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Abstract

We illustrate with several new applications the power and elegance of the Bendixson–Dulac theorem to 
obtain upper bounds of the number of limit cycles for several families of planar vector fields. In some cases 
we propose to use a function related with the curvature of the orbits of the vector field as a Dulac function. 
We get some general results for Liénard type equations and for rigid planar systems. We also present a 
remarkable phenomenon: for each integer m ≥ 2, we provide a simple 1-parametric differential system for 
which we prove that it has limit cycles only for the values of the parameter in a subset of an interval of 
length smaller that 3

√
2(3/m)m/2 that decreases exponentially when m grows. One of the strengths of the 

results presented in this work is that although they are obtained with simple calculations, that can be easily 
checked by hand, they improve and extend previous studies. Another one is that, for certain systems, it is 
possible to reduce the question of the number of limit cycles to the study of the shape of a planar curve and 
the sign of an associated function in one or two variables.
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1. Introduction

Despite all the efforts dedicated to solve the second part of the Hilbert’s 16th problem, it is yet 
a very difficult task to obtain criteria that give explicit upper bounds for many concrete families 
of planar smooth vector fields. Although there is no any universal approach, the aim of this paper 
is to present several families of planar systems for which the Bendixson–Dulac theorem allows 
to get, in a fast and elegant way, an upper bound of their number of limit cycles. We will avoid 
results based on cumbersome computations.

The families that we will consider include extensions of Liénard systems and rigid systems. 
As we will see, we obtain new results and we also present simple proofs of some recent results. 
They give explicit upper bounds for several families of planar vector fields. These upper bounds 
are also sharpened when we deal with more particular systems, obtaining results of at most two, 
one, or none limit cycles.

Our main results for Liénard type systems are contained in Section 3. They are given in The-
orem 3.1, that deals with a version of Wilson Liénard systems which always have an algebraic 
limit cycle, in Theorem 3.4 that studies a family recently introduced in [26], in Theorem 3.9 that 
extends the classical theorem of Massera, and in Theorem 3.7. In fact, this last result includes 
the remarkable phenomenon highlighted in the abstract: the family

{
ẋ = y − λ|y|m(x3 − x),

ẏ = −x,

introduced in [26], has for m ≥ 2, limit cycles only for some values of λ contained in the interval 
of length 3

√
2(3/m)m/2, centered at the origin. Notice that for m big it is extremely thin. This 

interval decreases exponentially with m.
Our main result for general rigid systems is given in Theorem 4.1 of Section 4. It is applied 

to recover, in a simple way, known results for rigid cubic systems and to a family containing non 
polynomial vector fields.

It seems to us that not all the mathematical community that works on these topics is aware 
of the capability of the Bendixson–Dulac approach. The goal of this work is double: we try to 
change this perception and we also present several new results and easy proofs of some known 
results. For instance, in most textbooks, the proof of the uniqueness and hyperbolicity of the limit 
cycle for the classical van der Pol equation needs some work. By using this approach there are 
extremely simple proofs, see Corollary 3.5 and Remark 3.6.

The today known as Bendixson–Dulac theorem was first formulated by Ivar Bendixson in 
1901 ([1]), and later developed by Henri Dulac in 1937 ([12]). He improved Bendixson’s result by 
introducing a new parameterization of the time, via the today called Dulac functions. This result 
appears, under different versions, in most differential equations textbooks. One of the pioneers to 
try to go further with this approach was Yamato ([29]). Afterward, one of its main defenders was 
Cherkas, who used and developed it, see for instance [4,5]. The authors of this work also often 
apply and try to extend this method, see [15–17]. More examples about its applicability can be 
seen in the survey [18].

In this paper we will use the version of the Bendixson–Dulac theorem that we state below, 
after introducing some notations and definitions. For completeness, in Section 2 we present a 
proof based on the version of Bendixson–Dulac theorem for multiply connected regions that is 
proved for instance in [4,15,23].
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Given an open connected subset U ⊂ R2, with finitely many holes, we will denote by � = �(U)

this number of holes, that is, the number of bounded components of R2 \ U . Notice that if U is 
simply connected then �(U) = 0. We also set R+ = {x ∈ R : x > 0}.

For a continuous function f :Rn →R, not changing sign and vanishing on a null measure set, 
we will denote by sign(f ) the sign of f at any of its points where it is not zero. Moreover, given 
an equilibrium point or a periodic orbit, when we say that its stability is given by the sign of f we 
mean that the object is an attractor (resp. a repeller) whenever sign(f ) < 0 (resp. sign(f ) > 0).

Definition 1.1. Given a function V :R2 →R of class C1 we will say that it is admissible if:

(i) The vector ∇V vanishes on {V (x, y) = 0} at finitely many points.
(ii) The set {V (x, y) = 0} has finitely many connected components.

(iii) The set R2 \ {V (x, y) = 0} has j connected components, Ui , i = 1, 2, . . . j , and for all of 
them �(Ui ) < ∞.

Associated to V , we define the non negative integer number

L(V ) :=
j∑

i=1

�(Ui ).

Theorem 1.2 (Bendixson–Dulac theorem). Consider a C1 planar differential system

ẋ = P(x, y), ẏ = Q(x,y), (1)

and denote by X = (P, Q) its associated vector field. Let V : R2 → R be an admissible function 
such that there exists s ∈R+ for which the function

Ms := ∂V

∂x
P + ∂V

∂y
Q − s

(
∂P

∂x
+ ∂Q

∂y

)
V (2)

does not change sign and vanishes only on a null measure set. Define

LX(V ) := N + L(V ),

where N is the number of periodic orbits of X contained in the set V = {V (x, y) = 0}.
Then, the differential system (1) has at most LX(V ) periodic orbits, which are limit cycles. 

Moreover, each limit cycle either not contained in V or not contained in the zero set of Ms

is hyperbolic, it is contained in one of the connected components Ui of R2 \ V and, for each 
i = 1, 2, . . . , j , there are at most �(Ui ) limit cycles in the component Ui . The stability of each 
one of these limit cycles, provided it is not contained in the zero set of Ms , is given by the sign of 
−V Ms on the region Ui .

