
SOLVING POLYNOMIALS WITH
ORDINARY DIFFERENTIAL EQUATIONS
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Abstract. In this work we consider a given root of a family of n-degree polyno-
mials as a one-variable function that depends only on the independent term. Then
we prove that this function satisfies several ordinary differential equations (ODE).
More concretely, it satisfies several simple separated variables ODE, a first order
generalized Abel ODE of degree n − 1 and an (n − 1)-th order linear ODE. Alt-
hough some of our results are not new, our approach is simple and self-contained.
For n = 2, 3 and 4 we recover, from these ODE, the classical formulas for solving
these polynomials.

1. Introduction and main results

It is known that although general polynomial equations of degree n ≥ 5 can not
be solved by radicals, their roots can be obtained in terms of elliptic or hyperelliptic
functions, their inverses or other trascendental functions, like hypergeometric or
theta functions. This is a classical subject which starts with results of Hermite,
Kronecker and Brioschi and continues with contributions of many others authors,
see for instance [1, 7, 9, 12] and the references therein. We will not try to survey
all the different points of view from which the question of solving polynomials is
addressed.

Because we usually work on ordinary differential equations (ODE) we simply
decided to explore which kind of results about polynomial equations can be obtained
by using ODE as a main tool. As we will see, our results are self-contained and
recover some of the known results on the subject. Before we state our contributions
and compare them with these known results, we present a brief survey of the most
relevant results that we have found on this subject that also use ODE as a main
tool. To the best of our knowledge this approach started with the contributions of
Betti ([2]) in 1854 and the ones around 1860 of Cockle and Hartley ([4, 10]). In
fact, Enrico Betti proved that the solutions of general polynomial equations satisfy
a separated variables ODE and using this fact that he proved that the solutions of
these equations can be obtained in terms of hyperelliptic functions and their inverses.
He also proved that for quintic equations it suffices to consider elliptic functions and
their inverses. On the other hand, James Cockle and Robert Harley showed explicit
linear ODE satisfied for a solution of an arbitrary trinomial polynomial equation in
terms of its coefficients. For instance, they found a linear homogeneous ODE of 4-th
order for a solution x(q) of the quintic polynomial equation in the Bring-Jerrard
form x5 − x + q = 0. These results are presented and extended a litle in the 1865
Boole’s book [3, pp. 190–199]. In his Thesis (“première thèse”), published as a book
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2 A. GASULL AND H. GIACOMINI

in 1874 and as an article in 1875 ([14]), Tannery consider a more general question
and proved that each branch y = y(x) of an algebraic curve F (x, y) = 0, of degree
n in y satisfies an n-th order linear homogeneous ODE. In 1887, Heymann ([8])
showed that a solution of a trinomial equation with only one parameter satisfies a
linear ODE and realizes for the first time that this solution can be expressed as a
hypergeometric function. Mellin ([11]) around 1915 published the quoted paper and
others about the representation of the solutions of polynomial equations in terms of
multiple integrals, proving again that the solution of a trinomial equations satisfy
a linear ODE. Owing to the complexity of explicitly constructing these ODE for
non-trinomial polynomial equations, some authors decided to use also functions of
several variables, and their corresponding partial differential equations, to express
the roots of arbitrary polynomial equations. Bellardinelli, in his extensive review
work of 1960 ([1]) presents this type of results and discuss also the previous works
about ODE.

We want to stress that results like the one of Tannery have practical applicati-
ons when people deal with some generating functions appearing in combinatorial
problems, see for instance the nice paper of Comtet([5]) and his classical book on
Combinatorics ([6]). There, the author gives also a proof that the branches of alge-
braic curves satisfy linear ODE and several applications of this fact.

In a few words, in this paper we will recover with independent proofs some of the
above results and give a few new ones. More concretely, we will re-obtain the results
of Betti as a particular case of our more general result and we will give a simple and
constructive procedure to obtain non homogeneous (n−1)-order linear ODE satisfied
by the solutions of general polynomial equations of degree n. During the way, we
prove that these solutions satisfy also Abel type polynomial differential equations
of degree n − 1. We also apply all our results for small n and to some particular
examples. It is funny to observe for instance that we obtain the celebrated Cardano’s
formula for n = 3, by reducing the computations to solve the simple second order
ODE of the harmonic oscillator x′′ = −x.

Before stating our main results, we start giving an idea of our approach to the
problem. In principle, we do not consider all real polynomials, but generic ones. Let
R(x) be a monic degree n real polynomial satisfying R(0) = 0 and R′(0) 6= 0. We
are interested in the degree n polynomial equation

P (x) = R(x)− q = 0, (1)

q ∈ R, and more in particular, in finding a local explicit expression of the analytic
solution x(q) of (1) such that limq→0 x(q) = 0, which exists and is unique by the
implicit function theorem because R′(0) 6= 0.

Let F be any invertible diffeomorphism such that F (0) = 0. Then, from (1) we
have the locally equivalent equation F (R(x)) = F (q). We know that F (R(x(q))) =
F (q). By derivating it with respect to q, and multiplying both sides by G(R(x(q)) =
G(q), with G an arbitrary continuous function, we obtain an ODE with separated
variables for x(q)

G(R(x(q))F ′(R(x(q)))R′(x(q))x′(q) = G(q)F ′(q),

with initial condition x(0) = 0. It can be easily solved giving rise to

φ(x) :=

∫ x

0

G(R(s))F ′(R(s))R′(s) ds =

∫ q

0

G(t)F ′(t) dt =: ϕ(q). (2)
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Hopefully, this new equation φ(x) = ϕ(q), which is equivalent to R(x) = q, allows
to obtain x = φ−1(ϕ(q)) being φ−1 ◦ϕ an explicit computable function that it is not
trivially equivalent to x = R−1(q). A key point is to chose a suitable F that provides
some cancellation in the expression F ′(R(x))R′(x).

