple [18].

2. Lyapunov constants and parallelization

Let us consider the system

{
ẋ = −y + Pn(x, y),

ẏ = x + Qn(x, y),

with Pn and Qn polynomials of degree n in variables x, y. Writing the system in complex coor-
dinates, we have

R(z, z̄) = i z + Rn(z, z̄), (2)

where Rn(z, ̄z) are polynomials of degree n in variables (z, ̄z). We seek for a first integral in the 
form H(z, ̄z) in a neighborhood of the origin such as

X (H) =
∞∑

vk(zz̄)
k+1,
k=0
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where X is the vector field associated to (2) and vk the k-Lyapunov constant. Clearly, the origin 
will be a center if, and only if vn(2π) = 0 for all n. If vn(2π) �= 0, for some n, so we have a focus 
of order n.

In most cases, the process of calculating Lyapunov constants is very hard, being impossible 
to calculate them manually. Therefore, the use of an algebraic manipulator system is necessary. 
Moreover, the Parallelization process will be so important in our work, as it offers us a reduction 
in the time of very large computations. The first result about Parallelization is given by Liang 
and Torregrosa in [17] and using it we can obtain the linear part of the Lyapunov constants of the 
more easy way.

Theorem 2.1 ([17]). Let p(z, ̄z) and Qj(z, ̄z), j = 1, . . . , s be polynomials with monomials of 
degree higher or equal than two such that the origin of ż = i z+p(z, ̄z) is a center. If L(1)

k,j denotes 
the linear part, with respect to λj ∈ R, of the k-Lyapunov constant of equation

ż = i z + p(z, z̄) + λjQj (z, z̄), j = 1, . . . , s,

then the linear part of the k-Lyapunov constants, with respect to � = (λ1, . . . , λN) ∈ RN , of 
equation

ż = i z + p(z, z̄) +
N∑

j=1

λjQj (z, z̄),

is L
(1)
k =

N∑
j=1

L
(1)
k,j .

The next theorem due to Christopher, details how we can use the first-order Taylor approx-
imation of the Lyapunov constants to obtain lower bounds on the number of limit cycles near 
elementary center equilibrium points.

Theorem 2.2 ([5]). Suppose that s is a point on the center variety and that the first k Lyapunov 
constants, L1, . . . , Lk , have independent linear parts (with respect to the expansion of Li about 
s), then s lies on a component of the center variety of codimension at least k and there are 
bifurcations which produce k limit cycles locally from the center corresponding to the parameter 
value s. If, furthermore, we know that s lies on a component of the center variety of codimension 
k, then s is smooth point of the variety, and the cyclicity of the center for the parameter value s
is exactly k. In the latter case, k is also the cyclicity of a generic point on this component of the 
center variety.

We notice that to perform higher-order parallelization, that is, to calculate high-order of 
Lyapunov constants we need to decompose the global problem in simpler problems having 
exactly � parameters or monomials. However, as many parameters appear in some of the sim-
ple perturbation problems we need to correct the obtained coefficients of the developments of 
order �.
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Theorem 2.3 ([13]). Let p(z, ̄z) and Qj(z, ̄z), j = 1, . . . , N be polynomials with monomials of 
degree higher or equal than two such that the origin of ż = i z + p(z, ̄z) is a center. For � ≤ N , 
we denote by L(�)

k the Taylor approximation of k-Lyapunov constant up to degree � of equation

ż = i z + p(z, z̄) +
N∑

j=1

λjQj (z, z̄), (3)

with � = (λ1, . . . , λN) ∈ RN . Let S be the set of all combinations of the components of � taken 

� at a time. That is, S = {(λ1, . . . , λ�), (λ2, . . . , λ�+1), . . . , (λ�−N, . . . , λN)} and having 
(

N
�

)
elements. For each element Sj ∈ S, we denote by σ(j, ζ ) the subscript of the parameters in Sj at 
position ζ , i.e. Sj = (λσ(j,1), . . . , λσ(j,�)), and we denote by L(�)

k,j the Taylor approximation up to 
degree � with respect to � of the k-Lyapunov constant of equation

ż = i z + p(z, z̄) +
�∑

l=1

λσ(j,l)Qσ(j,l)(z, z̄). (4)

Then

L
(�)
k =

N∑
l=1

L̂
(�)
k,j ,

where L̂(�)
k,j = ∑

p

μk,j,p(
N−s(p)
�−s(p)

)�
p
j , for �p

j = λ
p1
σ(j,1)λ

p2
σ(j,2) · · ·λp�

σ(j,�) and p = (p1, . . . , p�) writ-

ing L(�)
k,j = ∑

p μk,j,p�
p
j with s(p) =

�∑
l=1

sgn(pl) where sgn(x) =
{

1, if x > 0,

0, if x = 0.

The next result, also due to Christopher in [5], is an extension of Theorem 2.2 that shows 
how sometimes we can obtain more limit cycles using high-order Taylor developments of the 
Lyapunov constants.

Theorem 2.4 ([5]). Suppose that we are in a point s where Theorem 2.2 applies. After a change 
of variables if necessary, we can assume that L0 = L1 = · · · = Lk = 0 and the next Lyapunov 
constants Li = hi(u) + Om+1(u), for i = k + 1, . . . , k + l, where hi are homogeneous polyno-
mials of degree m ≥ 2 and u = (uk+1, . . . , uk+l). If there exists a line �, in the parameter space, 
such that hi(�) = 0, i = k + 1, . . . , k + l − 1, the hypersurfaces hi = 0 intersect transversally 
along � for i = k + 1, . . . , k + l − 1, and hk+l(�) �= 0, then there are perturbations of the center 
which can produce k + l limit cycles.

We remark that from the proof of the above theorem it is clear that there exists a perturbation 
that produces the total number of limit cycles.