In Remark 2.2 we give some examples where it can be seen that the limit cycles contained 
either in V or in the zero set of Ms can be non hyperbolic.
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Remark 1.3. The function Ms , when s ≤ 0, can also be used to control the number of limit cycles 
of (1), see [4,18]. In particular, notice that M0 = V̇ and it can be readily seen that, when s < 0, 
the theorem also works, giving that LX(V ) = N . In this work, we do not use this range of values 
of s. In fact, in most of our applications we will use s = 1, although the values s = 2 and s = 1/3, 
also will appear.

Observe also that, somehow, this version of the Bendixson–Dulac theorem relates the sec-
ond part of the Hilbert’s 16th problem, which deals with the number of limit cycles ([22]), 
with the first part, that deals with the number and distribution of the ovals of a planar algebraic 
curve ([27]).

Similarly of what happens when one tries to use Lyapunov functions, the main difficulty in 
the above theorem for its practical use is the choice of the function V and of the positive real 
number s. In other words, the choice of a suitable Dulac function. As we will see, the function 
that gives the curvature of the orbits of (1) is sometimes a good candidate for V .

Moreover, the most difficult condition to be checked is that Ms does not change sign. Hence, 
several approaches try to arrive to functions for which this question can be more easily studied. 
For instance, one of these situations is when it is a function of only one variable or the product 
of two functions of one variable, see again [18] for some examples. Another one is when, from 
some point of view, we can look to Ms as a quadratic polynomial.

Finally, notice that, given V and X, the computation of the number N in LX(V ) is usually not 
difficult, while L(V ) depends on the topology of the set {V (x, y) = 0}, see Section 2.2. When V
is polynomial in one of its variables, to get an upper bound of L(V ) is an affordable task.

2. Preliminary results

For the sake of notation, from now on, in this paper we will denote the partial derivatives as 
subscripts. Hence, for instance, for F = F(x, y), Fx = ∂F

∂x
, or Fx,y = ∂2F

∂x∂y
.

2.1. Proof of Theorem 1.2

We recall a version of the Bendixson–Dulac theorem for multiply connected regions, see 
[4,15,23].

Theorem 2.1. Consider a C1 planar differential system

ẋ = P(x, y), ẏ = Q(x,y), (3)

defined on U ⊂ R2, an open connected subset such that R2 \ U has � bounded components, and 
denote by X = (P, Q) its associated vector field. Let B : U → R+ be a C1 function such that

div(BX) = (BP )x + (BQ)y

does not change sign and vanishes only on a null measure set. Then the system (3) has at most 
� limit cycles in U . Moreover, the limit cycles not contained in the zero set of div(BX) are 
hyperbolic and their stability is given by the sign of div(BX).
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We remark that the above hypothesis to ensure that the limit cycles are hyperbolic is a conse-
quence of the equality

div(X) = div(BX)

B
− BxP + ByQ

B
,

because if γ = {(x(t), y(t)) , t ∈ [0, T ]} is a periodic orbit of period T then

T∫
0

div(X)
(
x(t), y(t)

)
dt =

T∫
0

div(BX)

B

(
x(t), y(t)

)
dt.

To prove Theorem 1.2 from Theorem 2.1, first one has to show that the periodic orbits of (1)
are either contained in V or do not cut this set. This fact follows because Ms

∣∣
V = ∇V · X = V̇

does not change sign. Hence system (1) can have some periodic orbits contained in V , say that 
it has N , and all the others that are strictly contained in each of the connected components of 
R2 \V . Fix one of these connected components, say Ui . To control the number of periodic orbits 
in this set we will apply Theorem 2.1 with B = |V |−1/s and U = Ui . Notice that B is positive on 
U . Some computations give that

div
(
|V |−1/sX

)
= −1

s
sign(V )|V |−1/s−1Ms (4)

and, by hypothesis, this function does not change sign on Ui . As a consequence, the maximum 
number of periodic orbits in Ui is �(Ui ), as we wanted to prove. Moreover, by using (4) and again 
Theorem 2.1 we get that all the limit cycles not contained in the zero set of Ms are hyperbolic 
and their stability is given by the sign of −VMs .

Remark 2.2. Notice that in Theorem 1.2 nothing is said about the hyperbolicity of the limit 
cycles contained in V . As we will see in Corollary 3.2, they can be hyperbolic or not.

Observe also that the same happens in Theorem 2.1 with the limit cycles contained in the 
zero set of div(BX). As a simple example of a non hyperbolic limit cycle consider the system 
ẋ = y + x(x2 + y2 − 1)3, ẏ = −x + y(x2 + y2 − 1)3 with B = 1 and U = {x2 + y2 > 1/4}. Then 
div(BX) = 2(x2 + y2 − 1)2(4x2 + 4y2 − 1) does not change sign on U and the system has a 
unique limit cycle in this set, precisely the circle x2 + y2 − 1 = 0, which is non hyperbolic and 
triple, as can be readily seen by writing the system in polar coordinates. Notice that this situation 
essentially corresponds to the limit cycles in Theorem 1.2 contained in the zero set of Ms .

2.2. About the practical calculation of L(V )

Given an admissible function V , the computation of L(V ) relies on the study of the topology 
of each of the connected components Ui , of R2 \V , where V = {V (x, y) = 0}. Then L(V ) is the 
sum of all the quantities �(Ui ), where these values are the number of bounded components of 

R2 \Ui . In fact, it also holds that the fundamental group of Ui is π1(Ui ) = Z 
�)∗ · · · ∗ Z, where � =

�(Ui ). In all concrete situations appearing in this work there is a more direct way for obtaining 
L(V ). This number is simply the number of bounded connected components of V .
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2.3. Curvature of the orbits

It is known that the function

K⊥ := Q2Px + P 2Qy − PQ(Py + Qx),

that is the numerator of the curvature of the orbits of the vector field X⊥ = (−Q, P), orthogonal 
to the vector field X = (P, Q), associated to the system (1), can be used to know the stability of 
the periodic orbits of (1) and other dynamical features of its phase portrait, see [6,10,14] or [30, 
p. 29]. For instance, Diliberto in 1950 proved that a limit cycle is hyperbolic and stable (resp. 
unstable) if and only if

l∫
0

K⊥(γ (s))ds < 0 (resp. > 0),

where γ (s) is its parameterization by the arc length and l is its length.
In this work we will see that the function

