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Abstract. Given a planar analytic differential equation with a critical point which
is a weak focus of order k, it is well-known that at most k limit cycles can bifurcate
from it. Moreover, in case of analytic Liénard differential equations this order can be
computed as one half of the multiplicity of an associated planar analytic map. By using
this approach, we can give an upper bound of the maximum order of the weak focus
of pure trigonometric Liénard equations only in terms of the degrees of the involved
trigonometric polynomials. Our result extends to this trigonometric Liénard case a
similar result known for polynomial Liénard equations.

1. Introduction and main results

Recall that a critical point of a planar analytic vector field is called a focus if the
eigenvalues of its linear approximation at the point are not real, i.e. α ± iβ, β 6= 0.
Moreover, when α 6= 0 the point is called a strong focus and, otherwise, it is called a
weak focus. The complex Poincaré’s normal form of its associated differential equation
at this weak focus point is

ż = iz
(
β +

∞∑
j=1

cj(zz̄)2j
)
, cj = αj + iβj ∈ C.

The values αj give the so called Lyapunov quantities and can be computed in many other
ways, see for instance [1, 4, 12, 16, 17, 18, 19, 23]. When all αj = 0 the weak focus is a
center, otherwise, if αk 6= 0, is the first non-zero αj then it is said that the origin is a weak
focus of order k. It is well known that k is the maximum number of limit cycles (isolated
periodic orbits) that bifurcate from this type of points, and that this amount of limit
cycles is attained for some analytic perturbations. Therefore, given an analytic family,
F , of planar analytic differential equations depending on finitely many parameters, it
is very interesting to know which is the maximum order of the weak focus inside this
family, σ(F), see [24]. This number is known to exist when the Lyapunov quantities are
polynomials on the parameters of the system, because of the Hilbert’s basis Theorem.

Unfortunately Hilbert’s result is not constructive and, in general, an explicit bound of
the number of needed Lyapunov quantities is not known. In fact, even for cubic vector
fields this number is nowadays unknown.

The most important family F of systems of arbitrary degree for which an explicit
upper bound of σ(F) is known is the family of polynomial Liénard equations. This
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family is the one formed for the planar vector fields with a weak focus at the origin{
ẋ = y,

ẏ = g(x) + yf(x),

where f and g are polynomials with given degrees, satisfying f(0) = g(0) = 0 and
g′(0) < 0. This upper bound (which is not sharp in general) depends on these degrees
and it is given in [6, 7, 8, 9, 15]. This proof relies on two main facts: a relation between
the order of a weak focus for analytic Liénard equations with the multiplicity at the
origin of a planar polynomial map, and on Bezout’s Theorem.

The same tools can be applied to solve the same question for trigonometric Liénard
systems. Notice that, as well as polynomial systems, trigonometric systems are differen-
tial systems of current interest, see for instance [3, 13, 14, 20, 21, 22, 25]. We will say
that {

θ̇ = y,

ẏ = G′(θ) + yF ′(θ),
(1)

is a pure trigonometric Liénard system if F and G are 2π-trigonometric polynomials
satisfying F (0) = F ′(0) = 0, G(0) = G′(0) = 0, G′′(0) < 0.

We denote by Lm,n the family of all pure trigonometric Liénard systems where F
and G satisfy the above properties and their degrees are at most m and n, respectively.
Because of the lack of symmetry between F and G we also introduce the subclass formed
by the F ’s that also satisfy F ′′(0) < 0. We denote it by L∗m,n ⊂ L.m,n Recall that if a real
2π-trigonometric polynomial p is such that its Fourier series satisfies

p(θ) =
∑̀
k=−`

ake
kiθ, a−k = ak, with a` 6= 0, (2)

then its degree is `.

n\m 1 2 3 4

1 0 1 2 3
2 1 2 6 7
3 2 6 7 -
4 3 7 - -

Table 1. Some values of σ(Lm,n).

Our main result is:

Theorem 1. Let σ(Lm,n) (resp. σ(L∗m,n)) be highest weak focus order for systems (1)
inside family Lm,n (resp. σ(L∗m,n)). Then,

(i) For all positive m and n, σ(L1,n) = n−1 and σ(Lm,1) = m−1. Similarly, σ(L∗1,n) =
n− 1 and σ(L∗m,1) = m− 1.