As we will see in the proofs of the results in the next sections, sometimes the application of 
Theorem 2.4 is not so simple. Because it depends on finding explicitly the transversal intersection 
line �. Although a new proof of this result, using blow-up, has been given in [13], here we 
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also reproduce the main idea to clarify the difficulties on the application. We start computing 
the Taylor approximation up to degree m of the k + l Lyapunov constants and writing them in 
the form that Theorem 2.2 applies, i.e. Li = ui + O2(u), for i = 1, . . . , k. The next step is the 
simplification of the next l Lyapunov constants assuming that the principal part of them is defined 
by the homogeneous polynomials hi , writing Li = hi(u) + Om+1(u), for i = k + 1, . . . , k + l. 
The Implicit Function Theorem allows us to write Li = vi , for i = 1, . . . , k, and we can restrict 
the analysis to vi = 0, for i = 1, . . . , k. It is important that, with this assumption, the polynomials 
hi remain unchanged. So, after reordering parameters if necessary, we can use a blow-up change 
uk+j = ξζj , for j = 1, . . . , l − 1, and uk+l = ξ . Then hk+j (u) = ξm gj (ζ ) with ζ ∈ Rl−1. The 
transversal line � in the statement comes from the existence of a transversal intersection point ζ ∗
of the polynomials gj of degree m. So Theorem 2.4 applies, taking � as the straight line u = ξζ ∗, 
if gj (ζ

∗) = 0 for j = 1, . . . , l − 1, gl(ζ
∗) �= 0 and the determinant of the Jacobian matrix of 

(g1, . . . , gl−1) with respect to ζ is nonzero at ζ ∗.
It is very important to remark that the number of components in the parameters u ∈ Rk+l is 

exactly the same as the total number of used Lyapunov constants. Moreover, in the above proof 
all polynomials hi have the same degree. The extension analyzed in [13] removes this special 
condition. Although the main difficulties are the computation of the higher-order developments 
and the finding of solutions of polynomial systems of high degree with many variables, we do 
not to forget that, a priori, the order up to we need to compute is another unknown. Finally, when 
this intersection point is obtained numerically, we may use a computer assisted proof to prove 
analytically the existence of such point. This is done using Poincaré–Miranda’s Theorem together 
with the results of the last section. For the transversality property, we can use the Gershgorin 
Circles Theorem. For completeness, we add them here.

Theorem 2.5 ([16], Poincaré–Miranda). Let c be a positive real number and S = [−c, c]n a n-
dimensional cube. Consider f = (f1, . . . , fn) : S → Rn a continuous function such fi(S

−
i ) < 0

and fi(S
+
i ) > 0 for each i ≤ n, where S±

i = {(x1, . . . , xn) ∈ S : xi = ±c}. So, there exists a point 
d ∈ S such that f (d) = 0.

Theorem 2.6 ([8], Gershgorin). Let A = (ai,j ) ∈ Cn×n and αk its eigenvalues. Consider for 
each i = 1, . . . , n

Di = {z ∈ C : |z − ai,i | ≤ ri ,

where ri =
∑
i �=j

|ai,j |. So, for all k, each αk ∈ Di for some i.

The Poincaré–Miranda’s Theorem was conjectured by Poincaré in the 19th century and proved 
by Miranda in the last century. Note that this result is a generalization of the Bolzano’s Theorem 
for higher dimensions. The reader can get more details on Gershgorin Circles Theorem in [12].

3. Local cyclicity depending on parameters

This section is devoted to extend Theorems 2.2 and 2.4 to families of centers that depend on 
some parameters. Let (ẋ, ẏ) = (Pc(x, y, μ), Qc(x, y, μ)) be a family of polynomial centers of 
degree n depending on a parameter μ ∈ R�, having a center equilibrium point at the origin. We 
consider the perturbed polynomial system
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{
ẋ = Pc(x, y,μ) + αy + P(x, y,λ),

ẏ = Qc(x, y,μ) + αx + Q(x,y,λ),
(5)

with P, Q polynomials of degree n having no constant nor linear terms. More concretely,

P(x, y,λ) =
n∑

k+l=2

ak,lx
kyl, Q(x, y,λ) =

n∑
k+l=2

bk,lx
kyl,

with λ = (a20, a11, a02, . . . , b20, b11, b02) ∈ Rn2+3n−4. The trace parameter α sometimes is also 
denoted by L0.

Theorem 3.1. When a = 0, we denote by L(1)
j (λ, b) the first-order development, with respect to 

λ ∈Rk , of the j -Lyapunov constant of system (5). We assume that, after a change of variables in 
the parameter space if necessary, we can write

Lj =

⎧⎪⎨
⎪⎩

λj + O2(λ), for j = 1, . . . , k − 1,
k−1∑
l=1

gj,l(μ)λl + fj−k(μ)λk + O2(λ), for j = k, . . . , k + �.
(6)

Where with O2(λ) we denote all the monomials of degree higher or equal than 2 in λ with coeffi-
cients analytic functions in μ. If there exists a point μ∗ such that f0(μ

∗) = · · · = f�−1(μ
∗) = 0, 

f�(μ
∗) �= 0, and the Jacobian matrix of (f0, . . . , f�−1) with respect to μ has rank � at μ∗, then 

system (5) has k + � hyperbolic limit cycles of small amplitude bifurcating from the origin.

Remark 3.2. In the above result, we remark the importance of the number of components in 
parameters λ and μ. Because, if there are more parameters than the relevant k in λ, in O2(λ)

term can appear monomials of degree 2 that can affect the monomials of degree 1 and the result 
could be not valid.

Proof of Theorem 3.1. We assume first that the trace parameter α is zero. Then, using scheme 
mentioned in [13], we can remove the sums in (6) and consider a simpler list

Lj =
{

λj + O2(λ), for j = 1, . . . , k − 1,

fj−k(μ)λk + O2(λ), for j = k, . . . , k + �.

With the Implicit Function Theorem in the first k − 1 components and writing λk = uk the above 
expression writes as

Lj =
{

uj , for j = 1, . . . , k − 1,

fj−k(μ)uk + O2(u), for j = k, . . . , k + �.
(7)

From the hypothesis on the functions fj at μ = μ∗, using again the Implicit Function Theorem, 
we can write, close to μ = μ∗, fj−k(μ) = vj−k + O2(v), with vj−k = μj−k − μ∗

j−k , for j =
k, . . . , k + � − 1, and v = (v0, . . . , v�−1).
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Now, we consider the change of variables, like a partial blow-up, uj = ζwj for j = 1, . . . , k −
1, uk = ζ , and vj−k = wj for j = k, . . . , k + � − 1. Then (7) write as

Lj =
{

ζwj , for j = 1, . . . , k − 1,

ζ(wj + Ajζ + O2(ζ,w1, . . . ,wk+�−1)), for j = k, . . . , k + � − 1,
(8)

for some real numbers Aj . They, as the higher-order terms in u, come from the terms O2(u)

and the terms O2(v), after the change to (ζ, w1, . . . , wk+�−1) coordinates. Moreover, the last 
Lyapunov constant writes as

Lk+� = ζ(B + O1(ζ,w1, . . . ,wk+�−1)).