K := Q2Py − P 2Qx + PQ(Px − Qy), (5)

proportional to the numerator of the curvature of the orbits of X is, in several cases, a good 
candidate for a suitable choice of V in Theorem 1.2. Notice that K = QṖ − PQ̇ = Q(PxP +
PyQ) − P(QxP + QyQ). As far as we know, this is the first time that this function K is used to 
control the number of limit cycles of planar differential systems. We prove:

Theorem 2.3. Consider planar system (1) of class C2. Assume that the function

D := P 2Q
(
Pxx − 2Qxy

) + PQ2(2Pxy − Qyy

) + Q3Pyy − P 3Qxx

does not change sign and vanishes on a null measure set. Then the system (1) has at most LX(V )

limit cycles, where V = K is given in (5) and LX(V ) is defined in Theorem 1.2.

Proof. By taking V = K , as in equation (5), and s = 1, the function M1 given in Theorem 1.2 is 
M1 = D and the theorem follows. �

We will apply this result at the end of Section 3 for Liénard systems and in Section 4 to rigid 
systems.

3. Liénard type systems

We present several applications of the Bendixson–Dulac theorem to two families related with 
Liénard systems.
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3.1. Liénard systems with an explicit solution

We study a family of Liénard type equations introduced recently in [21] that includes the 
Wilson family of Liénard equations ([28]), which gave the first example of such equations having 
an algebraic limit cycle. More concretely, we consider systems

{
ẋ = y − (x2 − 1)B(x),

ẏ = −x(1 + yB(x)),
(6)

where B is a C1 function. They have the invariant algebraic curve C(x, y) = x2 + y2 − 1 = 0, 
because CxP + CyQ = −2xBC, where X = (P, Q) denotes the vector field associated to (6). 
Hence, when this system has not equilibrium points on the curve, it is a periodic orbit. Moreover, 
depending on the choice of the function B , it can be a limit cycle.

The following result allows to extend, and to prove in an easier way, the recent results about 
the maximum number of limit cycles of the above system when B(x) = x3 − bx given in [3,
21].

Theorem 3.1. Consider the system (6) with B(x) = x
∫ x

0 W(t)/t dt − bx, where W is any func-
tion that does not change sign, vanishes at isolated points, and such that B is of class C1. Then 
this system has at most L + N limit cycles, where L is the number of bounded connected com-
ponents of the set B = {x ∈ R : (B(x) + 2x)(B(x) − 2x) ≥ 0} plus one, and N ∈ {0, 1}. In fact 
N = 1 when C = {x2 + y2 − 1 = 0} is free of equilibrium points of the system, and then this set is 
one of the limit cycles, and N = 0 otherwise. Moreover, all the limit cycles but C are hyperbolic 
and their stability is given by the sign of VW in the connected component of R2 \ {V (x, y) = 0}
where they lie, with

V = (1 − x2 − y2)
(
x2 + y2 + B(x)y

)
. (7)

Proof. Consider the function V given in (7) and s = 1 in Theorem 1.2. Then,

M1(x, y) = x(x2 + y2 − 1)2(B(x) − xB ′(x)
) = −x2(x2 + y2 − 1)2W(x).

Hence, thanks to the imposed conditions on W , we can apply Theorem 1.2. Moreover, since C is 
invariant, and contained in V = {V (x, y) = 0}, we have that N ∈ {0, 1} and the number of limit 
cycles of the system is bounded by L(V ) + N . To get L(V ) we study the bounded connected 
components of V , see Section 2.2. Notice that these components are formed by the oval C together 
with the bounded connected components of x2 + y2 +B(x)y = 0. Since this curve also writes as

y = −B(x) ± √
(B(x) + 2x)(B(x) − 2x)

2
,

it is clear that these components are obtained by joining the curves plus and minus defined for x
on each of the bounded connected components of B. Hence L(V ) is at most L and the theorem 
follows. �
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The following corollary gives an easier and different proof of all the results about the maxi-
mum number of limit cycles of (6) when B(x) = x3 − bx,

{
ẋ = y − (x2 − 1)(x3 − bx),

ẏ = −x
(
1 + y(x3 − bx)

)
,

(8)

obtained in [3,21]. It also solves in the best possible way the some times called Coppel’s problem
for polynomial systems, which in his own words (when restricted to quadratic systems) says: 
“Ideally one might hope to characterize the phase portraits of quadratic systems by means of 
algebraic inequalities on the coefficients,” see [9]. The relevant values describing the bifurcations 
of the limit cycles of this system are b and b∗, see again [21]. We will show below that the value 
b ≈ −1.44 is algebraic. It is the negative root of the polynomial

4b6 − 12b5 − 4b4 + 28b3 + 56b2 − 72b − 229 = 0, (9)

which is invariant under the change of variables b → 1 −b. The quantity b(1 −b) satisfies a third 
degree polynomial equation and then it is possible to express all the roots in terms of radicals 
but we prefer to omit their explicit expressions because they are rather complicated. The value 
b∗ ≈ 0.747 is the only zero of the function Z : (b, 1 − b) → R,

Z(b) =
1∫

0

8(b − 3x2)
√

1 − x2

x8 − (2b + 1)x6 + (b + 2)bx4 − b2x2 + 1
dx.

The sign of this function gives the stability of C = {x2 +y2 −1 = 0} when C is a limit cycle. Most 
probably b∗ is a non-algebraic number. The function Z was obtained in [21] from the integral of 
the divergence of the system on the algebraic limit cycle after some algebraic manipulations. In 
fact, the discriminant with respect to x of the denominator of the integrand gives the polynomial 
of the left-hand side of (9) that determines b.