As we will see, this wished cancellation can be obtained from the next proposition,
where disx(P (x)) denotes the discriminant of P (x) with respect to x. Recall that if
Pn(x) = anx

n + · · ·+ a1 + a0, an 6= 0,

disx(P (x)) =
(−1)

n(n−1)
2

an
Resx(Pn(x), P ′n(x)),

where Resx(Pn(x), Qm(x)) is the resultant between Pn and Qm and can be computed
as the n+m determinant

Resx(Pn(x), Qn(x)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−1 an−2 · · · a1 a0 0 0 0
0 an an−1 an−2 · · · a1 a0 0 0

0 0
. . . . . . . . . · · · . . . . . . 0

0 0 0 an an−1 an−2 . . . a1 a0
bm bm−1 · · · b1 b0 0 0 0 0
0 bm bm−1 · · · b1 b0 0 0 0

0 0
. . . . . . . . .

. . . . . . . . . 0
0 0 0 bm bm−1 . . . b1 b0 0
0 0 0 0 bm bm−1 . . . b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where Qm(x) = bmx

m + · · · + b1x + b0, bm 6= 0. It turns out that Pn and Qm share
some (real or complex) root if and only if this determinant vanishes. Hence Pn has
some multiple root if and only if its discriminant vanishes, see [13].

Proposition 1.1. Let P (x) = R(x) − q be a real polynomial of degree n ≥ 2, with
R(0) = 0 and q ∈ R. Set D(q) = disx(P (x)). Then

D(R(x)) = (R′(x))2U(x) = (P ′(x))2U(x), (3)

for some polynomial U of degree (n− 1)(n− 2). Moreover, if all the roots of R are
simple, U(0) 6= 0.

Next theorem is our first main result and proves that a root of a generic polynomial
equations P (x) = R(x)−q = 0, for q in a neighborhood of 0, can be obtained in terms
of hyperelliptic functions and their inverses. As we will comment in Remark 2.1,
the restriction that all the roots of R are simple can be removed obtaining a similar
result. As we have commented, this result is similar, but more general, to the one
given by Betti.

Theorem 1.2. Let P (x) = R(x) − q be a real polynomial of degree n ≥ 2, with
R(0) = 0 and q ∈ R. Set D(q) = disx(P (x)) and assume that all the roots of R are
simple. Define the polynomials D(q) = sgn(D(0))D(q) and U(x) = D(R(x))/(R′(x))2,
and the functions

φ(x) = sgn(R′(0))

∫ x

0

G(R(s))√
U(s)

ds and ϕ(q) =

∫ q

0

G(t)√
D(t)

dt, (4)

where G is any continuous function satisfying G(0) 6= 0. Then, in a neighborhood
of 0, φ is invertible and

x = φ−1(ϕ(q))
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is a root of P (x) = 0 that goes to 0 as q tends to 0.
In particular, if G is polynomial, φ and ϕ are elliptic or hyperelliptic integrals.

As an illustration, we apply our results to the low degree cases. In particular,
when n = 2 and n = 3 we reobtain the Babylonian and Cardano’s formulas, see
Sections 2.1 and 2.2, respectively. In Section 2.3 we apply them to the quartic case.
Finally, in Section 2.4 we reproduce the results of Betti’s work for quintic equations
with our point of view.

To state our second main result we recall some definitions. Given 0 < m ∈ N we
will say that a non autonomous first order real ODE of the from

x′ = am(q)xm + am−1(q)x
m−1 + · · ·+ a2(q)x

2 + a1(q)x+ a0(q) (5)

is a generalized Abel ODE of degree m. Notice that for m = 1, 2 and 3 these equations
are usually called linear, Riccati and Abel ODE, respectively. All of them are a
subject of classical interest in mathematics.

By using Corollary 2.3, we prove:

Theorem 1.3. Let P (x) = R(x) − q be a real polynomial of degree n ≥ 2, with
R(0) = 0 and q ∈ R. Let x(q) be one of the roots of this equation, defined in a
neighborhood of 0, that tends to zero as q tends to 0. Then x(q) satisfies a generalized
Abel ODE (5) of degree m = n − 1, where aj(q), j = 0, 1, . . . , n − 1 are rational
functions with coefficients depending on the coefficients of R.

A straightforward consequence of this result is the following corollary.

Corollary 1.4. Let P (x) = R(x)−q be a real quadratic, cubic or quartic polynomial
equation with R(0) = 0. Let x(q) be one of the roots of this equation, defined in a
neighborhood of 0, that tends to zero as q tends to 0. Then x(q) satisfies, respectively,
a linear, Riccati or Abel ODE whose coefficients are rational functions in q.

The proof of the above results, together with the explicit ODE when n ∈ {2, 3, 4}
and P has the canonical form P (x) = xn + px− q are given in Section 3.

A second consequence of the above results is:

Theorem 1.5. Let P (x) = R(x) − q be a real polynomial of degree n ≥ 2, with
R(0) = 0 and q ∈ R. Let x(q) be one of the roots of this equation, defined in a
neighborhood of 0, that tends to zero as q tends to 0. Then x = x(q) satisfies a
(n− 1)-th order linear ODE,

bn−1(q)x
(n−1) + bn−2(q)x

(n−2) + · · ·+ b1(q)x
′ + b0(q)x+ bn(q) = 0,

where the functions bj(q) are polynomials in q, with coefficients depending on the
coefficients of R.