(ii) For all positive m ≥ n,

σ(Lm,n) = σ(L∗m,n) = σ(L∗n,m) ≤ σ(Ln,m).
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(iii) For n and m ≥ 2,

m+ n− 2 ≤ σ(Lm,n) ≤ 6mn− 3(m+ n) + 1.

(iv) For small m and n, some values of σ(Lm,n) are given in Table 1.

Although, comparing with the results of Table 1, the upper bounds given in item (iii)
of the theorem are not sharp, the more important fact is that they are explicit.

If in system (1), instead of F and G we consider F (θ) = F̃ (θ) + αθ and G(θ) =

F̃ (θ) +βθ, with F̃ and G̃ trigonometric polynomials, we will say that (1) is a (non pure)
trigonometric Liénard system. In Section 4 we give some partial results for this case.

2. Preliminary results

Let (P,Q) : R2 → R2 be an analytic function at (0, 0). As usual we denote by µ0[P,Q]
its multiplicity at this point. Recall that when (P (0, 0), Q(0, 0)) 6= (0, 0) then µ0[P,Q] =
0 and, otherwise, µ0[P,Q] is the number of (P,Q)-complex preimages around (0, 0) of
any regular point near the origin, see [2]. When (0, 0) is a non isolated zero then it is
said that the multiplicity is infinity. Notice also that µ0[P,Q] = µ0[Q,P ].

In text proposition we collect some useful properties to compute multiplicities, see
again [2]. As usual, O(k) denotes terms of order at least k.

Proposition 2. Let (P,Q) : R2 → R2 be an analytic map at the origin with finite mul-
tiplicity and let R : R2 → R and S : R→ R be also analytic at the origin. Then:

(a) The multiplicity of (P,Q) at the origin does not depend on the choice of coordi-
nates;

(b) It holds that µ0[RP,Q] = µ0[R,Q] + µ0[P,Q]. In particular, if R(0, 0) 6= 0 then
µ0[RP,Q] = µ0[P,Q];

(c) Write P = Pj +O(j + 1) and Q = Qk +O(k + 1), with Pj and Qk homogeneous
with respective degrees j and k. Then µ0[P,Q] ≥ jk, and the equality holds if and
only if the system Pj = 0, Qk = 0 has only the trivial solution (0, 0) in C2.

(d) It holds that µ0[P +RQ,Q] = µ0[P,Q].
(e) If P (x, y) = (y − S(x))R(x, y), with S(0) = 0 and R(0, 0) 6= 0, and Q(x, S(x)) =

axk +O(k + 1), with a 6= 0, then µ0[P,Q] = k.

In [5] the authors proved the following nice theorem which is based on previous results
of [6]. Our results will be strongly based on it.

Theorem 3. ([5]) Consider the Liénard system{
ẋ = y,

ẏ = g(x) + yf(x),
(3)

where f and g are analytic at the origin and satisfy f(0) = g(0) = 0 and g′(0) < 0.
Define

µ(f, g) = µ0

[
F (x)− F (y)

x− y
,
G(x)−G(y)

x− y

]
,

where F (x) =
∫ x
0
f(s) ds and G(x) =

∫ x
0
g(s) ds. Then

(i) if µ(f, g) =∞, the origin of (3) is a center,
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(ii) if µ(f, g) <∞, the origin of (3) is a weak focus of order µ(f, g)/2.

We will use a different characterization of trigonometrical polynomials of degree `.
Consider the ring of trigonometric polynomials, Rt[θ] = R[sin θ, cos θ]. It is well known
that its quotient field, Rt(θ), is isomorphic to R(x) by means of the morphism Φ: Rt(θ)→
R(x) defined by

Φ(sin θ) =
2x

1 + x2
and Φ(cos θ) =

1− x2

1 + x2
. (4)

Note that

Φ(tan(θ/2)) = Φ
( sin θ

1 + cos θ

)
= x and Φ(θ) = arctan

( 2x

1− x2
)
.

Observe also that Φ is a well-defined change of variables around the origin.
If p is a trigonometric polynomial of degree `, as in (2), it holds that

Φ(p(θ)) =
P (x)

(1 + x2)`
, with P ∈ R[x], deg(P ) ≤ 2` and gcd(P (x), 1 + x2) = 1.