Corollary 3.2. System (8) has at most two limit cycles, taking into account their multiplicities. 
More concretely:

(i) It has no limit cycle for b ≤ b.
(ii) C is its only limit cycle, and it is hyperbolic and attractor when b ∈ (b, 0].
(iii) It has two limit cycles, one hyperbolic, repeller and surrounded by C, and C itself, which is 

hyperbolic and attractor, when b ∈ (0, b∗).
(iv) C is its only limit cycle, and it is double and semi-stable when b = b∗.
(v) It has two limit cycles, one hyperbolic, attractor and surrounding C, and C itself, which is 

hyperbolic and repeller, when b ∈ (b∗, 1 − b).
(vi) It has one limit cycle surrounding C that is hyperbolic and attractor, when b ≥ 1 − b.

Proof. First, we will prove the most difficult part: the maximum number of limit cycles of the 
system is three. This will essentially be a direct consequence of Theorem 3.1. All the other results 
about this system can be obtained from the standard techniques of the qualitative theory of planar 
differential systems.
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When b ≤ 0 the only limit cycle is C because in polar coordinates, ṙ = r(r2 − 1)(b −
r2 cos2 θ) cos2 θ does not vanish outside C.

When b ≥ 3/2, the maximum number of limit cycles is two. To prove this we apply Theo-
rem 1.2 with V (x, y) = x2 + y2 − 1 and s = 1/3. Then

M1/3(x, y) = 1

3
(x2 + y2 − 1)

(
(2b − 3)x2 + b

) ≥ 0.

Since for these values of b, M1/3 does not vanish outside C the maximum number of limit cycles 
is two, one being C and at most another one can exist, and in this case it must surround C.

Finally, consider the values of b ∈ (0, 3/2). In fact, we can consider b ∈ [0, 2]. We apply 
Theorem 3.1 with W(x) = 2x2 ≥ 0. We get that B(x) = x3 − bx, and

B = {x ∈R : x2(x2 − 2 − b)(x2 + 2 − b) ≥ 0}
= ( − ∞,−√

2 + b
] ∪ {0} ∪ [√

2 + b ,∞)
.

Hence, the number of bounded connected components of B is one and, as a consequence, L(V ) =
2 and the maximum number of limit cycles is three. Also, from the proof we know that if the 
three limit cycles exist, one is C, there is at most another one, say γ , surrounded by C, and a third 
one �, surrounding C.

To reduce this upper bound of three limit cycles by one it suffices to consider the stability of 
the origin, the infinity, the possible limit cycles and the invariant set C. In fact we have that,

(A) The stability of the origin is given by the sign of b. Moreover, it is not difficult to see that 
when b ∈ (b, 1 −b) the origin is the only equilibrium point of the system and that, otherwise, 
there are also other equilibrium points, but all of them are on C.

(B) The set C, which is always invariant by the flow, is a limit cycle if and only if b ∈ (b, b). 
Moreover it is hyperbolic and stable if b ∈ (b, b∗), hyperbolic and repeller if b ∈ (b∗, b), and 
semi-stable and double when b = b∗. In fact, in this later case it is repeller from its interior 
and attractor from its exterior, see [21]. Moreover, it is also proved in that paper, that when 
b ≥ b, the set C, that it is no more a periodic orbit, is also a repeller.

(C) The infinity is repeller for b > 0, see again [21].
(D) For b ∈ (0, 2), whenever they exist, γ is hyperbolic and repeller and � is hyperbolic and 

attractor. This is a consequence of Theorem 3.1, because their respective stabilities are con-
trolled by the sign of V W , that coincides with the sign of 1 − x2 − y2, because

V W = 2x2(1 − x2 − y2)(x2 + y2 + (x3 − bx)y),

and for these values of b the limit cycles must lie in the region {x2 + y2 + (x3 − bx)y > 0}
because it is the only connected component U of R2 \ V with �(U) �= 0.

(E) For b ≥ 3/2, γ never exits and � is also hyperbolic and attractor, because as we have proved 
above by using Theorem 1.2, its stability is also given by the sign of

−V (x, y)M1/3(x, y) = −1
(x2 + y2 − 1)2((2b − 3)x2 + b

) ≤ 0.

3
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For instance we will prove item (v). All the other cases follow similarly. First notice that by (B), 
C is a hyperbolic and repeller limit cycle. Recall that we already have proved that the system has 
at most one limit cycle surrounded by C, and another one surrounding C. Moreover, whenever 
they exist they are hyperbolic and their stabilities are given in (D). By (A) and (C), since the 
origin is attractor and the infinity is repeller, we get that there is no limit cycle surrounded by C
and there is exactly one limit cycle, hyperbolic and stable, surrounding C. �
Remark 3.3. System (8) can be transformed into the classical Liénard system

{
ẋ = y − bx + x3 + 4b

3 x3 − 6
5x5,

ẏ = −x + b2x3 − b(2 + b)x5 + (1 + 2b)x7 − x9.
(10)

By using Theorem 1.2 with s = 1 and V (x, y) = A(x, y)B(x, y) where

A(x,y) = − 225 + 225x2 + 25b2x6 − 30bx8 + 9x10

+ (150bx3 − 90x5)y + 225y2,

B(x, y) =225x2 − 75b2x4 + 5b(24 + 5b)x6 − 15(3 + 2b)x8 + 9x10

+ (−225bx + 25(9 + 6b)x3 − 90x5)y + 225y2,

we get that M1 = 2x4A2(x, y) ≥ 0. Hence, in these variables an upper bound of the number of 
limit cycles of system (8) can also be obtained. This example illustrates that although sometimes 
it is difficult to find a suitable V to apply Theorem 1.2, it seems to exist.

3.2. Some extended Liénard systems

We consider planar differential equations of the form

{
ẋ = y − |y|mF(x),

ẏ = −G′(x)/2,
(11)

where F and G′ are C1 functions satisfying F(0) = 0 and G(x) = x2k +o(x2k), m ∈ N ∪{0} and 
k ∈ N . Notice that when G(x) = x2 and m = 0, they include the classical second order Liénard 
equations ẍ + F ′(x)ẋ + x = 0. The factor |y|m is added following the recent work [26], where 
this interesting system was studied for the first time. Notice that if instead of y − |y|mF(x) we 
consider the same system but with the first component equal to y − ymF(x), then, when m is 
odd, it would be invariant by the change of variables and time (x, y, t) → (x, −y, −t) and the 
origin would be a reversible center.