Our proof provides a constructive algorithm to obtain all the functions bj. As
we will see in Section 4, when the equation P (x) = 0 is the the trinomial one,
P (x) = xn + px − q = 0, these bj are extremely simple. We obtain them for
n ≤ 6. We also recover again Cardano’s formula by showing that for n = 3, and
with suitable changes of variables, this differential equation can be written as the
equation for the harmonic oscillator. For n = 4 in Section 4.1 we present three
different expressions of its solution x(q), two of them in terms of hypergeometric
functions, and also the classical one.

Finally, in a short Appendix, we present some classical ways to solve the cubic
and the quartic equations. This is done, not only for completeness, but for obtaining
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a simple and suitable way (for our interests) of presenting the solution of the quartic
equation.

2. Proof of Theorem 1.2 and some applications

We start proving Proposition 1.1.

Proof of Proposition 1.1. The polynomial P ′ = R′ has degree n − 1. We give the
proof when all its roots in C, α1, α2, . . . , αn−1, are different and moreover R(αj) 6=
R(αk) unless j = k. The general result follows from this generic case.

Consider the system {
P (x) = R(x)− q = 0,

P ′(x) = R′(x) = 0.
(6)

Recall, that modulus some non-zero constant, the discriminant between P and P ′

is the resultant. Hence, by the properties of the resultant we know that D(q) is a
polynomial of degree n− 1 and moreover it vanishes for all values of q for which the
above system is compatible.

Thus, system (6) is compatible if and only if q = R(αj), j = 1, 2, . . . , n−1. Hence

D(q) = K
(
q −R(α1)

)(
q −R(α2)

)
· · ·
(
q −R(αn−1)

)
, K 6= 0.

Consider the new polynomial Q(x) = D(R(x)), of degree n(n − 1). It is clear that
Q(αj) = D(R(αj)) = 0. Moreover, Q′(x) = D′(R(x))R′(x). Therefore, Q′(αj) =
D′(R(αj))R

′(αj) = 0. As a consequence, all αj are double roots of Q(x) and (3)
holds.

Finally, since D(0) = C Resx(R(x), R′(x)), with C 6= 0, the hypothesis that all
the roots of R are simple is equivalent to D(0) 6= 0. Since R′(0) 6= 0, we get that
U(0) 6= 0, as we wanted to prove. �

Proof of Theorem 1.2. Our proof starts with the discussion given in the introduction
of the paper and uses the notations introduced there. Recall that (2) writes as

φ(x) =

∫ x

0

G(R(s))F ′(R(s))R′(s) ds =

∫ q

0

G(t)F ′(t) dt = ϕ(q). (7)

We take

F (t) =

∫ t

0

1√
D(s)

ds,

that is a local diffeomorphism at 0 because D(0) = sgn(D(0))D(0) > 0 and, as a

consequence, F ′(0) = 1/
√
D(0) 6= 0. Then, by Proposition 1.1,

F ′(R(s)) =
1√

D(R(s))
=

1√
(R′(s))2U(s)

=
sgn(R′(0))

R′(s)
√
U(s)

(8)

and (7) reads as

φ(x) = sgn(R′(0))

∫ x

0

G(R(s))√
U(s)

ds =

∫ q

0

G(t)√
D(t)

dt = ϕ(q).

Notice that ϕ′(0) = G(0)/
√
D(0) 6= 0. Hence, ϕ is a local diffeomorphism at 0.

The same happens with φ, because φ′(0) = sgn(R′(0))G(0)/
√
U(0) 6= 0. Thus

x = φ−1(ϕ(q)) as we wanted to prove. �



6 A. GASULL AND H. GIACOMINI

Next remark clarifies the situation when some of the hypotheses in Theorem 1.2
are not satisfied.

Remark 2.1. In Theorem 1.2 the hypothesis that all the roots of R are simple is used
to ensure that R′(0) 6= 0 and D(0) 6= 0. These conditions together with the hypothesis
that G(0) 6= 0 imply that the functions defined by the hyperelliptic integrals φ and
ϕ are invertible at 0. If we do not mind about their invertibility we arrive also to
equality φ(x) = ϕ(q) with these functions given as in (4) of the statement. We also
remark that in this situation the value sgn(R′(0)) must be replaced by the sign of
R(s) for s in the interval containing 0 and x.

Moreover, in this situation, if R′(0) = 0, that is when near x = 0 the polynomial
equation R(x) = q writes as xk + O(xk+1) = q, for some 1 < k ∈ N, k smooth
branches of solutions, xj(q), j = 1, . . . , k, solve the equation and satisfy xj(0) =
0. This result is a consequence of Weierstrass’ preparation theorem. Each one of
these branches satisfies the ODE that we are considering and, as a consequence, the
equality φ(x) = ϕ(q) with both functions given in (4). Similar branches appear also
when we try to invert φ.

We will also need the following corollaries of previous results. Notice that from
the first corollary, the functions defined by the hyperelliptic integrals given in The-
orem 1.2 are replaced by primitives of rational functions.

Corollary 2.2. Let P (x) = R(x) − q be a real polynomial of degree n ≥ 2, with
R(0) = 0 and q ∈ R. Set D(q) = disx(P (x)) and assume that all the roots of R are
simple. Define the polynomial U(x) = D(R(x))/(R′(x))2 and the functions

Φ(x) =

∫ x

0

H(R(s))

R′(s)U(s)
ds and Ψ(q) =

∫ q

0

H(t)

D(t)
dt,

where H is any continuous function satisfying H(0) 6= 0. Then, in a neighborhood
of 0, Φ is invertible and

x = Φ−1(Ψ(q))

is a root of P (x) = 0 that goes to 0 as q tends to 0.
In particular, if H is polynomial, Φ and Ψ are primitives of rational functions.