(5)
Moreover, the converse is also true: for each P under the above hypotheses, there exists

a trigonometric polynomial, p, of degree at most `, such that Φ(p(θ)) = P (x)
(1+x2)`

, see

[10, 11].
Consider now a pair f, g of 2π-periodic trigonometric polynomials of degrees m and

n, respectively and define

F (x) =

∫ x

0

f(θ) dθ, G(x) =

∫ x

0

g(θ) dθ. (6)

Then F (θ) = αθ + F̃ (θ) and G(θ) = βθ + G̃(θ) where α = F (2π)
2π

and β == G(2π)
2π

and F̃

and G̃ are also trigonometric polynomials of degrees n and m, respectively. Using the
change of variables Φ given in (4) we have that

F (θ) = F
(

arctan
( 2x

1− x2
))

= α arctan
( 2x

1− x2
)

+
M(x)

(1 + x2)m
,

G(θ) = G
(

arctan
( 2x

1− x2
))

= β arctan
( 2x

1− x2
)

+
N(x)

(1 + x2)n
, (7)

where M is the polynomial of degree less than or equal to 2m associated to F̃ and N is

the polynomial of degree less than or equal to 2n associated to G̃.
As a corollary of the previous results we prove the following proposition.

Proposition 4. Let f and g be 2π-trigonometric polynomials with degrees m and n, and
such that f(0) = g(0) = 0. Then, following the notation introduced in (6) and (7), it
holds that

µ0

[
F (θ)− F (ψ)

θ − ψ
,
G(θ)−G(ψ)

θ − ψ

]
= µ0 [Pα(x, y), Qβ(x, y)] ,

where

Pα(x, y) =
(
α∆(x, y)(1 + x2)m(1 + y2)m +M(x)(1 + y2)m −M(y)(1 + x2)m

)
/(x− y),

Qβ(x, y) =
(
β∆(x, y)(1 + x2)n(1 + y2)n +N(x)(1 + y2)n −N(y)(1 + x2)n

)
/(x− y)
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and ∆(x, y) = 2
(

arctan(x)− arctan(y)
)
.

Proof. Notice that given any analytic map r it holds that R(x, y) = (r(x)− r(y)/(x− y)
is analytic as well at (0, 0). Moreover at the origin R(0, 0) = r′(0). Thus, taking r(θ) =
tan(θ/2) we have that R(0, 0) = 1/2 and R and 1/R are analytic at zero. Hence, by
using property (b) of Proposition 2, we get that

µ0

[
F (θ)− F (ψ)

θ − ψ
,
G(θ)−G(ψ)

θ − ψ

]
= µ0

[
F (θ)− F (ψ)

θ − ψ
1

R(θ, ψ)
,
G(θ)−G(ψ)

θ − ψ
1

R(θ, ψ)

]
= µ0

[
F (θ)− F (ψ)

tan(θ/2)− tan(ψ/2)
,

G(θ)−G(ψ)

tan(θ/2)− tan(ψ/2)

]
Notice that by (4), if we take (x, y) = (tan(θ/2), tan(ψ/2)) it holds that

F (θ)− F (ψ)

tan(θ/2)− tan(ψ/2)
=

1

x− y

(
α∆̃(x, y) +

M(x)

(1 + x2)m
− M(y)

(1 + y2)m

)
,

G(θ)−G(ψ)

tan(θ/2)− tan(ψ/2)
=

1

x− y

(
α∆̃(x, y) +

N(x)

(1 + x2)n
− N(y)

(1 + y2)n

)
,

where

∆̃(x, y) = arctan
( 2x

1− x2
)
− arctan

( 2y

1− y2
)
.

Observe also that for |x| < 1 and |y| < 1,

∆̃(x, y) = arctan
( 2x

1− x2
)
− arctan

( 2y

1− y2
)

= 2
(

arctan(x)− arctan(y)
)

= ∆(x, y).

Hence, by property (a) of Proposition 2 we obtain that

µ0

[
F (θ)− F (ψ)

tan(θ/2)− tan(ψ/2)
,

G(θ)−G(ψ)

tan(θ/2)− tan(ψ/2)

]
=

µ0

[
Pα(x, y)

(1 + x2)m(1 + y2)m
,

Qα(x, y)

(1 + x2)n(1 + y2)n

]
.

Finally, by using again property (b) of the same proposition, we can remove in each
component the factor (1 +x2)−m(1 + y2)−m and the factor (1 +x2)−n(1 + y2)−n, without
changing the multiplicity, because they do not vanish at (0, 0), giving the desired result.