In all our study we skip the case m = 1, where the associated vector field is not of class C1. In 
any case, for m = 1, and on each of the regions y > 0 and y < 0, the vector field is integrable (it 
corresponds to a differential equation of separated variables) and by using the level curves of the 
corresponding first integrals, their phase portraits are easier to be studied. This approach is the 
one used in [26] for this case, when G(x) = x2.
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Theorem 3.4. Consider the differential system (11) with m �= 1. If the function H := (m −
1)FG′ + 2F ′G does not change sign and vanishes at isolated points, then the system has at 
most J limit cycles, all of them hyperbolic, where J is the number of zeroes of G′. In particular, 
if G′ only vanishes at the origin the differential system has at most one limit cycle.

Proof. We apply the Bendixson–Dulac theorem with V (x, y) = G(x) + y2 − y|y|mF(x) and 
s = 1. Simple computations give that

M1 = 1

2
|y|mH(x).

Therefore, since M1 satisfies the hypothesis of the Bendixson–Dulac theorem we have already 
proved that system (11) has at most LX(V ) limit cycles. We claim that LX(V ) ≤ J . Since the set 
V = {V (x, y) = 0} does not contain solutions of the differential system the claim will follow if 
we prove that V has at most J bounded connected components, see Section 2.2. Notice that each 
of these components can be an oval, an isolated point, or a more complicated set.

To prove this last assertion we first count the number of points of V ∩ {x = x0}, taking into 
account their multiplicity, and we call it K(x0). When m = 0 it is clear that K(x0) ≤ 2, because 
V (x0, y) = 0 is a quadratic equation in y. When m ≥ 2, the equation V (x0, y) = 0 splits into two 
trinomial equations, one for y ≥ 0 and another one for y ≤ 0. By applying the Descarte’s rule 
of signs to both equations, since the monomial y2 appears in both, it can be seen that K(x0) ≤
3.

Notice that since on V , M1 = V̇ , each bounded connected component of V delimits some 
region either positively or negatively invariant, and as a consequence its interior must contain 
at least one equilibrium point (x∗, y∗) of the system. Observe also that even when the system 
has other equilibrium points on the line {x = x∗}, only one connected component of V can cut 
this line, because K(x∗) ≤ 3. Hence the bounded connected components of the set V must cut 
the lines {x = x∗}, where G′(x∗) = 0, and at most one of them cuts each of the lines. As a 
consequence, V has at most J bounded connected components, and L(V ) ≤ J as we wanted to 
prove. �

Theorem 3.4 can be applied to several differential systems (11). For m and G fixed, let W be 
a function that does not change sign, vanishes at isolated points, and such that the initial value 
problem for the linear differential equation

(m − 1)F (x)G′(x) + 2F ′(x)G(x) = W(x), F (0) = 0, (12)

has a regular solution F . Notice that (12) is singular at the zeroes of G and we impose that 
F must be smooth at these points. Then the correspondent differential system (11) is under 
the hypotheses of the theorem. By using this point of view, we have obtained several families 
of differential systems where it is easy to impose that their corresponding functions H do not 
change sign and, as a consequence, Theorem 3.4 can be applied. We will skip all the hypotheses 
that must be added to guarantee the desired property for H , and the other ones that the functions 
F and G must satisfy to fulfill all the other hypotheses of the theorem, because the reader can 
easily figure out them. These families are:

(i) When F(x) = Ap(x)A′(x)B(x), G(x) = cAq(x)(A′(x))2B2(x), and m = 0. Then, it holds 
that
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H(x) = (2p − q)cAp+q−1(x)(A′(x))4B3(x).

(ii) When m = 0,

F(x) = A2p(x)A′(x)Bq+1(x), and

G(x) = cA4p(x)(A′(x))2Bq(x),

we get that

H(x) = (q + 2)cA6p(x)B2q(x)(A′(x))3B ′(x)

(iii) When m = 2k, G(x) = x2k , and

F(x) = 1

2
xk(1−2k)

x∫
0

yk(2k+1)Z(y)dy,

we obtain that H(x) = x4kZ(x).
(iv) When m = 0, F(x) = a(x3/3 − x) and

G(x) = x2 −
(a2

8
+ 6b

)
x4 +

(a2

48
+ b

)
x6,

we get that

H(x) = a(16 − 3a2 − 144b)

12
x4.

Now we will study in more detail some particular sub-cases of the above families and we will 
refine the upper bound for their number of limit cycles given in Theorem 3.4.

We start with an example contained in the family given in item (i). It corresponds to p = 1, 
q = 0, c = 1/4, A(x) = x3/3 − x2/2 and B(x) = −2, and writes as

⎧⎨
⎩ẋ = y + 1

3
x3(x − 1)(2x − 3),

ẏ = −x(x − 1)(2x − 1),

(13)

with G(x) = x2(1 − x)2. We will prove that this system has at most one limit cycle, hyperbolic 
and stable. The existence of this limit cycle, that surrounds the three equilibrium points of (13), 
can be numerically confirmed.

By using Theorem 3.4 when m = 0 and with

V (x, y) = x2(x − 1)2 + 1

3
x3(x − 1)(2x − 3)y + y2

we get that H(x) = −4x4(x − 1)4 < 0 and the maximum number of limit cycles of the corre-
sponding system is three, which is the number of zeroes of G′(x) = 2x(x − 1)(2x − 1). This 
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upper bound can be reduced to two studying in more detail the set V . This set is formed by two 
isolated critical points located at (0, 0) and (1, 0), and two disjoint curves going from infinity to 
infinity. The point (0, 0) is a weak focus and the point (1, 0) is a strong stable focus. The third 
critical point, located at (1/2, −1/24), is a saddle point. By computing the first Lyapunov quan-
tity associated to the weak focus at the origin we conclude that this point is repulsive. In fact, 
R2 \ V is formed by three open sets, two are simply connected and the third one has two holes 
(the two critical points located on the x axes). In short L(V ) = 2 and since V does not contain 
periodic orbits, the upper bound of two limit cycles follows from Theorem 1.2.