Proof. To prove this result we take

G(t) =
H(t)√
D(t)

in Theorem 1.2. Notice that by using (8) we obtain that

G(R(s)) =
H(R(s))√
D(R(s))

=
sgn(R′(0))H(R(s))

R′(s)
√
U(s)

.

Therefore,

sgn(R′(0))
G(R(s))√
U(s)

=
(

sgn(R′(0))
)2 H(R(s))

R′(s)
(√
U(s)

)2 = sgn(U(0))
H(R(s))

R′(s)U(s)
.

Similarly,

G(t)√
D(t)

=
H(t)(√
D(t)

)2 = sgn(D(0))
H(t)

D(t)
= sgn(U(0))

H(t)

D(t)
.
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By replacing both expressions in (4) we obtain that Φ(x) = Ψ(q) and the corollary
follows. �

This second corollary is essentially a version of Remark 2.1 in this situation.
Notice that the hypothesis that all the roots of R are simple it is not needed.

Corollary 2.3. Let P (x) = R(x) − q be a real polynomial of degree n ≥ 2, with
R(0) = 0 and q ∈ R. Set D(q) = disx(P (x)). Let x = x(q) be a root of P (x) = 0
that goes to 0 as q tends to 0. Then

x′ =
R′(x)U(x)

D(q)
,

where U is the polynomial U(x) = D(R(x))/(R′(x))2.

Proof. By Weierstrass’ Preparation theorem we know that the algebraic curve P (x) =
R(x)− q has at most n branches passing by the point (x, q) = (0, 0). Moreover, each
of these branches, say x = x(q), satisfies R(x(q)) = q. Hence, R′(x(q))x′(q) = 1.
From Proposition 1.1, it holds that D(R(x)) = (R′(x))2U(x) and, as a consequence,

x′ =
1

R′(x)
=
R′(x)U(x)

D(R(x))
=
R′(x)U(x)

D(q)
,

as desired. �

We will apply the above results for n ≤ 5.

2.1. A toy example: the quadratic equation. Consider P (x) = x2+px−q, with
p 6= 0. Then D(q) = disx(P (x)) = p2 + 4q, D(q) ≡ D(q) and D(R(x)) = (2x + p)2.
Then U = 1. Moreover, since R′(0) = p, we get from (4), that for |q| < p2/4,

φ(x) =

∫ x

0

sgn(R′(0))√
U(s)

ds =

∫ x

0

sgn(p) ds = sgn(p)x,

ϕ(q) =

∫ q

0

1√
D(t)

dt =

∫ q

0

1√
p2 + 4t

dt =
1

2

√
p2 + 4t

∣∣∣∣q
0

=

√
p2 + 4q −

√
p2

2
.

Then, by Theorem 1.2 we get equation φ(x) = ϕ(q), that gives the Babylonian
formula

x =
−p+ sgn(p)

√
p2 + 4q

2
.

By using Corollary 2.2 instead of Theorem 1.2 with H = 1 we obtain

Φ(x) =

∫ x

0

1

R′(s)U(s)
ds =

∫ x

0

1

2s+ p
ds =

1

2
log

(
2x+ p

p

)
,

Ψ(q) =

∫ q

0

1

D(t)
dt =

∫ q

0

1

p2 + 4t
dt =

1

4
log

(
p2 + 4q

p2

)
.

By using that Φ(x) = Ψ(q) we obtain again the classical formula.
Finally, notice that although the obtained formula for x = x(q) is valid when

|q| < p2/4, their algebraic nature makes it valid for all values of p and q.
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2.2. Cubic equations. We find a solution for the cubic polynomial equation

P (x) = x3 + px− q = 0. (9)

Notice the minus sign in front of q, in contrast with the usual notation given in (26)
utilized in Section 5.1 of the Appendix. We exclude the trivial case p 6= 0.

In the notation of Theorem 1.2, D(q) = −(4p3 + 27q2) and D(q) = sgn(p)(4p3 +
27q2). After some computations,

D(R(x)) = sgn(p)(3x2 + 4p)(3x2 + p)2,

and, as a consequence, U(x) = sgn(p)(3x2 + 4p). Hence, taking G = 1, equation
φ(x) = ϕ(q) writes as∫ x

0

sgn(p)√
sgn(p)(3s2 + 4p)

ds =

∫ q

0

1√
sgn(p)(4p3 + 27t2)

dt. (10)

It is well-known that

∫ x

0

1√
Ay2 +B

dy =


arcsinh

(√
A/B x

)
√
A

, when A > 0, B > 0,

arcsin
(√
−A/B x

)
√
−A

, when A < 0, B > 0,

(11)

where the second equality is only valid for for |x| <
√
−B/A . Thus, for instance

applying the first one when p > 0 in (10) we obtain that
√

3

3
arcsinh

(√
3x

2
√
p

)
=

√
3

9
arcsinh

(
3

2

√
3q

p
√
p

)
,

or equivalently,

x =
2
√
p

√
3

sinh

(
1

3
arcsinh

(
3

2

√
3q

p
√
p

))
. (12)

By using that arcsinh(z) = ln
(
z +
√
z2 + 1

)
we obtain that

sinh

(
1

3
arcsinh (z)

)
=

1

2

(
3

√
z +
√
z2 + 1 − 1

3
√
z +
√
z2 + 1

)
and hence, after some computations, from (12) we get

x =
3

√
q

2
+

√
q2

4
+
p3

27
− p

3
3

√
q
2

+
√

q2

4
+ p3

27

, (13)

that is, Cardano’s formula for equation (9).
If we consider the case p < 0 and perform the same type of computations but

using the second equality in (11) we arrive to

x =
2
√
−p√
3

sin

(
1

3
arcsin

(
3

2

√
3q

p
√
−p

))
, (14)

that is similar to (12), but for p < 0 and only valid when |q| <
√
−4p3/27 .
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In any case, as for the quadratic equations, the algebraic nature of the formula (13)
allows to consider it for all values of p and q.