Finally, in (8) we can use again the Implicit Function Theorem to write ζj = wj for j =
1, . . . , k − 1 and ζj = wj + Ajζ + O2(ζ, w1, . . . , wk+�−1), for j = k, . . . , k + � − 1. We notice 
that ζ is small enough and we have, near the origin of the parameter space, a curve (parametrized) 
by ζ of weak-foci of order k + � that unfolds exactly, using the Weierstrass Preparation Theo-
rem, k + � − 1 hyperbolic limit cycles of small amplitude bifurcating from the equilibrium point 
located at the origin. The last limit cycle appears using the trace parameter α in a classical Hopf 
bifurcation. �

Christopher in [5] comments the generic unfolding of k limit cycles in families of polynomial 
vector fields when we consider centers on a component of the center variety of codimension k. 
This is the aim of Theorems 2.2 and 2.4. The above result shows that on some special points 
on such component the cyclicity can increase. This is the mechanism that we have used in the 
following sections to improve the known lower bounds for the local cyclicity M(n) for some low 
values of n. In particular for n = 3 and n = 4. We think that Giné’s conjecture in [10,11] about 
the lower bound for M(n) = n2 + 3n − 7 can be thought in the sense of generic centers. We 
remark that, for providing higher values for M(n) for higher degree n, we need to know better 
center families. Because the known families or have low codimension or they have too many 
parameters and the computational difficulties, as we will see in the following examples, increase 
so fast.

The fact that the cyclicity of Hamiltonian families depends on the parameters was previously 
studied by Han and Yu in [15], but not applied correctly in [21]. Here we extend this result for 
other types of center families.

4. Bifurcation diagrams for local cyclicity in families of cubic centers

In this section we use Theorem 3.1 to study the bifurcation diagram for some families of 
cubic centers, lying in components of the center variety of codimension 11, 10, and 9. The first, 
in Proposition 4.1, is the family labeled CD

(12)
31 that has generically cyclicity 11 and was studied 

previously by Christopher in [5], for only one parameter value a = 2 in (1), and by Yu and Tian 
in [21]. This proposition proves partially the main Theorem 1.1. The family labeled as CR

(12)
17

in [25], which depends also of a parameter a, is studied in Proposition 4.2. We have studied the 
local cyclicity for some values of this parameter a of the family CR

(12)
17 up to order 4 in the 

Lyapunov constants and we have found only 10 limit cycles. But using Theorem 3.1 we can get 
an extra limit cycle. Up to our knowledge, this is the first time that the cyclicity of this family 
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has been studied. The last cubic family has 2 free parameters, see Proposition 4.4, and we show 
that generically the origin has cyclicity at least 9 and that there are curves with cyclicity at least 
10 and some special points with cyclicity at least 11. According to Gasull, Garijo, and Jarque, 
in [7], any holomorphic center is also a Darboux center. Liang and Torregrosa in [17] show that 
for some values of the cubic family the cyclicity is as least 9. Here we explain that the cyclicity 
will increase depending on the specific center that we select. Up to our knowledge, the studies of 
the bifurcation diagrams are new for these families. At the end of the section, we show a center 
family with two parameters and not maximal codimension, labeled as CD

(11)
10 in [25], such that, 

perturbing with cubic polynomials, bifurcate also 12 limit cycles of small amplitude.

Proposition 4.1. Consider system (5) with n = 3 and the unperturbed center

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = −10(256a3xy + 384a3y − 96a2x2 − 384a2y2 − 16a2x − 600axy

−480ay + 225x2 + 900y2 − 225x)(32a2x + 48a2 − 75x + 150),

ẏ = 16384a5xy2 + 24576a5y2 − 61440a4y3 + 16384a5x + 56320a4xy

−76800a3xy2 − 7680a4y − 384000a3y2 + 288000a2y3 − 32000a3x

−96000a2xy + 90000axy2 − 132000a2y + 765000ay2 − 337500y3

+168750ax − 84375xy − 337500y,

(9)

with a such that 32a2 − 75 > 0. Then, there exist only six parameter values a∗ such that 12
limit cycles of small amplitude bifurcate from the origin. They are approximately ±2.019925086, 
±7.444369217, and ±15.62631048.

We have computed the linear part of the first Lyapunov constants for some values of a, differ-
ent from the a∗ stated in the above proposition, obtaining always maximal rank 11. Then, using 
Theorem 2.2, we can obtain, after perturbation, only 11 limit cycles of small amplitude. We think 
that this situation will be generic.

Proof of Theorem 4.1. The system corresponding to the rational first integral (1) has a center at 
the point (x, y) = (6(8a2 +25)/(32a2 −75), 70a/(32a2 −75)). Then, translating it to the origin 
we get system (9).

Let us consider (5) with b30 = 0, b12 = 0, and b03 = 0. After computing the first 12 Lya-
punov constants up to order 1, we have that, generically for every a, L(1)

1 , . . . , L(1)
10 are linearly 

independent with respect to the parameters

a02, a03, a11, a12, a20, a21, a30, b02, b11, b20.

Then, we can write, after a linear change of parameters, Lk = uk + O2(u), for k = 1, . . . , 10, 
where u11 = b21 and O2(u) denotes the monomials in u of degree higher than 2 with coefficients 
rational functions in the parameter a. Moreover, we have that Lj write as (6) with

L
(1)
11 =

10∑
g10,l(a)ul + g(a)f0(a)u11, L

(1)
12 =

10∑
g11,l(a)ul + g(a)f1(a)u11,
l=1 l=1
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where f0 and f1 are polynomials of degrees 26 and 39 in a2, respectively, g is a rational function 
without common factors with f0 nor f1. Additionally, the numerator and denominator of g are 
polynomials of degrees 69 and 90 in a2 and g10,l and g11,l are also rational functions. All the 
involved polynomials are polynomials with rational coefficients.

The proof follows applying Theorem 3.1. To do that, we need to check that f0 has real sim-
ple zeros and that the resultant of f0 and f1 with respect to a is a nonzero rational number. So, 
there should be at least a special value a = a∗ such that f0(a

∗) = 0, f ′
0(a

∗) �= 0, and f1(a
∗) �= 0. 