Finally, we prove that one is the actual upper bound for the number of limit cycles of (13). By 
Theorem 1.2 the stability of the limit cycles is given by the sign of −V (x, y)M1(x) that coincides 
with the sign of −H(x) > 0. Hence all of them are repelling hyperbolic limit cycles. By using 
the Poincaré–Bendixson theorem it can be seen that the only situations compatible with these 
results are that either (13) has no limit cycle, or that it has exactly one, as we wanted to show.

The same tools allow to prove that

{
ẋ = y − bx3(x − a)(2x − 3a),

ẏ = −x(x − a)(2x − a),

has at most one limit cycle. In fact, notice that when b = 0 it can be easily integrated. It has 
two centers and a saddle point, and the separatrices of this saddle point form two homoclinic 
trajectories which, together with the critical point, have an eight shape. Numerically, the limit 
cycle seems to bifurcate for b ≈ 0 from this double loop and whenever it exists, it surrounds 
the three equilibrium points of the system, a saddle, a strong focus and a weak focus, both with 
different stabilities.

Similar examples to system (13), with more equilibrium points surrounded by a limit cycle 
and for which Theorem 3.4 also works are not difficult to be constructed. For instance, if we take 
m = 0, F(x) = cx3(1 −x)(2 −x)3 and G(x) = x2(1 −x)2(2 −x)2, with |c| < 2, we get a system 
with five critical points, two saddles and three foci, for which H(x) = 8cx4(1 − x)4(2 − x)4.

Also, because it contains the classical van der Pol differential equation, we particularize in 
detail a subfamily of the one given in item (ii). If we consider p = q = 0, c = 1, and A′ = C in 
(ii) we get the following result.

Corollary 3.5. Consider the C1 differential system

{
ẋ = y − C(x)B(x),

ẏ = −C(x)C′(x),

with C(0) = 0 and C′(x) �= 0 for x �= 0. If C(x)B ′(x) does not change sign and vanishes at 
isolated points, then this system has at most one limit cycle and when it exists it is hyperbolic.

Notice that the van der Pol equation corresponds to C(x) = x and B(x) = λ(x2/3 − 1). Then 
C(x)B ′(x) = 2λx2/2, which does not change sign.

Proof of Corollary 3.5. For these particular cases of differential systems contained in the family 
(ii) we get that
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H(x) = 2C3(x)B ′(x).

Hence, it does not change sign and vanishes at isolated points. Notice that C only vanishes at 
x = 0, because if C(z) = 0, by Rolle’s theorem C′ would vanish at a point between 0 and z. 
Hence, G′(x) = 2C(x)C′(x) = 0 only at x = 0, and the corollary follows. Observe also that in 
this case V (x, y) = C2(x) + y2 − yC(x)B(x), and the set {V (x, y) = 0} has only one bounded 
connected component, the origin, and then LX(V ) = 1. �
Remark 3.6. For completeness we reproduce a second easy proof of the uniqueness and hyper-
bolicity of the limit cycle of the van der Pol equation attributed to Cherkas in [7, p. 105]. Write 
the equation as the system

{
ẋ = y,

ẏ = −x − λ(x2 − 1)y.

By applying the Bendixson–Dulac theorem with V = x2 + y2 − 1 and s = 2 we get that M2 =
2λ(x2 − 1)2. Clearly, the unit circle is not a periodic orbit of the system, and {V (x, y) = 0} has 
two connected components, one bounded and simply connected and a second one, say U , with 
�(U) = 1. Hence LX(V ) = 1 and the result follows.

When b = 0, the system introduced in item (iv) corresponds to the Wilson Liénard equation 
([28]) and when |a| < 2 it has the algebraic limit cycle

y2 − a

6
x3y + 1

144
(a2x6 + 144x2 − 576) = 0.

Since this limit cycle is also hyperbolic we get that for |b| small enough the limit cycle persists 
and our theorem applies to get an upper bound of the total number of limit cycles of the system 
when b �= 0. We skip more details because the study of this system is quite similar to the one that 
we did for system (13).

We end this section studying in more detail the particular family of differential systems of the 
form (11), introduced in [26], {

ẋ = y − λ|y|m(x3 − x),

ẏ = −x,
(14)

where m ≥ 2 is an integer number and λ ∈ R. Notice that the factor x3 − x in (14) can be 
changed by c2x3 − x, with another value of λ, obtaining the same phase portrait. This is so, 
because by doing the change of variables (x, y) → (cx, cy), with c > 0, the first equation writes 
as ẋ = y − cmλ|y|m(c2x3 − x) and the second one remains invariant. We do not take the factor 
as x3/3 − x, which corresponds to the van der the Pol equation when m = 0, simply to keep the 
notation of [26]. We prove:

Theorem 3.7. Consider the differential system (14) with m ∈N , and m ≥ 2. Then, the following 
holds:

(i) For |λ| �= 0 small enough it has at least one limit cycle.
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(ii) For |λ| ≥ 3√
2

( 3

m

)m/2
it has no limit cycle.

Proof. Notice that the case λ = 0 corresponds to a linear center, and the phase portrait when 
λ < 0 can be easily obtained from the one with λ > 0, simply by doing the change of variables 
and time (x, y, t) → (x, −y, −t). Then, it suffices to make the proof for the case λ > 0.

(i) Given any C1 perturbed Hamiltonian systems,

⎧⎪⎪⎨
⎪⎪⎩

ẋ = ∂H(x, y)

∂y
+ εR(x, y),

ẏ = −∂H(x, y)

∂x
+ εS(x, y),

(15)

where ε is a small parameter, its associated Melnikov–Poincaré–Pontryagin function is

M(h) =
∫

γ (h)

S(x, y)dx − R(x, y)dy,

where the curves γ (h), for h ∈ (h0, h1), form a continuum of ovals contained in {H(x, y) = h}. 
It is known that each simple zero h̄ ∈ (h0, h1) of M gives rise to a limit cycle of (15) that tends, 
when ε → 0, to γ (h̄), see for instance [8,11].