2.3. Quartic equations. As we will see, it is difficult to recover the classical solu-
tion with this approach. We start with a particularly simple case. We will return
to this case in Section 4.1.

Consider the particular quartic equation

P (x) = x4 − 2x3 + 2x2 − x− q = 0. (15)

We will apply Theorem 1.2 with G = −2. After some calculations we obtain that

U(x) = (2x2 − 2x+ 1)2(4x2 − 4x+ 3) and D(q) = (4q + 1)2(16q + 3).

Hence,

φ(x) = sgn(R′(0))

∫ x

0

G(R(s))√
U(s)

ds =

∫ x

0

2

(2s2 − 2s+ 1)
√

4s2 − 4s+ 3
ds

=2 arctan

(
2x− 1√

4x2 − 4x+ 3

)
+
π

3

and

ϕ(q) =

∫ q

0

G(t)√
D(t)

dt =

∫ q

0

−2

(4q + 1)
√

16q + 3
dt = − arctan

(√
16q + 3

)
+
π

3
.

For the sake of shortness we introduce the new variables

z =
2x− 1√

4x2 − 4x+ 3
and w =

√
16q + 3 .

Notice that given z the corresponding values of x can be obtained by solving a
quadratic equation. Hence, the equation φ(x) = ϕ(q) can be written as

2 arctan (z) = − arctan (w) ,

or, equivalently, tan(2 arctan (z)) = −w, that gives

2z

z2 − 1
= w.

Thus, for each w, the corresponding value of z can be obtained again by solving a
new quadratic equation wz2 − w − 2z = 0.

In short, solving two quadratic equations the quartic equation (15) can be solved.
In fact, this is the particularity of the equation that we have considered and makes
its study easier: there is no need to solve any cubic equation to find its roots. Their
four solutions are

1

2
± 1

2

√
−1± 2

√
1 + 4q .

Let us explore what gives our approach when we apply it to a general quartic
equation. Recall first, that similarly of what happens with cubic equations, the
general quartic case can be reduced to

x4 + px− q = 0, (16)

for some p, q ∈ R. In this situation, a translation is not enough to arrive to (16) and
the so-called Tschirnhausen transformations must be used.
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If we apply Theorem 1.2 with G = 1, we obtain that D(q) = −(27p4 + 256q3) and
D(q) = 27p4 + 256q3. Then, some computations give

D(R(x)) = (R′(x))2U(x) = (4x3 + p)2
(
16x6 + 40px3 + 27p2

)
.

Hence,

φ(x) =

∫ x

0

sgn(R′(0))√
U(s)

ds =

∫ x

0

1√
16s6 + 40ps3 + 27p2

ds

and

ϕ(q) =

∫ q

0

1√
D(s)

ds =

∫ q

0

1√
256s3 + 27p4

ds.

The above functions can be expressed as an Appell function and a hypergeometric
function, respectively. Therefore, this approach gives no satisfactory results in order
to obtain the roots of the quartic equation in terms of radicals. We will return to
the quartic equation in Section 4.1.

2.4. Quintic equations. In this section, with our approach, we recover the result
of Betti ([2]) that asserts that the solution of these equations can be obtained in
terms of the inverse of an elliptic integral. Following Betti, it suffices to study the
particular quintic equation

P (x) = x5 + 5x3 − q.

We can not apply directly Theorem 1.2 because the above case is not under its
hypotheses. In fact R(x) = x5 + 5x3 and hence R′(0) = 0. Moreover, as we will see,
we will use G(x) = 5

√
5x and thus G(0) = 0. Therefore two of the hypotheses of

the theorem are not satisfied, but instead we will use the extended result explained
in Remark 2.1. There we explain that in this more general situation, it holds that
φ(x) = ϕ(q) with φ and ϕ given also in (4).

Following the notation of Theorem 1.2 we have that

D(q) = 55q2(q2 + 108) and U(x) = 53x2(x2 + 5)2(x6 + 4x4 − 8x2 + 12).

Moreover, as it is explained in Remark 2.1, sign(R′(0)) can be replaced by +1,
because near 0, R′ is positive.

Taking G(x) = 5
√

5x, we get that

φ(x) =

∫ x

0

s2√
s6 + 4s4 − 8s2 + 12

ds and ϕ(q) =

∫ q

0

1

5
√
t2 + 108

dt.

Hence, by introducing the new variable u = s2, the equality φ(x) = ϕ(q) writes as∫ x2

0

u√
u(u3 + 4u2 − 8u+ 12)

du =

∫ q

0

2

5
√
t2 + 108

dt.

This expression is precisely the one obtained in [2] and gives a root of the considered
quintic equation in terms of elementary functions and the inverse of an elliptic
integral.
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3. Polynomials and Abel equations: proof of Theorem 1.3

This section is devoted to prove Theorem 1.3 and its corollary.
By Corollary 2.3, any branch of solutions x = x(q) of P (x) = R(x)−q = 0 passing

by (x, q) = (0, 0) satisfies the differential equation

x′ =
R′(x)U(x)

D(q)
, (17)

where R′(x)U(x) is a polynomial in x of degree (n−1)2 and D(q) is a polynomial in q
of degree n− 1. By dividing R′U by P we get that R′(x)U(x) = P (x)Q(x) +W (x),
where W is a polynomial in q and x of degree at most n − 1 in this last variable.
That is,

W (x) =
n−1∑
j=0

wj(q)x
j,

where the functions wj(q) are polynomials in q. Hence, since P (x(q)) ≡ 0, when
x = x(q) it holds that

x′ =
R′(x)U(x)

D(q)
=
P (x)Q(x) +W (x)

D(q)
=
W (x)

D(q)
=

n−1∑
j=0

wj(q)

D(q)
xj =

n−1∑
j=0

aj(q)x
j, (18)

as we wanted to prove.
Let us detail the corresponding ODE (18) for n = 2, 3, 4.
For the quadratic equation P (x) = x2 + px− q = 0, we have that

D(q) = p2 + 4q and U(x) = 1.