Finally, it can be checked that there are only six possible values for a∗. The numerical approxi-
mation values for a∗ are the ones given in the statement. �

In the proof of the existence of the extra limit cycle done in [21] the computations of L(1)
k

are the same that we obtain. As we have understood, the mistake is that their proof is not based 
directly on a result like Theorem 3.1 which we have perfectly identified the perturbation param-
eters and we have restricted the perturbation in order to apply it. Their proof is based in the fact 
that L(1)

11 vanishes and L(1)
12 not. This is not enough because the terms of order 2 of L11 can ap-

pear and the weak-focus order does not increase. In fact, if we only consider f0(a
∗) = 0 then 

L
(2)
11 = u2

11 g1(a)/g2(a), with g1 and g2 polynomials of degree 66 and 103 in a2. Moreover, in 
[21] the control of the number of relevant parameters as we have commented in Remark 3.2 is 
not clear.

Proposition 4.2. Let a /∈ {0, −1/6} a real parameter. Consider the system

⎧⎨
⎩

ẋ = (x − ay + a + 2)(2η − 3ηy + 3x2 + 6x + 6) − 3ηηy

−9x2ηy + 9(2ax2 + (2a − 1)x + 2a),

ẏ = 3(y(x − ay + a + 2)(−3x + y + 2) + 3(x2 + x − 2)),

(10)

with η = xy − ay2 + 2x + 2(1 + a)y + 1 − a, −1/6 < a < 0, 1/3 < a < 1, or 1 < a. Then, it has 
a center at

(x∗, y∗) =
(

3(a − 1)

6a + 1
,−3a2 − 4a + 1

a(6a + 1)

)
,

and the next properties hold.

(i) If g(a) �= 0 and f0(a) �= 0 the local cyclicity, perturbing with polynomials of degree 3, is at 
least 10.

(ii) If g(a) �= 0, f0(a) = 0 the local cyclicity, perturbing with polynomials of degree 3, is at 
least 11. Moreover, f0 has only 4 simple roots in the considered intervals. The numerical 
approximation is {−0.12245, 0.39672, 0.61983, 2.70517}.

The expressions of polynomials f0 and g are

f0(a) = 11556711608903120520a26 − 82791934329314091672a25

+ 228195405046186847010a24 + 9049153312278017424a23

− 1570811442058478443464a22 + 3359180750481473982039a21
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− 3151478107163326427694a20 − 325955324399233829796a19

+ 14211371220469389007506a18 − 38670367283669710621611a17

+ 56868934982665036265406a16 − 54377179326178644006963a15

+ 30803908784073506907336a14 − 9019277045696632383477a13

− 664922996737568168778a12 + 2963892390472140000813a11

− 1762296309778946693076a10 + 408343189249696331943a9

− 53423768941943519592a8 + 36887231065315303647a7

− 13263836783633911152a6 + 1484165815203151098a5

+ 85191877643707008a4 − 114163404746428485a3

+ 1130289090405930a2 + 1973552231555520a + 103574370739840,

g(a) = 44130128757997201642800a31 − 252501315621254559684000a30

+ 567997250848916245020180a29 − 813793828511873349837180a28

+ 2399279362949988891138690a27 − 2777203364308983128745270a26

− 11179829777099214629608785a25 + 51100343128278769201023051a24

− 96722734568856169055589531a23 + 101072414237147073155782098a22

− 81911167892441981812923273a21 + 91543737997225903881665763a20

− 123464208935758068586525599a19 + 135385335579943472406867144a18

− 107470316661342509476035270a17 + 59322985677203211238176126a16

− 22468443503910229293603606a15 + 6323085724047239916867708a14

− 1656039645590378761238526a13 + 351346275167184780434730a12

+ 12407554692206368871724a11 − 29217792198627915589278a10

+ 3200041670276393240067a9 + 933095466480821343399a8

− 81964651107172872879a7 − 23554321764806596878a6

− 526449753238950189a5 + 210455326225541295a4 + 20323154636412705a3

+ 375301845557100a2 − 28137453964620a − 1083684121520.

Different phase portraits of system (10) are given in Fig. 1.

Remark 4.3. We notice that, although the family (10) is considered of codimension 12 by 
Żoła̧dek in [25], we have not found more than 10 limit cycles of small amplitude as it is stated in 
the above result for a = 2 and computing up to order 10. We think that the same will happen for 
other values of a except the ones in Proposition 4.2 such that f0 vanishes.

Proof of Proposition 4.2. Doing a translation in order that the center (x∗, y∗) of system (10)
moves to the origin, we get
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Fig. 1. Phaseportraits in the Poincaré disk of the center (10) for a = −1/12, a = 1/2, and a = 2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = −(6a + 1)(648a7y3 − 1944a7y2 − 2430a6x2y − 1944a6xy2 + 216a6y3

+1458a7y + 729a6x2 − 2916a6xy − 3564a6y2 + 972a5x3 − 1701a5x2y

−1296a5xy2 + 18a5y3 − 972a6y + 2187a5x2 + 486a5xy − 1404a5y2

+1134a4x3 − 216a4x2y − 270a4xy2 − 486a5y + 1053a4x2 + 1782a4xy

−144a4y2 + 486a3x3 + 72a3x2y − 18a3xy2 + 54a4y − 162a3x2

+594a3xy + 90a2x3 + 18a2x2y − 36a3y − 189a2x2 + 54a2xy

+6x3a + ax2y − 18a2y − 33ax2 − x2),

ẏ = 3(3a + 1)4(6a2y − 3a2 + ay + 4a − 1)(6a2y − 9a2 + ay + 3a − 1)x.

Then we can consider equation (5). The proof that this family has a center follows from a rational 
symmetry and it can be found in [22,25].

Next step is the computation of L(1)
k , for k = 1, . . . , 9 and we consider them as linear functions 

depending on a02, a03, a11, a12, a20, a21, b02, b03, b20. Hence, we write, after a linear change of 
coordinates adding b21 = u10,

Lj = uj + O2(u), for j = 1, . . . ,9.