�

3. Proof of Theorem 1

Proof of Theorem 1. (i) We will prove that σ(Lm,1) = m− 1. The proof that σ(L1,n) =
n − 1 follows similarly. We will use Theorem 3 and Proposition 4. Note that following
the notation of Proposition 4, µ(F ′, G′) = µ0 [P0(x, y), Q0(x, y)] , because α = β = 0,
where

P0(x, y) =
M(x)(1 + y2)m −M(y)(1 + x2)m

x− y
,
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and

Q0(x, y) =
bx2(1 + y2)− by2(1 + x2)

x− y
= b(x+ y).

By property (e) of Proposition 2, to know the multiplicity µ0[P0, Q0] is suffices to study
the function

H(x) = P0(x,−x) =
M(x)−M(−x)

2x
(1 + x2)m =

Modd(x)

x
(1 + x2)m,

where Modd is the odd part of M. Clearly, when H 6= 0, its highest order term at the
origin is x2(m−1). Hence, by Theorem 3, σ(Lm,1) = m − 1, as we wanted to prove. The
proofs for σ(L∗m,1) and σ(L∗1,n) are similar.

(ii) Simply because L∗n,m ⊂ Ln,m it holds that σ(L∗n,m) ≤ σ(Ln,m). Moreover, by
Theorem 3, and due to the symmetry between F and G in L∗n,m it holds that σ(L∗m,n) =
σ(L∗n,m).

Hence, we only need to prove that σ(Lm,n) = σ(L∗m,n). To prove this equality, notice
that if the trigonometric polynomials F and G that give the maximum weak focus order
correspond to an F such that for it corresponding expression as in (7) it holds that
M(x) = a2x

2 + 0(3), with a2 6= 0, then it is clear that the maximum highest order in
Lm,n is also taken for an element that is in L∗m,n and the equality follows. Otherwise,
the maximum highest order is reached for an F such that its corresponding M satisfies
M(x) = 0(3). Let us prove in this situation how to construct another F such that the

order of the origin is the same but this new M, say M̂, is such that M̂(x) = b2x
2 + 0(3),

with b2 6= 0.
Let M and N such that m ≥ n and 2σ(Lm,n) = µ0[P0, Q0], where recall that

(P0, Q0) =

(
M(x)(1 + y2)m −M(y)(1 + x2)m

x− y
,
N(x)(1 + y2)n −N(y)(1 + x2)n

x− y

)
.

Consider, as new F, a trigonometric polynomial of degree m, F̂ , such that its correspond-

ing M according to (5) is the polynomial of degree 2m, M̂(x) = N(x)(1+x2)m−n+M(x).
Notice that

P̂0(x, y) =
M̂(x)(1 + y2)m − M̂(y)(1 + x2)m

x− y

=

(
N(x)(1 + x2)m−n +M(x)

)
(1 + y2)m −

(
N(y)(1 + y2)m−n +M(y)

)
(1 + x2)m

x− y
= (1 + x2)m−n(1 + y2)m−nQ0(x, y) + P0(x, y).

Hence, by property (d) of Proposition 2,

µ0

[
P̂0, Q0

]
= µ0 [P0, Q0] = 2σ(Lm,n)

and M̂(x) = N(x)(1 + x2)m−n +M(x) = x2 + 0(3), as we wanted to prove.

(iii) We start with the upper bound. Recall that if a polynomial map (P,Q) has only
isolated (real or complex) singularities and Z denotes the set formed for all of them,



TRIGONOMETRIC LIÉNARD EQUATIONS 7

then by Bezout’s theorem ∑
z∈Z

µz[P,Q] ≤ deg(P ) deg(Q).

Recall that in our situation, α = β = 0 and by Proposition 4,

µ(F ′, G′) = µ0

[
F (θ)− F (ψ)

θ − ψ
,
G(θ)−G(ψ)

θ − ψ

]
= µ0 [P0(x, y), Q0(x, y)] ,

where last two functions are polynomials and

deg (P0(x, y)) = 4m− 2 and deg (Q0(x, y)) = 4n− 2,

because the term of degree 4m−1 (resp. 4n−1) of P0 (resp. Q0) vanishes. Moreover, the
four points (±i,±i) are also singularities of (P0, Q0). By using property (c) of Theorem 2
it is not difficult to prove that

µ(i,i)[P0, Q0] = µ(−i,−i)[P0, Q0] ≥ (m− 1)(n− 1),

µ(i,−i)[P0, Q0] = µ(−i,i)[P0, Q0] ≥ mn.