Hence x(q) satisfies (17),

x′ =
R′(x)U(x)

D(q)
=

2x+ p

p2 + 4q
=

2

p2 + 4q
x+

p

p2 + 4q
, (19)

that is already a linear ODE. Its general solution is

x(q) =
−p+K

√
p2 + 4q

2
.

By imposing the initial condition x(0) = 0 we arrive again to the babylonian solution

x(q) =
−p+ sgn(p)

√
p2 + 4q

2
.

For the cubic equation P (x) = x3 + px− q = 0,

D(q) = −(4p3 + 27q2) and U(x) = −(3x2 + 4p).

Since R′(x)U(x) = −(9x4 + 15px2 + 4p2) = −9xP (x) − (6px2 + 9qx + 4p2) and
P (x(q)) ≡ 0, we have that x = x(q) satisfies the Riccati equation

x′ =
6px2 + 9qx+ 4p2

4p3 + 27q2
=

6p

4p3 + 27q2
x2 +

9q

4p3 + 27q2
x+

4p2

4p3 + 27q2
. (20)

Finally, we consider the quartic equation P (x) = x4 + px− q = 0. Here we have

D(q) = −(27p4 + 256q3) and U(x) = −(16x6 + 40px3 + 27p2)
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and

R′(x)U(x) = −(64x9 + 176px6 + 148p2x3 − 27p3)

= −
(
64x5 + 112px2 + 64qx

)
P (x)−

(
36p2x3 + 48pqx2 + 64q2x+ 27p3

)
.

Hence x(q) satisfies the Abel ODE

x′ =
36p2

27p4 + 256q3
x3 +

48pq

27p4 + 256q3
x2 +

64q2

27p4 + 256q3
x+

27p3

27p4 + 256q3
.

4. Polynomials and linear ODE: proof of Theorem 1.5

We prove Theorem 1.5 and we apply it to the low degree cases. We recover
again Cardano’s formula, obtaining it as a particular solution of the equation for
the harmonic oscillator. We also get the solution of quartic equations in terms of
a generalized hypergeometric function that gives an alternative expression to the
classical algebraic one, also presented in Section 5.2 of the Appendix.

We start proving the following simple lemma.

Lemma 4.1. Let x(q) be a solution of the polynomial equation P (x) = R(x)−q = 0
and consider v(q) = A(x(q), q)/Dm(q), where 0 < m ∈ N, D(q) = disx(P (x)) and
A is a polynomial. Then v′(q) = B(x(q), q)/Dm+1(q), for some new polynomial
B(x, q).

Proof. We have that

v′(q) =

∂A(x(q), q)

∂x
x′(q) +

∂A(x(q), q)

∂q

Dm(q)
−mA(x(q), q)D′(q)

Dm+1(q)
=
B(x(q), q)

Dm+1(q)
,

where B(x, q) =
∂A(x, q)

∂x
R′(x)U(x) +

∂A(x, q)

∂q
D(q)−mA(x, q)D′(q), we have used

Corollary 2.3 and U is the polynomial appearing in its statement. �

Proof of Theorem 1.5. We start as in the proof of Theorem 1.3, recalling that by
Corollary 2.3 it holds that

x′ =
R′(x)U(x)

D(q)
=:

c1(x)

D(q)
,

where c1 is a polynomial in x of degree (n− 1)2. Notice that applying re-iteratively
Lemma 4.1, defining v = x(k), k = 2, 3, . . . we obtain that

x(k) =
Ck(x, q)

Dk(q)
, 1 < k ∈ N,

where Ck(x, q) are polynomials of increasing degrees in x, defined recursively as

Ck+1(x, q) =
∂Ck(x, q)

∂x
R′(x)U(x) +

∂Ck(x, q)

∂q
D(q)− kCk(x, q)D′(q),

and C1(x, q) = c1(x). As in the proof of Theorem 1.3, we can write

Ck(x, q) = Qk(x, q)P (x) +Bk(x, q), 0 < k ∈ N,
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where each Bk is a polynomial in q and x, of degree at most n−1 in this last variable.
Hence, x = x(q) satisfies

x(k) =
Bk(x, q)

Dk(q)
=

n−1∑
j=0

bk,j(q)x
j, 0 < k ∈ N. (21)

For k = 1 this ODE in the one of Abel type given in Theorem 1.3.
Let us explain how to obtain a (n − 1)-th order linear differential equation by

using (21) for k = 1, 2, . . . , n− 1. In fact, as a first step, we prove that these n− 1
ODE can be transformed into n−2 ODE, where their left hand sides are polynomials
of degree one in the variables x′, x′′, . . . , x(n−1) and with coefficients that are rational
functions of q, while their right hand sides continue being polynomials in x but have
decreased their degrees to n− 2.

If at least n − 2 of the functions bn−1,j j = 1, 2, . . . , n − 1, identically vanish, we
are done. Otherwise, at least two of them, say bn−1,i and bn−1,`, are not identically
zero. Then, by computing x(i)/bn−1,i(q) − x(`)/bn−1,`(q) we cancel the term xn−1 in
the corresponding right hand side, obtaining one of the new desired relations. Doing
the same procedure with several couples of relations (21) satisfying that bn−1,j 6= 0
we obtain the n− 2 searched relations.