The other parameter values in (5) have been taken as zero. In O2(u) appear some denomina-
tors in a which are nonzero under the hypotheses of the statement. In particular, the condition 
g(a) �= 0 appears solving the above linear change. It can be seen also in the following expres-
sions of the next two Lyapunov constants. After using the Implicit Function Theorem to vanish 
the first nine Lyapunov constants, the simplified expressions of the next two, are, except nonzero 
multiplicative constants,

L10 = (3a + 1)13(6a + 1)18

a3(9a2 − 3a + 1)10(a − 1)9

f0(a)

g(a)
u10 + O2(u10),

L11 = (3a + 1)13(6a + 1)19

a4(3a − 1)(9a2 − 3a + 1)12(a − 1)11

f1(a)

g(a)
u10 + O2(u10),

where f0 and g are defined in the statement and f1 is

f1(a) = 724536477608572237880880a32 + 64058932577894477741378280a31

− 610144481859757586223401556a30 + 2360973008978454210093841374a29
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− 3106072481972105279560942206a28 − 7847548346783924455871215944a27

+ 37350465281198340430573666575a26 − 65912949912795703153349141583a25

+ 55213834912911379234932558885a24 + 65624890814130774002650031070a23

− 386097510416281385483568857175a22 + 852259040489763545864869124460a21

− 1193508332460445900562643584016a20 + 1139964285706711135528711455009a19

− 730726233625740844361877322266a18 + 280817510225041089315898703766a17

− 21487202084536712499526119540a16 − 54304219150060860608252108112a15

+ 42894589880370044683717289676a14 − 16098081186021186459359445174a13

+ 2841857092329161976333442044a12 − 401707003814285433422087250a11

+ 278519520884076892704921201a10 − 89922626165488742408968047a9

− 219434373194211241076817a8 + 5240045076877491398959122a7

− 1141062554605305892208985a6 − 15124036595328170215596a5

+ 42928143800073303753090a4 − 98239754146992695055a3

− 576005750186099035950a2 − 28747061161858522560a + 21647043484626560.

Clearly 9a2 − 3a + 1 is nonvanishing and, with the restriction on a given in the statement, all the 
rational functions are well defined.

Statement (i) follows from Theorem 2.2. Statement (ii) follows as the proof of Proposition 4.1. 
That is, computing the resultant of f0 and f1 and the resultant of f0 and f ′

0 with respect to a, and 
checking that f0 has real zeros, which will be simple, such that f1 does not vanish at them. From 
Theorem 3.1 we know that for the values of a such that f0 vanishes we have 11 limit cycles of 
small amplitude bifurcating from the origin. �

The next result provides a complete bifurcation diagram for all holomorphic cubic centers 
having the coefficient of z2 nonvanishing. In this case, it is not restrictive, rescaling if necessary, 
to assume that it is 1. In complex coordinates they write as

ż = i z + z2 + (a + ib)z3. (11)

Proposition 4.4. Consider system (5) with n = 3 and the unperturbed center

{
ẋ = ax3 − 3axy2 − 3bx2y + by3 + x2 − y2 − y,

ẏ = 3ax2y − ay3 + bx3 − 3bxy2 + 2xy + x,

for every value of the parameters (a, b) ∈R2 \ {(0,0)} and the polynomials

f0(a, b) =8a6 + 24a4b2 + 24a2b4 + 8b6 + 282a4b + 564a2b3 + 282b5 − 37569a4

− 45954a2b2 − 8385b4 − 91924a2b − 162484b3 − 646020a2 − 37860b2,

f1(a, b) =2448a6b + 7344a4b3 + 7344a2b5 + 2448b7 + 3208a6 + 95916a4b2
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+ 182208a2b4 + 89500b6 − 12055032a4b − 15179760a2b3 − 3124728b5

− 19489169a4 − 64437898a2b2 − 66540089b4 − 285166044a2b

− 92688444b3 − 310735620a2 − 18210660b2,

f2(a, b) =145864a8 − 3776a6b2 − 886512a4b4 − 1178240a2b6 − 441368b8

+ 3892522a6b − 9022362a4b3 − 29722290a2b5 − 16807406b7

− 708522105a6 + 1379959497a4b2 + 2743262973a2b4 + 654781371b6

+ 8068743920a4b + 18906063664a2b3 + 16016705984b5

− 5202830396a4 + 86382442952a2b2 + 48606733828b4

+ 185131413648a2b + 33791194128b3 + 93466173600a2 + 5477584800b2,

g(a, b) =27936a6 + 83808a4b2 + 83808a2b4 + 27936b6 − 162180a4b

− 324360a2b3 − 162180b5 − 199825a4 − 227714a2b2 − 27889b4

− 347172a2b − 23172b3 + 30636a2 − 5364b2.

Then,

(i) if f0(a, b)g(a, b) �= 0 there are 9 limit cycles of small amplitude bifurcating from the origin;
(ii) if f0(a, b) = 0 and f1(a, b)g(a, b) �= 0 there are 10 limit cycles of small amplitude bifur-

cating from the origin;
(iii) if f0(a, b) = f1(a, b) = 0 and f2(a, b)g(a, b) �= 0 there are 11 limit cycles of small ampli-

tude bifurcating from the origin.

Moreover, there exist only two transversal intersection points of the curves f0(a, b) = 0 and 
f1(a, b) = 0 which are (±a∗, b∗) ≈ (±69.66852455, −6.617950485).

The above result provides the bifurcation diagram for the local cyclicity of the 2-parameter 
holomorphic family (11). The curves f0, f1, and f2 are drawn in Fig. 2 in red, green, and blue, 
respectively. Generically, the local cyclicity is 9. On the red curve, generically, the cyclicity is 10
and in the intersection point of the curves red and green, the cyclicity is 11.

Proof of Proposition 4.4. After a change of sign if necessary we can restrict our analysis to 
a > 0. For every (a, b) different from (0, 0) and taking zero the parameters b20, b11, b30, b12, we 
compute, with the parallelized algorithm described in [13], the linear terms of the first 11 Lya-
punov constants, with respect to the relevant parameters a20, a11, a02, b02, a30, a21, a12, a03, b21. 
If g(a, b) �= 0 then, up to a linear change of parameters, we can write L(1)

j = uj , for j = 1, . . . , 8, 
and

L
(1)
9 = (81a2 + (9b + 2)2)(a2 + b2)3

g(a, b)
f0(a, b)u9,

L
(1)
10 = (81a2 + (9b + 2)2)(a2 + b2)3

f1(a, b)u9,

g(a, b)

322



J. Giné, L.F.S. Gouveia and J. Torregrosa Journal of Differential Equations 275 (2021) 309–331
Fig. 2. The curves, with some zooms, f0(a, b) = 0, f1(a, b) = 0, and f2(a, b) = 0 given in Proposition 4.4 in red, green, 
blue, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

L
(1)
11 = (81a2 + (9b + 2)2)(a2 + b2)3

g(a, b)
f2(a, b)u9.