Hence, by the above inequalities,

µ(F ′, G′) ≤ deg(P0) deg(Q0)−
∑

z∈Z\{(0,0)}

µz[P0, Q0]

≤ 4(2m− 1)(2n− 1)− 2mn− 2(m− 1)(n− 1).

Finally, by Theorem 3,

σ(Lm,n) ≤ 2(2m− 1)(2n− 1)−mn− (m− 1)(n− 1) = 6mn− 3(m+ n) + 1.

Now we compute the lower bound. We consider F ′ and G′ such that their correspond-
ing expressions, as rational functions following (4) and (5), are

M(x) =
x2m

(1 + x2)m
and N(x) =

x2 + x2n−1

(1 + x2)n
.

For each i, ` ∈ N introduce the following polynomials

Ri,`(x, y) =
xi(1 + y2)` − yi(1 + x2)`

x− y
and S2i,`(x, y) =

x2i(1 + y2)` − y2i(1 + x2)`

x2 − y2
.

Then,

P0(x, y) =
x2m(1 + y2)m − y2m(1 + x2)m

x− y
= S2m,m(x, y)(x+ y),

Q0(x, y) =
(x2 + x2n−1)(1 + y2)n − (y2 + y2n−1)(1 + x2)n

x− y
= S2,n(x, y)(x+ y) +R2n−1,n(x, y),

where P0 and Q0 are the polynomials appearing in Proposition 4. Notice that

S2,n(x, y) = 1 +O(1) and S2m,m(x, y) =
x2m − y2m

x2 − y2
+O(2m− 1).
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By Proposition 4 and Theorem 3,

µ(F ′, G′) =µ0 [S2m,m(x, y)(x+ y), S2,n(x, y)(x+ y) +R2n−1,n(x, y)]

=µ0 [S2m,m(x, y), S2,n(x, y)(x+ y) +R2n−1,n(x, y)]

+ µ0 [x+ y, S2,n(x, y)(x+ y) +R2n−1,n(x, y)] ,

where in the last equality we have used property (d) of Proposition 2. We consider
separately each of the terms of the sum.

By using again the properties of Proposition 4, since S2,n(0, 0) 6= 0,

µ0 [S2m,m(x, y), S2,n(x, y)(x+ y) +R2n−1,n(x, y)] = µ0 [S2m,m(x, y), x+ y +O(2)] =

µ0

[
x2m − y2m

x2 − y2
+O(2m− 1), x+ y +O(2)

]
= µ0

[
x2m − y2m

x2 − y2
, x+ y

]
= 2(m− 1).

Similarly, by property (e) of Proposition 4, the second term coincides with the degree of
the lowest term at the origin of R2n−1,n(x,−x) = (1 + x2)nx2n−2. Hence,

µ0 [x+ y, S2,n(x, y)(x+ y) +R2n−1,n(x, y)] = 2(n− 1).

Putting all the results together

µ(F ′, G′) = 2(m+ n− 2).

Hence, by Theorem 3, the order of the corresponding weak focus in m + n − 2 and the
lower bound of the theorem follows.

(iv) We only will give the full details of two cases of Table 1, (m,n) ∈ {(2, 3), (3, 2)}.
The others follow similarly.

When (m,n) = (2, 3),

P0(x, y) =
M(x)(1 + y2)2 −M(y)(1 + x2)2

x− y
,Q0(x, y) =

N(x)(1 + y2)3 −N(y)(1 + x2)3

x− y
,

where M(x) = b2x
2 + b3x

3 + b4x
4 and N(x) = x2 + c3x

3 + c4x
4 + c5x

5 + c6x
6 because

G(0) = G′(0) = 0 and G′′(0) 6= 0 (the coefficient of x2 is normalized to one for the sake
of simplicity).

Since Q0(x, y) = x + y + O(2), we have that ∂Q0(0, 0)/∂y 6= 0, and by the Weier-
strass Preparation Theorem it holds that Q0(x, y) = (y−S(x))R(x, y) for some analytic
functions such that R(0, 0) 6= 0 and S(x) = −x + O(2) = −x +

∑∞
i=2 aix

i. Moreover,
Q0(x, S(x)) ≡ 0. Hence, by property (e) of Proposition 2, we can compute the maxi-
mum multiplicity by taking P0(x, S(x)) and vanishing this power series to the highest
possible order by using the free parameters bi of M and ci of N. The first non-zero term
is −4(c3b2 − b3)x2 which forces b3 = c3b2 to have order bigger than 2. The next order
is 4(−c3b2 + 2c3c4b2 − c5b2 − 2c3b4)x