Starting from these new relations, combining them in a similar way, we obtain,
for each m = 3, . . . , n − 1, in each step n − m ODE whose right hand sides have
degree n − m in the variable x. The last step of this procedure gives the desired
linear differential equation. �

Although the linear ODE given in Theorem 1.5 can be obtained in general, their
expressions are huge. To show some examples we give these ODE for the particular
case of trinomial polynomials

P (x) = xn + px− q = 0, (22)

when n = 3, 4, 5, 6. As we will see, in this case of trinomial polynomials the resulting
ODE has a simple expression.

Notice also that it is not difficult to see that for n > 1, near q = 0, the solution
of (22) is

x = x(q) =
1

p
q − 1

pn+1
qn + o(qn).

Hence all the (n−1)-th order linear ODE that we will obtain have to be solved with
the initial conditions

x(0) = 0, x′(0) =
1

p
, x′′(0) = x′′′(0) = · · · = x(n−2)(0) = 0. (23)

For n = 3, we already know from (20) that

x′ =
6p

4p3 + 27q2
x2 +

9q

4p3 + 27q2
x+

4p2

4p3 + 27q2
.

By using the procedure detailed in the proof of Theorem 1.5 we obtain that

x′′ = − 162pq

(4p3 + 27q2)2
x2 +

12p3 − 162q2

(4p3 + 27q2)2
x− 108p2q

(4p3 + 27q2)2
.

Hence, since 27qx′ + (4p3 + 27q2)x′′ = 3x, we arrive to the ODE

(4p3 + 27q2)x′′ + 27qx′ − 3x = 0. (24)
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For the non trinomial case the associated ODE is non homogeneous in general
(see Remark 4.2). Let us solve it. We introduce a new independent variable t, as
q = g(t), for some smooth function g invertible at t = 0 and such that g(0) =
0. Then y(t) = x(g(t)) is a solution of a new second order linear ODE in y(t).
Straightforward computations give that the coefficient of y′′(t) for this new ODE is
(4p3 + 27g2(t))/(g′(t))2. Hence, to find a new simple ODE we impose that

4p3 + 27g2(t)

(g′(t))2
= sgn(p)3.

Solving it we obtain that, when p 6= 0, one of its solutions satisfying g(0) = 0 and
g′(0) 6= 0, is

g(t) =


2
√

3

9
p
√
p sinh (3t) , when p > 0,

2
√

3

9
p
√
−p sin (3t) , when p < 0.

In fact, taking these g’s we get that (24) is transformed into the simple equation

y′′ − sgn(p) y = 0.

Hence, the general solution of (24) is

x(q) =

C1 sinh (g−1(q)) + C2 cosh (g−1(q)) , when p > 0,

C1 sin (g−1(q)) + C2 cos (g−1(q)) , when p < 0,

where C1 and C2 are arbitrary constants. By imposing the initial conditions (23)
and computing g−1(q) we get

x(q) =


2
√
p

√
3

sinh

(
1

3
arcsinh

(
3

2

√
3q

p
√
p

))
, when p > 0,

2
√
−p√
3

sin

(
1

3
arcsin

(
3

2

√
3q

p
√
−p

))
, when p < 0,

where the second equality takes real values only for |q| <
√
−4p3/27 . These expres-

sions coincide with the ones obtained in Section 2.2, see (12) and (14), and lead us
again to Cardano’s formula.

The ODE obtained for n = 4, 5 and 6 can be obtained similarly. We skip the
details and we only show the final results.

For n = 4,

(27p4 + 256q3)x′′′ + 1152q2x′′ + 688qx′ − 40x = 0. (25)

For n = 5,

(256p5 + 3125q4)x′′′′ + 31250q3x′′′ + 73125q2x′′ + 31875qx′ − 1155x = 0.

For n = 6,

(3125p6 + 46656q5)x′′′′′ + 816480q4x′′′′ + 4153680q3x′′′

+ 6658200q2x′′ + 2307456qx′ − 57456x = 0.
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Remark 4.2. For general polynomials (not in trinomial form) it can be seen that
the linear differential equations given in Theorem 1.5 are no more homogeneous.
This is already the case for polynomials of degree 2, see (19). As an example we give
it for x3 + sx2 + px− q = 0. The associated ODE is(

4p3 + 27q2 + 18pqs− p2s2 − 4qs3)x′′ +
(
27q + 9ps− 2s3

)
x′ − 3x− s = 0.

When s = 0, the above ODE reduces to (24).

4.1. Again quartic equations. To solve the quartic we have to find the solution
of (25) with the initial conditions given in (23), that is x(0) = x′′(0) = 0 and
x′(0) = 1/p. By using Mathematica we arrive to

x = x1(q) =3F2

(
1

4
,
1

2
,
3

4
;
2

3
,
4

3
;−256q3

27p4

)
q

p

and with Maple we obtain

x = x2(q) =2F1

(
− 1

24
,

5

24
;
2

3
;−256q3

27p4

)
· 2F1

(
7

24
,
13

24
;
4

3
;−256q3

27p4

)
q

p
,

where nFm(·; ·;x) are the classical hypergeometric functions.
As an other result for the quartic, by a direct substitution it is easy to check that

x = x3(q) =
1

2w(q)

(√
2pw3(q)− 1 − 1

)
,

where w = w(q) satisfies −p2w6 + 4qw4 + 1 = 0 and w(0) = 1/ 3
√
p, solves it.

Notice that this can be done algebraically because there is the algebraic relation
between x3(q) and w(q), (2x3w + 1)2 = 2pw3 − 1, and w(q) also satisfies a bi-cubic
algebraic equation. See Section 5.2, and in particular (29), to understand how we
have obtained the expression x3.