To simplify we have divided, if necessary, by nonzero multiplicative constants.
Computing the resultants of the pairs (f0, f1) and (f0, f2) with respect to a, we get

b6(4b − 9)2(9b − 59)2(512192700b4 + 13330993797b3 + 61034982291b2

− 33028358509b − 10270019239)2,

b6(4b − 9)2(9b − 59)2(570698912585670507000b7 + 22990976281237387495014b6

+ 36881578284839814317085b5 − 4478880915283836703764940b4

− 9505227203153802766492979b3 + 3847660913988093703065912b2

+ 13351954188119085151405788b + 2696188868201530577480960)2.
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Removing the common factors, the above two polynomials in b of degrees 4 and 7 have no 
common roots, because it resultant, with respect to b is nonvanishing. Then, any intersection 
point of the curves f0 = 0 and f1 = 0 is not in the curve f2 = 0. Then straightforward compu-
tations show that the curves {f0 = 0, f1 = 0} have only one real intersection point (a∗, b∗) ≈
(69.66852455, −6.617950485). Moreover, it is a transversal intersection and f2(a

∗, b∗) �= 0.
The proof follows using Theorem 3.1 in each item in the statement. �
Finally, we remark that the existence of centers with local cyclicity bigger than or equal to 12

is not restricted to families of codimension 12, some of them given in [25]. With the technique 
developed in this work, we can approach the lower bounds for the local cyclicity problem in 
families with more than one parameter. But the systems of polynomial equations that appear have 
a very high degree and the difficulties in solving them are beyond the reach of our computers. 
As an example, we provide a new family of cubic centers that we have proved, only numerically, 
this lower bound. This family is inspired by the one labeled by CD

(11)
10 in [25] with codimension 

11. In particular, it is defined by the rational first integral

H(x,y) = (9x3 + 9x2 + 9bx + 9ay + 6a2 + 6b2 − b)7

(h0(x) + h1(x)y + h2(x)y2)3

where

h0(x) =2187bx7 + 5103bx6 + 1701b(3b + 2)x5 + 189b(18a2 + 18b2 + 33b + 2)x4

+ 63b(72a2 + 126b2 + 6b − 1)x3 + 21b(216a2b + 216b3 + 36a2 + 54b2

− 18b + 1)x2 + 21b(18a2 + 18b2 + 6b − 1)(6a2 + 6b2 − b)x

+ (18a2 + 18b2 + 6b − 1)(6a2 + 6b2 − b)2,

h1(x) =5103abx4 + 6804abx3 + 1134ab(6b + 1)x2 + 252ab(18a2 + 18b2 + 6b − 1)x

+ 21a(18a2 + 18b2 + 6b − 1)(6a2 + 6b2 − b),

h2(x) =1134a2b(3x + 1).

Using similar arguments as in the previous proofs, up to a linear change of parameters, we can 
write the linear developments of the Lyapunov constants as L(1)

j = uj , for j = 1, . . . , 9, and 

L
(1)
j+10 = fj (a, b)/g(a, b) u10, for j = 0, 1, 2. Where the f0, f1, f2, and g are polynomials of 

degrees 254, 266, 278, and 288, respectively. The resultants of the noncommon factors of f0, f1
and f0, f2 with respect to a factorize in some polynomials. The noncommon factors of both 
are polynomials in a2 of degrees 506 and 771, respectively, that we denote them by f01(a) and 
f02(a). Similarly for the resultants with respect to b having also degrees 506 and 771, and we 
denote them by f̄01(b) and f̄02(b). We find numerically the real zeros of f01(a) and f̄01(b)

and check which pairs (a, b) provide the transversal intersection points (a∗, b∗) of the curves 
f0(a, b) = f1(a, b) = 0 such that f2(a

∗, b∗) �= 0. We have found 13 pairs with a∗ > 0. One 
of them is (a∗, b∗) ≈ (0.393618957, 0.738793590). The transversality condition is guaranteed 
checking that Jac(f0, f1) is nonvanishing at (a∗, b∗). The numerical computations have been 
made with more than 1000 digits, seeing the stabilization of the nonzero values when we increase 
the precision.
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5. Bifurcation diagrams for local cyclicity in families of quartic centers

This section is devoted to proving the second part of the statement of our main result, The-
orem 1.1. It follows from the next proposition. We provide the bifurcation diagram of the local 
cyclicity of the cubic center given by Bondar and Sadovskiı̆ in [4] adding a straight line of equi-
libria. This problem can be studied to get 19 limit cycles. Here show a curious fact, the cyclicity 
depends on the selected straight line. We work with two parameters (a, b), showing the exis-
tence of a curve with cyclicity at least 20 and a point with at least 21. Our servers need around 
one day to get the expressions of all necessary Lyapunov constants. Moreover, the size of each 
text file containing them has a size higher than 170 MB. We use a Computer Assisted Proof us-
ing the Poincaré–Miranda Theorem (Theorem 2.5), the Gershgorin Theorem (Theorem 2.6), and 
technical Lemmas 7.1 and 7.2.

Finally, we do a partial study of the bifurcation diagram of the local cyclicity of the holomor-
phic center of degree n = 4, depending on 4 parameters. We prove the existence of a holomorphic 
center with 20 limit cycles of small amplitude bifurcating from the origin. We have a strong nu-
merical evidence that there are values of the parameters such that 21 limit cycles bifurcate from 
the origin, but the calculus is hard and an analytical proof has been impossible to be obtained. 
For the moment and for the perturbation of this family, we only present the analytical proof for 
the bifurcation of 20 limit cycles.

Proposition 5.1. Consider equation (5) for n = 4 with the unperturbed system

⎧⎨
⎩

ẋ = −y(1183x2 − 68x + 1)(1 − ax − by),

ẏ = (672x3 + 1484x2y − 945xy2 − 84y3 − 58x2 − 44xy + 30y2 + x)×
(1 − ax − by).

(12)

Then, there exists a pair (a∗, b∗) ≈ (−0.8159251773700849, 0.55062996428210239) such that, 
for parameters α, λ small enough in (5), at least 21 limit cycles of small amplitude bifurcate from 
origin.