4. It can be seen that if c3 = 0 we obtain lower
vanishing order. So, we assume that c3 6= 0 we take b4 = (−c3b2 + 2c3c4b2 − c5b2)/(2c3)
to go on. The next power is

1

2c3
(3c43 − 2c23c4 + 4c3c5 − 3c33c5 − 4c3c4c5 + 2c25 + 6c23c6)b2x

6.
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From here we have that c6 = (−3c43 +2c23c4−4c3c5 +3c33c5 +4c3c4c5−2c25)/(6c
2
3) to arrive

to order bigger than 6. The next power is

−1

6
c3(−21c3 + 22c3c4 − 11c5)(c3 − c5)b2x8.

If (c3−c5)b2 = 0 we have that multiplicity infinity (or in other words that the correspond-
ing Liénard system has a center at the origin). Then we must take c5 = c3(−21+22c4)/11.
The next power is

2

1331

(
c33(−4 + 143c23)(−16 + 11c4)b2

)
x10.

The case (−16 + 11c4)b2 = 0 gives again a case of multiplicity infinity. Hence we take
c3 = ±2/

√
143 and we have that the next power is

± 65536

353829047
√

143
((−16 + 11c4)b2)x

12. (8)

Therefore the highest multiplicity is 12 which implies that σ(L2,3) = 6.
To get σ(L3,2), notice first that by item (ii), σ(L3,2) ≤ σ(L2,3) = 6. Moreover, since

the cases giving rise to order of the weak focus 6 satisfy that b2 6= 0, see (8), taking one
of them and as a new M as M/b2, we have that σ(L3,2) ≥ 6. Thus σ(L3,2) = 6, as we
wanted to show. �

4. Some results for the non pure trigonometric case

For the case of non pure trigonometric polynomials a table similar to Table 1, but for
the values σ(Lα,βm,n), can be done. We present some cases in Table 2, where the numbers
with a star mean a lower bound for the highest weak focus order and simply correspond
to the values σ(Lm,n).

n\m 1 2 3 4

1 1 3 5 7
2 3 4 6∗ 7∗

3 5 6∗ 7∗ -
4 7 7∗ - -

Table 2. Some values of σ(Lα,βm,n).

We only will give some details for the case (m,n) = (2, 2). For these values

Pα =
2α (arctan(x)− arctan(y)) (1 + x2)2(1 + y2)2 +M(x)(1 + y2)2 −M(y)(1 + x2)2

x− y
,

Qβ =
2β (arctan(x)− arctan(y)) (1 + x2)2(1 + y2)2 +N(x)(1 + y2)2 −N(y)(1 + x2)2

x− y
,

where M(x) = −2αx+b2x
2+b3x

3+b4x
4 and N(x) = −2βx+x2+c3x

3+c4x
4. We proceed

as in the proof of item (iv) of Theorem 1 by using property (e) of Proposition 2. Hence
we have to find the highest order at zero of Pα(x, S(x)) where S is the analytic function
that satisfies S(0) = 0 and Qβ(x, S(x)) ≡ 0. The first non-zero order is (−3c3b2 + 3b3 −
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10b2β+10α)x2/3 which yields b3 = (3c3b2+10b2β−10α)/3 if we want to arrive to higher
order. The next power is

2

15
(15c3c4b2 − 15c3b4 − 8b2β + 50c4b2β − 50b4β + 8α)x4.

From it, to go on, we impose that b4 = (15c3c4b2 − 8b2β + 50c4b2β + 8α)/(5(3c3 + 10β))
because, otherwise, if we take 3c3 + 10β = 0 it can be seen that we arrive to a lower
vanishing order. The next power is

8(α− b2β)

1575(3c3 + 10β)

(
− 720c3 + 945c33 + 1260c3c4 − 3072β + 9450c23β + 4200c4β

+ 31500c3β
2 + 35000β3

)
x6.

If α− b2β = 0 we have that multiplicity infinity, that is, we obtain that Pα(x, S(x)) ≡ 0.
Then we must take

c4 =
720c3 − 945c33 + 3072β − 9450c23β − 31500c3β

2 − 35000β3

420(3c3 + 10β)
.