In particular, by the uniqueness of solutions theorem, it holds that xi(q) = xj(q),
for all i, j ∈ {1, 2, 3}, although it seems not easy to prove these equalities without
passing by the differential equation. It is a challenge to extract the expression of
the algebraic solution of (25) by using only the associated ODE.

5. Appendix

For completeness we include in this appendix some classical approaches to solve
cubic and quartic equations. While for the cubic equations there is nothing new,
the solutions of the quartic are given in a form that is not the most commonly used,
but that is very practical and it is also suitable for our approach to the problem.

5.1. Cubic equations. The cubic polynomial equations were solved during the
XVI Century by the Italian school and the protagonists were Scipione del Ferro,
Niccolò Fontana (Tartaglia) and Gerolamo Cardano.

As usual, the cubic polynomial equation y3 + by2 + cy+d = 0, is transformed into
the simpler one

x3 + px+ q = 0, (26)

for some suitable p and q, by introducing the new variable x = y + b
3
. We also

consider that p 6= 0, because otherwise its solutions can be trivially found.
We will recall two different well-known ways for solving it. We start with the most

classical one. We look for a solution of the form x = u+ v. Replacing it in (26) we
get u3 + v3 + q+ (3uv+ p)(u+ v) = 0. Now we impose that u and v simultaneously
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satisfy u3 + v3 + q = 0 and 3uv + p = 0. By isolating v from the second equation
and replacing it into the first one we get that z = u3 satisfies z2 + qz − p3/27 = 0.
Solving this second degree equation and using that x = u− p/(3u) we arrive to the
celebrated Cardano’s formula,

x =
3

√
−q

2
+

√
q2

4
+
p3

27
− p

3
3

√
− q

2
+
√

q2

4
+ p3

27

.

A different approach is due to François Viète (Vieta). His starting point is the
trigonometric identity

4 cos3(θ)− 3 cos(θ)− cos(3θ) = 0. (27)

When p < 0, we perform in (26) the change of variables x = u cos(θ), with u =

2
√
−p/3 and multiply the equation by 4/u3. We arrive to

4 cos3(θ)− 3 cos(θ)− 3q

2p

√
−3

p
= 0.

Hence, by using (27), when
∣∣∣ 3q2p√−3

p

∣∣∣ ≤ 1, the three solutions of the cubic equation

can be obtained from

x = 2

√
−p
3

cos

(
1

3
arccos

(
3q

2p

√
−3

p

))
,

taking the different values of the arccos function. When the inequality does not hold
or p > 0, it is possible to consider the extension of the cos function to C or to use
that the cosh function, cosh(x) = (exp(x) + exp(−x))/2, also satisfies

4 cosh3(θ)− 3 cosh(θ)− cosh(3θ) = 0

and then use similar ideas to obtain the solutions of the cubic equation.

5.2. Quartic equations. The quartic equation was solved by Ludovico Ferrari,
only some few years after the solution of the cubic one. Essentially its solution is
based on some tricks for completing squares that strongly use the solution of the
cubic equation. As we have already commented, we present a simple and practical
version of that approach that is also suitable for our interests.

By a translation, any quartic equation can we written as

x4 + cx2 + dx+ e = 0, d 6= 0, (28)

where we discard the trivial case d = 0, because then the equation can be easily
solved. Trying to get complete squares in both sides we write it as

x4 + (c+ u2)x2 +
(c+ u2)2

4
= u2x2 − dx− e+

(c+ u2)2

4
,

for some u to be determined. Therefore it is natural to impose that

−e+
(c+ u2)2

4
=

d2

4u2
⇐⇒ Q(u) := u6 + 2cu4 + (c2 − 4e)u2 − d2 = 0.
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Since d 6= 0, any value u satisfying the above bi-cubic equation is non-zero. Hence
for any such u, equation (28) writes as(

x2 +
c+ u2

2

)2

=

(
ux− d

2u

)2

.

Then the solutions of (28) coincide with the solutions of the two quadratic equations

x2 +
c+ u2

2
= ±

(
ux− d

2u

)
.

By solving them we obtain that the four solutions of (28) are

u

2

(
1±

√
−2d

u3
− 2c

u2
− 1

)
, −u

2

(
1±

√
2d

u3
− 2c

u2
− 1

)
,

where u is any solution of Q(u) = 0. Taking w = 1/u, them can also be written as

1

2w

(
1±
√
−2dw3 − 2cw2 − 1

)
, − 1

2w

(
1±
√

2dw3 − 2cw2 − 1
)
,

where w is any solution of the bi-cubic equation

−d2w6 + (c2 − 4e)w4 + 2cw2 + 1 = 0.

In particular, for the trinomial quartic equation x4 +px− q = 0, the solution x(q)
that tends to 0 when q also goes to zero is

x(q) =
1

2w

(√
2pw3 − 1 − 1

)
, (29)

where w = w(q) satisfies −p2w6 + 4qw4 + 1 = 0 and w(0) = 1/ 3
√
p.

In fact, a simple a posteriori proof that the solution x4 + px − q = 0 is given in
(29) can be done as follows: write (29) as

S(x,w) := (2xw + 1)2 + 1− 2pw3 = 0

and observe that

Resw(S(x,w),−p2w6 + 4qw4 + 1) = −4096p2
(
x4 + px− q

)3
,

where Resw denotes the resultant with respect to w, see [13]. Hence, when p 6= 0, if w
satisfies simultaneously S(x,w) = 0 and −p2w6 + 4qw4 + 1 = 0, the corresponding x
is a zero of the quartic polynomial.
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