Consider the differential system (14) with λ = ε. By applying the above result with H(x, y) =
x2 + y2 = h = r2, with r ∈ (0, ∞), and taking the parameterization of the level sets as x =
r cos θ , y = r sin θ , we get that

M(r2) =
∫

x2+y2=r2

|y|m(x3 − x)dy

=
2π∫

0

rm| sin θ |m(r4 cos4 θ − r2 cos2 θ)dθ

=
√

π

2

�
(
(m + 1)/2

)
�
(
(m + 6)/2

) rm+2(3r2 − (m + 4)
)
,

where � is the Euler Gamma function. Hence, for each m, this function has a simple positive 
zero r = √

(m + 4)/3, that gives rise to the desired limit cycle.
(ii) We will apply Theorem 1.2 with s = 1/3 and

V (x, y) = exp

(
λ2y2m

9m

)(
3 + λxy|y|m−2

)
.

Some calculations give that

M1/3 = −1
exp

(
λ2y2m

)
λx2|y|m−2

(
2λ2y2m − 27y2 + 9(m − 1)

)
.

9 9m
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We need that M1/3 does not change sign. Hence, writing y2 = z we want that

zm − 27

2λ2 z + 9(m − 1)

2λ2 ≥ 0 for z ≥ 0. (16)

Let us prove, that given a real polynomial P(z) = zm + bz + c, with m ≥ 2, it holds that 
P(z) ≥ 0 for all z ≥ 0 if and only if

b ≥ −m
( c

m − 1

)(m−1)/m

. (17)

Since P(0) = c, an obvious first condition is that c ≥ 0. When b ≥ 0 the result is trivial. When 
b < 0, since p′(z) = mzm−1 + b, the function P has a minimum at z = z0 = (−b/m)1/(m−1). By 
imposing that P(z0) ≥ 0, (17) follows after some straightforward computations.

Condition (17) applied to the polynomial (16) gives that

− 27

2λ2 ≥ −m

(
9

2λ2

)(m−1)/m

.

After some manipulations we get that this inequality is equivalent to the one given in the state-
ment.

Hence, we are under the hypotheses of Theorem 1.2. Moreover, since {V (x, y) = 0} does not 
contain ovals, and all the connected components of R2 \ {V (x, y) = 0} are simply connected, we 
have that LX(V ) = 0 and the system has no limit cycle, as we wanted to prove. �
Remark 3.8. The result of item (ii) of Theorem 3.7 shows that for any m ≥ 2 there exists a value 
λ = λ∗(m) such that for |λ| ≥ λ∗(m) system (14) has no limit cycle. Moreover, it gives an upper 
bound of this value.

For m = 2 it is not a sharp bound, because in [26] the authors study numerically the system 
and they find that λ∗(2) ∈ (1.474, 1.475), while our bound is 9

√
2/4 ≈ 3.182. Nevertheless, by 

using it, for m big enough, we prove that the limit cycles only exist for λ in an extremely thin 

interval of length 3
√

2
( 3

m

)m/2
that decreases exponentially when m grows.

It is the first time that the authors see a proof of the existence of this type of exponentially 
small intervals for the presence of limit cycles.

3.3. About Massera’s theorem

Consider the classical Liénard equation

{
ẋ = y − F(x),

ẏ = −x,
(18)

with F a class C2 function satisfying F(0) = 0. We prove, in a very simple way, the following 
extension of the classical Massera’s theorem ([24,25]), where the hyperbolicity of the limit cycle 
is also guaranteed. Other authors had already proved this hyperbolicity, see for instance [19].
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Theorem 3.9. Consider the differential system (18). If the function xF ′′(x) does not change 
sign and vanishes at isolated points, then it has at most one limit cycle and when it exists it is 
hyperbolic.

Proof. We will apply Theorem 1.2 with V given by the function K , defined in (5), associated to 
the curvature of the system, and s = 1. By using the results of Theorem 2.3 when P = y − F(x)

and Q = −x, we obtain that

V = K = x2 + y2 + F 2 − 2yF + x
(
y − F

)
F ′

and M1 = (y − F)2xF ′′. Hence M1 satisfies the hypothesis of Theorem 1.2. To end the proof 
we have to show that LX(V ) ≤ 1. Since the set V = {V (x, y) = 0} does not contain orbits of the 
system, it suffices to prove that V has at most one bounded connected component, see Section 2.2. 
Clearly the points of V lie on the two curves

y = F(x) − 1

2
xF ′(x) ± 1

2

√
x2

(
(F ′(x))2 − 4

)
.

Therefore the bounded connected components of V are given by x = 0 and the bounded subsets 
of R, where (F ′(x))2 − 4 ≥ 0. These components are either positively or negatively invariant by 
the flow of the system because M1

∣∣
V = V̇ does not change sign. Hence they must surround some 

of the equilibrium points of the system. Since the origin is the only equilibrium point, there is at 
most one of these components. Hence, LX(V ) ≤ 1, as we wanted to prove. �

We want to emphasize the surprising simplicity of the proof of this classical theorem with the 
methods employed in this work.

4. Rigid systems

These systems write as

{
ẋ = −y + xF(x, y),

ẏ = x + yF(x, y),
(19)

where F is an arbitrary smooth function. This name is due to the fact that in the usual polar 
coordinates (r, θ) it holds that θ̇ = 1 and, therefore, their flow rotates around the origin with 
constant angular velocity, as a rigid rotation. Despite their simplicity and the fact that they have 
the origin as the unique equilibrium point, the control of the number of limit cycles of these 
systems is far to be completely known. They were introduced by Conti in [2] and studied by 
several authors. We prove the following result for them:

Theorem 4.1. Let X be the vector field associated to (19). If F is of class C2 and it holds that

H := FxxFyy − F 2
xy ≥ 0, (20)
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and H vanishes on a null measure set, then (19) has at most LX(V ) limit cycles, where

V = (x2 + y2)
(
xFFx + yFFy + xFy − yFx − 1 − F 2

)
(21)

and LX(V ) is defined in Theorem 1.2.

Proof. We apply again Theorem 1.2 with V = K and s = 1, where K is given in (5). We can use 
the results of Theorem 2.3 with P = −y + xF and Q = x + yF . We get that V is as in (21) and

M1 = D = (x2 + y2)
((

x2Fxx + 2xyFxy + y2Fyy

)
F 2

+ 2
(
(x2 − y2)Fxy + xy(Fyy − Fxx)

)
F

+ (
x2Fyy − 2xyFxy + y2Fxx

))
.

