Nilpotent Global Centers of Linear Systems with Cubic Homogeneous Nonlinearities

J. D. García-Saldaña
Departamento de Matemática y Física Aplicadas, Universidad Católica de la Santísima Concepción, Alonso de Ribera 2850, Concepción, Chile
jgarcias@ucsc.cl
Jaume Llibre
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
jllibre@mat.uab.cat
Claudia Valls
Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal cvalls@math.ist.utl.pt

Received March 29, 2019

In this paper, we characterize the global nilpotent centers of polynomial differential systems of the linear form plus cubic homogeneous terms.

Keywords: Nilpotent center; cubic polynomial differential system; global center; degenerated hyperbolic sector.

1. Introduction and Statements of the Main Results

Poincaré 1951 and Dulad 1908] defined a center for a real planar vector field as a singular point whose neighborhood is filled with periodic orbits with the exception of the singular point. The socalled focus-center problem, which consists of distinguishing when a monodromic singular point is a focus or a center, started with these orbits but it is still very active with many open problems (see for instance Algaba et al., 2018a; Christopher \& Li, 2007]).

If a real planar analytic system has a center at the origin, then after a linear change of variables
and a rescaling of its independent variable, it can be written in one of the following three forms:

$$
\dot{x}=-y+P(x, y), \quad \dot{y}=x+Q(x, y),
$$

called a nondegenerate center;

$$
\dot{x}=y+P(x, y), \quad \dot{y}=Q(x, y),
$$

called a nilpotent center;

$$
\dot{x}=P(x, y), \quad \dot{y}=Q(x, y),
$$

called a degenerate center, where $P(x, y)$ and $Q(x, y)$ are real analytic functions without constant and linear terms, defined in a neighborhood of the origin.