Proof. System (12), without the straight line of equilibria, has a center at the origin because it has 
a rational first integral, see [4]. We restrict our study to b11 = b21 = b30 = b31 = b40 = 0 in (5). 
After a linear change of coordinates we move from a02, a03, a04, a11, a12, a13, a20, a21, a22, a30,

a31, a40, b02, b03, b04, b11, b12, b13 to u1, . . . , u18 and write L(1)
k = uk , for k = 1, . . . , 18. As we 

have done in the previous proofs, writing b20 = u19, and removing the common factors, which 
are rational functions in (a, b), in the linear development of the next Lyapunov constants we can 
write

L
(1)
19 = f0(a, b)u19, L

(1)
20 = f1(a, b)u19, L

(1)
21 = f2(a, b)u19. (13)

The numerators of f0, f1, f2 are polynomials with rational coefficient of degrees 180, 182, and 
184, respectively. The total number of monomials are, respectively, 16329, 16694, and 17063. 
We have not added here the expressions because of their size.

Numerically we can find the solution (a∗, b∗) in the statement for the algebraic system 
{f0 = 0, f1 = 0}. Moreover, the intersection is transversal because the determinant of the Ja-
cobian matrix at the intersection point is −8.7569521108153076 · 10570. At this point we have 
f2(a

∗, b∗) = −1.7191356490086216 · 10290.
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To get an analytic proof we will use a Computer Assisted Proof with the help of Lemmas 7.1
and 7.2. We use Theorem 2.5 for the existence of the intersection point of f0 and f1 and The-
orem 2.6 to prove the transversality. The technical lemmas also are used to check that at point 
f2 is nonvanishing. We fix a square Q = [−h, h]2 with h = 10−12 and we do a rational affine 
change of coordinates such that a good rational approximation of (a∗, b∗) be inside Q. This affine 
change of variables is chosen such that the Taylor series of degree 1 of f0 and f1 at (a∗, b∗) will 
be the new coordinates. Then

f̃0(S
−
0 ) ⊂ [−1.31146 × 10−12,−8.44847 × 10−13],

f̃0(S
+
0 ) ⊂ [1.15471 × 10−12,6.89142 × 10−13],

f̃1(S
−
0 ) ⊂ [−1.15545 × 10−12,−6.90604 × 10−13],

f̃1(S
+
0 ) ⊂ [1.30878 × 10−12,8.44982 × 10−13],

f̃2(Q) ⊂ [0.9035737600,1.096426240],

and we have proved the existence of (a∗, b∗) such that f2 is nonvanishing. In the computations we 
have worked with rational numbers with numerators and denominators of around 15000 digits. 
To simplify the computations we have worked with the functions f̃j (a, b) = fj (a, b)/fj (0, 0).

The last part is to check the transversality. Instead of compute the determinant of the Ja-
cobian matrix of (f0, f1) with respect to (a, b), we use the technical lemmas to get that the 
elements in the Jacobian matrix for the transformed variables are, varying in Q, A11, A22 ⊂
(0.84568065, 1.15431935), A12 ⊂ (−0.15535611, 0.15535611), and A21 ⊂ (−0.15498852,

0.15498852). Then with Theorem 2.6, both eigenvalues are positive and belong to the inter-
val (0.74, 1.25). Therefore, the determinant is different from zero. �
Remark 5.2. We remark the computational difficulties of the numeric in the above result. We 
should work with very high precision. In fact, working with 1000 digits the evaluations of f0 and 
f1 at (a∗, b∗) are −2.19920305995245 · 10−397 and 3.595005930091451 · 10−390, respectively. 
Moreover, the necessary affine change of variables has need more than one computation day. 
Finally, the curves in Fig. 3 has been drawn computing the points one by one working with very 
high precision and then using polynomial interpolation. In fact, the first time that we got (a∗, b∗)
was from the intersection of these polynomial interpolation curves.

Proposition 5.3. Consider equation (5) for n = 4 with the unperturbed system written in complex 
coordinates, z = x + iy, as

ż = i z + z2 + (a1 + ia2)z
3 + (a3 + ia4)z

4. (14)

If a1 = 1 and a3 = 3, there exist two algebraic curves f0(a2, a4) and f1(a2, a4) such that, generi-
cally on f0(a2, a4), there are small parameters λ for which (5) has at least 19 limit cycles of small 
amplitude bifurcating from the origin. Moreover, there are at least three transversal intersection 
points,

(a∗, a∗) ∈ {(−6.788836,2.856062), (−4.387174,4.549274), (−4.619905,−4.565876)},
2 4
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Fig. 3. Drawing the zero level sets of f0 and f1 in (13) in red and green, respectively.

of f0 and f1 for which there are perturbations of degree four of (5) such that at least 20 limit 
cycles of small amplitude bifurcate from the origin.

Proof. In Cartesian coordinates, taking a1 = 1 and a3 = 3, system (14) writes as

⎧⎪⎪⎨
⎪⎪⎩

ẋ = 3x4 − 4a4x
3y − 18x2y2 + 4a4xy3 + 3y4 + x3 − 3a2x

2y − 3xy2

+a2y
3 + x2 − y2 − y,

ẏ = a4x
4 + 12x3y − 6a4x

2y2 − 12xy3 + a4y
4 + a2x

3 + 3x2y − 3a2xy2

−y3 + 2xy + x.

We will restrict our analysis to b11 = b20 = b21 = b30 = b31 = b40 = 0. The Lyapunov constants 
up to order 1, with the algorithm explained in [13] and similarly as the proof of Proposition 5.1, 
can be computed and written as L(1)

k = uk , for k = 1, . . . , 17. Here we have done a linear change 
of coordinates in the parameter space changing the linear independent parameters

a12, a02, a03, a04, a11, a13, a20, a21, a22, a30, a31, a40, b02, b03, b04, b12, b13,

by u1, . . . , u17. Changing the last one b22 to u18 we have, as in the previous proofs and except a 
multiplicative rational function in a2, a4 as a common factor,

L
(1)
18 = f0(a2, a4)u18, L

(1)
19 = f1(a2, a4)u18, L

(1)
20 = f2(a2, a4)u18. (15)

The proof follows similarly as the proof of Theorem 4.4 to get the transversal intersection points 
in the statement. Computing the necessary resultants with respect to a2 and a4 to apply Theo-
rem 3.1.