The next power is

4(α− b2β)

59535
(432 + 7(3c3 + 10β)2(360 + 77(3c3 + 10β)2))x8

Hence we must impose that 432 + 7(3c3 + 10β)2(360 + 77(3c3 + 10β)2) = 0 to obtain
higher multiplicity. Doing the reparametrization 3c3 + 10β = k1, this second term does
not vanish because it corresponds to 432 + 2520k21 + 539k41, which has no real roots.

Hence the maximum multiplicity is 8 and by Theorem 3, σ(Lα,β2,2 ) = 4.

Remark 5. In general, in this work we have not addressed the question of knowing if the
highest order cyclicity gives rise to the corresponding number of limit cycles inside the
Liénard trigonometric family. In general, the easiest way to ensure that this happens is
to prove that the gradients of the Lyapunov quantities (the coefficient of the even orders
in the above procedure) have the maximum rank at zero. For instance, it can be seen that
this is the case in the above example.

We end this section with a particular result refereed to a subfamily of non pure trigono-
metric Liénard systems.

Proposition 6. Let σ(Lα,0m,1) be highest weak focus order for systems (1) inside the

family non pure trigonometric Liénard systems with α ∈ R and β = 0. Then σ(Lα,0m,1) =
σ(Lm,1) + 1 = m.

Proof. Arguing as in the proof of item (i) of Theorem 1 we know that µ(F ′, G′) =
µ0 [Pα(x, y), Q0(x, y)] , where Q0(x, y) = b(x + y), b 6= 0, and Pα(x, y) is as in the state-
ment of Proposition 4. Hence, by property (e) of Proposition 2, to know the above
multiplicity it suffices to know the highest order at the origin of the map

K(x) = Pα(x,−x) = (1 + x2)m
[

2α(1 + x2)m arctan(x)

x
+
Modd(x)

x

]
,
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where Modd is the odd part of M, which recall that is a polynomial of degree at most
2m. Clearly the coefficients of M can be chosen in such a way that K starts at the origin
with terms of order at least 2m. Hence, to prove that the maximum order of K 6= 0 at
the origin is 2m we need to prove that the coefficient of order 2m+ 1 at the origin of the
function (1 + x2)m arctan (x) is not null.

With this aim, we fix m and consider

H(x) = (1 + x2)m arctan (x) =
∞∑
k=0

hkx
2k+1, for |x| < 1,

where, for the sake of simplicity, we have removed the dependence on m of the function
and on its Taylor series. We will prove that for all k ∈ N, hk 6= 0. It is not difficult to
check that

(1 + x2)H ′(x) = 2mxH(x) + (1 + x2)m.

As a consequence, h0 = 1, and equating the terms with x2k in the above expression, we
obtain that for all k ≥ 1,

hk =
(2(m− k) + 1)hk−1 +

(
m
k

)
2k + 1

,

where
(
m
k

)
= 0 for k > m. The above recurrence implies that hk > 0 for all k ≤ m and

(−1)k−mhk > 0 for all k > m, because 2(m− k) + 1 is positive for k ≤ m and negative
otherwise. Hence hk 6= 0 for all k ≥ 0, and in particular hm, the coefficient of x2m+1,
is not zero, as we wanted to prove. Thus, H[F ′, G′] ≤ 2m and this upper bound is
attained. Hence, by Theorem 3 the upper bound of the order of the weak focus for the
family considered is m and this values is reached. �
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[6] L. A. Cherkas, Conditions for a Liénard equation to have a centre, Differential Equations 12 (1976),
201–206.

[7] C. Christopher, An algebraic approach to the classification of centers in polynomial Liénard systems,
J. Math. Anal. Appl. 229 (1999), 319–329.

[8] C. J. Christopher, N. G. Lloyd and J. M. Pearson, On a Cherkas’s method for centre conditions,
Nonlinear World 2 (1995), 459–469.

[9] C. Christopher and S. Lynch, Small-amplitude limit cycle bifurcations for Liénard systems with
quadratic or cubic damping or restoring forces. Nonlinearity 12 (1999), 1099–1112.

[10] A. Cima, A. Gasull and F. Mañosas, A simple solution of some composition conjectures for abel
equations, J. Math. Anal. Appl. 398 (2013), 477–486.

[11] A. Cima, A. Gasull and F. Mañosas, An explicit bound of the number of vanishing double moments
forcing composition J. Differential Equations 255 (2013), 339–350.

[12] A. Gasull, A. Geyer and F. Mañosas, On the number of limit cycles for perturbed pendulum equa-
tions, J. Differential Equations 261 (2016), 2141–2167.
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