To control the sign of M1 we first remove the factor x2 + y2. Notice that the discriminant of the 
remaining part, thinking it as a second degree polynomial in F , AF 2 +BF +C, is B2 − 4AC =
−4(x2 + y2)2H ≤ 0. Moreover, looking to A and B as quadratic homogenous polynomials of 
the form ax2 + bxy + cy2, we get that their corresponding discriminants coincide and are given 
by b2 −4ac = −4H ≤ 0. Therefore, the condition (20) implies that M1 does not change sign and 
vanishes only on a null measure set and hence our result follows. �

Notice that the upper bound for the number of limit cycles given in the above theorem es-
sentially depends on the shape of the set {V (x, y) = 0}. To get the actual value of LX(V ) for 
each case this set must be carefully studied. We present now a concrete application when F is a 
quadratic polynomial.

Corollary 4.2. Consider the rigid cubic system (19), with F = a + bx + cy + dx2 + exy + hy2. 
If 4dh − e2 > 0 this system has at most one limit cycle, and when it exists it is hyperbolic.

This result is not new. It was proved in [20] by using a totally different approach: the authors 
transform the system into a periodic Abel differential equation and then they apply known results
about these equations. In that work it is also proved that when 4dh − e2 < 0 there are systems 
with at least two limit cycles. Our proof is different and self-contained. Another proof, based on 
the study of the stability of the possible periodic orbits, is given in [13].

Proof. The function H of Theorem 4.1 is H(x, y) ≡ 4dh − e2 > 0 and hence the system has at 
most LX(V ) limit cycles. Here

V (x, y) = (x2 + y2)
(

− 1 − a2 + (c − ab)x − (ac + b)y + e(x2 − y2) + 2(h − d)xy

+ (bx + cy)(dx2 + exy + hy2) + (dx2 + exy + hy2)2
)
.

It is easy to verify that the set {V (x, y) = 0} does not contain orbits of the system.
As the origin is the unique finite critical point of the system and M1 does not change sign, 

the bounded connected components of the set V = {V (x, y) = 0} must surround the equilibrium 
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point. In principle, from the degree of V (x, y) we can conclude that the maximum number of 
them is three, being the origin one of these components. But it is easy to show that there are at 
most two bounded connected components. This is so, because if we take y = 0 in the second 
factor of V we obtain a polynomial in x of degree four, where the coefficient of x4 and the 
independent term are of opposite sign. Then it is not possible to have two positive roots and two 
negative roots at the same time. Therefore, the number of connected components in the set V is 
at most two, one of them being the origin.

In the case where the second bounded connected component exists it is not difficult to show 
that a limit cycle exterior to it cannot exist. The first step is to determine the stability of infinity. 
Writing the system in polar coordinates it is possible to show that, if 4dh − e2 > 0, the infinity 
is an attractor for d > 0 and it is repulsive for d < 0. Moreover, it can be seen by using that 
M1

∣∣
V = V̇ , that the flow associated to the system traverses this second bounded component 

forward for d > 0 and inward for d < 0. As between this bounded connected component of V
and infinity only one limit cycle can exist, and if it exists it is hyperbolic, taking into account the 
stability of infinity we conclude that no limit cycle exists in this region. We conclude then that the 
system can have at most one limit cycle. As the origin is an attractor for a < 0 and it is repulsive 
for a > 0, the limit cycle appears via a Hopf bifurcation at the origin and must be located in the 
interior of the non trivial bounded connected component of the set V . In conclusion, the limit 
cycle exits if and only if ad < 0 and it is unique. �

We end this work with a second corollary of Theorem 4.1 that also covers some non-
polynomial rigid differential systems.

Corollary 4.3. Consider the differential system (19), with F(x, y) = f (x) +g(y), where f (x) =∑2n
k=0 fkx

k , with fk ≥ 0, k ≥ 2 and f2n > 0. We assume that f ′′(x) ≥ 0, g is of class C2, with 
g′′(y) ≥ 0 and it vanishes only at isolated points. Then the system has at most two limit cycles. 
Moreover, if there exists R > 0 such that for all (x, y) ∈ R2 with x2 + y2 ≥ R2 it holds that 
F(x, y) ≥ c > 0, then the corresponding differential system has at most one limit cycle, and 
when it exists, it is hyperbolic.

Proof. For this case the function H given in Theorem 4.1 is H(x, y) = f ′′(x)g′′(y) ≥ 0 and it 
vanishes on a null measure set. Hence the system has at most LX(V ) limit cycles, where V is 
the function given in (21). To study LX(V ), notice first that it is not restrictive to assume that 
g(0) = 0. Then, V (x, 0) = x2W(x), where

W(x) = xf (x)f ′(x) + g′(0)x − 1 − f 2(x).

Since when f (x) = fkx
k it holds that xf ′(x) − f (x) = (k − 1)fkx

k , we get easily that W(x) =∑4n
j=0 wkx

k , where all wk ≥ 0 for k ≥ 2 and w0 = −1 − f 2(0) < 0. Hence, by the Descarte’s 
rule of signs the number of positive roots of W is 1. As a consequence, the set V = {V (x, y) = 0}
has at most one bounded connected component surrounding the origin, different from the origin 
itself. Recall that V has the factor x2 + y2. Notice that the set V , which is not invariant by the 
flow of X, can not contain other bounded connected components. This is so, because M1 does 
not change sign, and M1

∣∣
V = V̇ . Therefore, these connected components must surround some 

equilibrium point of X, but the origin is the only one. As a consequence of the above reasoning 
LX(V ) ≤ 2, see Section 2.2.
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Let us prove now that under the hypothesis on the growth of F the maximum number of limit 
cycles is 1. Notice that if r = √

x2 + y2, it holds that ṙ = rF (r cos θ, r sin θ) ≥ cr . Hence, the 
infinity is an attractor, and we can use similar arguments that in the proof of Corollary 4.2 to show 
that when LX(V ) = 2 the differential system has no limit cycle in the unbounded components of 
R2 \ V . Therefore, the existence of at most one limit cycle follows. �
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