In Fig. 4, we have drawn the algebraic curves fk(a2, a4) = 0, for k = 0, 1, 2, in red, blue, and 
green, respectively. Notice, that in the pictures it is clear the existence of transversal intersections 
of f0 = 0 and f1 = 0 where f2 is nonvanishing. �
Remark 5.4. Following the same procedure as for the Lyapunov constants given in (15) we 
compute also the next Lyapunov constant that can be written as
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Fig. 4. Drawing the zero level sets of f0, f1, and f2 in (15) in red, green, and blue, respectively.

L
(1)
21 = f3(a2, a4)u18.

Now taking a1 = 1 in (14) we can compute the corresponding algebraic functions f0, f1, f2, f3
depending only on (a2, a3, a4). They have around 105 monomials and degrees 100, 101, 102, 103, 
respectively. Then, we can solve numerically with high precision the first three obtaining

a∗ = (a∗
2 , a∗

3 , a∗
4) ≈ (0.26423354653702,2.06583351382191,2.26983478766641).

The evaluation at this point gets

f0(a
∗) ≈ 4.35 · 10−281, f1(a

∗) ≈ 3.2 · 10−275,

f2(a
∗) ≈ 3.67 · 10−272, f3(a

∗) ≈ 1.091295989718 · 10126,

and the determinant of the Jacobian matrix of (f0, f1, f2) with respect to a at the intersection 
point a∗ is −3.82703230760 ·10363. This gives a numerical evidence that the holomorphic family 
of degree 4 exhibits also 21 limit cycles of small amplitude bifurcating from the origin. The 
stabilization of the digits of the nonvanishing values of f3 and the determinant has been obtained 
working with enough precision.

6. Final comments

The computations in this work are quite high although basically we have worked only with 
developments of order 1 in the Lyapunov constants but center depending on parameters. This is 
because the existence of parameters in the unperturbed centers makes the things more compli-
cated. Before the simplifications, the polynomials appearing as coefficients of the perturbation 
parameters are of very high degree and with rational coefficients with a high number of digits. In 
fact, this is why we have only considered vector fields of degrees n = 3 and n = 4. The mistakes 
found in the proof of the main theorem of [21] and corrected here are also made in the later work 
[20]. This other work can also be corrected using the same techniques developed here.

It is possible to find high order focus especially for systems of degree even. The high order of 
this focus does not imply that automatically we can find more limit cycles. What really happens is 
that the unfolding of the possible limit cycles is not guaranteed and it is usually not possible. For 
instance, from the work [20], it can be seen that there are homogeneous perturbations of degree 
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four of a linear type center exhibiting a weak foci curve of order 24. However, the complete 
unfolding of these weak foci in the general class of degree four vector fields, that has only 24
parameters, is not guaranteed. In fact, for degree six class, there exist weak foci curves of order 
larger than the number of parameters of the perturbation.

In [17] the holomorphic centers are considered and it is proved that for low degree 4 ≤ n ≤ 13
the cyclicity of each center is at least n2 + n − 2 and for n = 3 it is at least 9. The results of this 
paper provide higher values of the local cyclicity but only for n = 3 and n = 4. Obtaining as new 
lower bounds in this class 11 and 21, respectively, even though this last value has a proof which 
is not completely analytic. We have also worked with other holomorphic centers, n = 5, 6, 7 but 
only with one parameter. In all cases, we have found at least one extra limit cycle than the ones 
obtained in [17]. But as the obtained lower bounds for M(n) are worse than others obtained in 
[13] we have not added here.

In all the proofs it is very important to restrict our studies to exactly the number of parameters 
k and � in Theorem 3.1. Then we will always have only lower bound for the cyclicity in the con-
sidered families. This restriction ensures that the higher-order terms do no affect the expressions 
of the first-order developments.

7. Accurate interval analysis

Next two technical results will help us to find upper and lower bounds for a polynomial of n
variables in a n-dimensional cube. The proofs of them can be found in [6].

Lemma 7.1 ([6]). Consider h > 0, p > 0, q real numbers such that p ∈ [p, p], with pp > 0, 
and q ∈ [q, q], with qq > 0.

(i) Then, σ�(q, p) ≤ qp ≤ σ r(q, p), where

σ�(q,p) =
{

qp, if q > 0,

qp, if q < 0,
σ r(q,p) =

{
qp, if q > 0,

qp, if q < 0.

(ii) If uj ∈ [−h, h], for j = 1, . . . , n and denoting ui = u
i1
1 · · ·uin

n , for the multiindex i =
(i1, . . . , in) �= 0, we have X �(q, ui) ≤ qui ≤ X r (q, ui), where

X �(q,ui) =
⎧⎨
⎩

0, if q > 0 and ik even for all k = 1, . . . , n,

−qhi1+···+in , if q > 0 and ik odd for some k = 1, . . . , n,

qhi1+···+in , if q < 0,

and

X r (q,ui) =
⎧⎨
⎩

−qhi1+···+in , if q < 0 and ik odd for all k = 1, . . . , n,

0, if q < 0 and ik even for some k = 1, . . . , n,

qhi1+···+in , if q > 0.

Furthermore, X �(q, 1) = q and X r (q, 1) = q .
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Lemma 7.2 ([6]). Let h > 0 and pj be a positive nonrational numbers such that pj ∈ [p
j
, pj ]

with p
j
, pj rational numbers satisfying p

j
, pj > 0, for j = 1, . . . , m. Consider the polynomial

U(u1, . . . , un) =
M∑

i1+···+in=0

⎛
⎝ m∑

j=1

Uj,ipj

⎞
⎠ui

with ui = u
i1
1 · · ·uin

n , i = (i1, . . . , in) and Uj,i rational numbers. Then

U�
i ≤

m∑
j=1

Uj,ipj ≤ Ur
i ,

with U�
i = ∑m

j=1 Uj,iσ
�(Uj,i , pj ) and Ur

i = ∑m
j=1 Uj,iσ

r (Uj,i , pj ). Moreover, if uj ∈ [−h, h], 
for j = 1, . . . , n and U�

i · Ur
i > 0 then

U =
M∑

i1+···+in=0

X �(U�
i , ui) ≤ U(u1, . . . , un) ≤

M∑
i1+···+in=0

X r (Ur
i , ui) = U .
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