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Abstract
A center for a differential system ẋ = f (x) inR2 is a singular point p having a neighborhood
U such thatU \{p} is filledwith periodic orbits. A global center is a center p such thatR2\{p}
is filled with periodic orbits. There are three kinds of centers, the centers p such that the
Jacobian matrix Df (p) has purely imaginary eigenvalues, the nilpotent centers p such that
Df (p) is a nilpotent matrix, and the degenerate centers p such that the matrix Df (p) is the
zero matrix. For the first class of centers there are several works studying when such centers
are global. As far as we know there are no works for studying the nilpotent global centers.
One of the most studied classes of differential systems in R

2 are the polynomial Liénard
differential systems. The objective of this paper is to study the nilpotent global centers of the
polynomial Liénard differential systems.
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Mathematics Subject Classification 34C05

1 Introduction and statement of themain results

The study of the global centers of the polynomial differential systems was initiated by Conti
and their collaborators, see [4, 5, 7]. There were some previous articles on the global centers
before the work of Conti but without this name and for differential equations which were not
polynomial. It is known that the polynomial differential systems with a global center have
odd degree, see [7, 11]. Also it is known that the unique polynomial differential systems
which have a rigid global center are the linear differential centers, see [4]. A center p is rigid
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if in polar coordinates with origin at p has constant angular velocity. For other results on
global centers for polynomial differential systems see [8–10, 16].

We recall that Takens proved in [14] that an analytic differential system with a nilpo-
tent singular point at the origin of coordinates can be formally transformed into a Liénard
differential system of the form

ẋ = −y , ẏ = a(x) + yb̃(x), (1)

with a, b̃ ∈ R[[x]] formal power series such that a(x) = asxs(1 + O(x)) with s ≥ 2 and
b̃(0) = 0. Later on Strózyna and Zoladek shown in [13] that the formal change can be
choosen convergent.

In themonodromic case, i.e. when the orbits in a neighborhood of the origin rotates around
it, the exponent s = 2n − 1 with n ≥ 2, and after the change x �→ u with

u(x) =
(
2n

∫ x

0
a(z)dz

)1/(2n)

= x(a2n−1 + O(x))1/(2n),

and the time rescaling t �→ τ with

dt

dτ
= u2n−1

a(x)
= a−1/(2n)

2n−1 + O(x),

the Liénard differential system (1) becomes the analytic differential system

ẋ = −y , ẏ = x2n−1 + yb(x) , (2)

where b(x) = ∑
j≥β b j x j and bβ �= 0.

Since the momodromy is preserved under orbital analytic conjugation system (2) satisfies
one of the following three conditions:

(i) β ≥ n,
(ii) β = n − 1 and b2β − 4n < 0, and
(iii) b(x) ≡ 0.

These conditions follow easily from the Andreev characterization of those analytic systems
having a monodromic nilpotent singular point, see [1] or Theorem 3.5 of [6].

For the differential systems (2) it is not difficult to characterize their centers. The origin
of system (2) is a center if and only if b(x) is an odd function, see [3, 12, 15]. Strózyna and
Żoła̧dek also prove in [13] that system (2) has a local analytic first integral if and only if
b(x) ≡ 0.

Notice that the only finite singularity of system (2) is the origin of coordinates, i.e. (0, 0).
Since we only analyze polynomial differential systems (2) having a center at the origin of
coordinates the polynomial b(x) of degree m must be odd, that is

b(x) =
m∑
j=β

b j x
j , b(−x) = −b(x), (3)

withm ≥ β. In particular, bothm and β are odd positive integers. When b(x) �≡ 0, we define
the odd integer

α = 2n − 2 − m ∈ Z\{0}. (4)

Our first result is the following.
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Theorem 1 The polynomial differential system (2) satisfying (3) has a center at the origin.
Then the following statements hold.

(i) The center is not global if α < 0.
(ii) The center is global if either b(x) ≡ 0, or β = n − 1 = m with b2β − 4n < 0 and α > 0.

The next result gives a partial answer on the global center problem for the differential
system (2) satisfying (3) in the cases not covered by Theorem 1 for the first possible values
of α and the Andreev number n. We only analyze the first values of α and n due to the huge
computations involved.

Theorem 2 The polynomial differential system (2) satisfying (3) has a center at the origin.
Assume that α > 0.

(i) If β ≥ n, then the following statements hold.

(i.1) If α = 1, then n ≥ 3 and there is no global center if n ∈ {3, 4}.
(i.2) If α = 3, then n ≥ 5 and there is no global center if n = 5.

(ii) If β = n − 1 with b2β − 4n < 0, then n − 1 ≤ m ≤ 2n − 3, n is even and the following
statements hold.

(ii.1) If n = 2 the center is global.
(ii.2) If n = 4 then m ∈ {3, 5}. When m = 5 there is no global center.

The proofs of Theorems 1 and 2 are given in section 2.
From the results of Theorems 1 and 2 we believe that the following conjecture must be

true.
Conjecture. The polynomial differential system (2) satisfying(3) has a center at the origin.
Then this center is global if and only if either b(x) ≡ 0, or β = n−1 = m with b2β −4n < 0.

Note that the “only if” part of the conjecture is proved in statement (ii) of Theorem 1.
In other words, if the conjecture holds then the origin of the polynomial system (2) is a

global center if and only if the system is (1, n)-quasi-homogeneous of degree n − 1, that is,
invariant under the transformation

(x, y, t) �→ (λx, λn y, λ1−nt).

2 The proofs

The first result corresponds with the trivial cases.

Proposition 3 The polynomial differential system (2) satisfying (3) has a center at the origin.
In the Hamiltonian case, i.e. b(x) ≡ 0, the center is global. In the non-Hamiltonian case
with α < 0 the center is not global.

Proof The case b(x) ≡ 0 corresponds with a nilpotent center because it is Hamiltonian with
the first integral H(x, y) = 1

2 y
2 + 1

2n x
2n , whose level curves foliates with ovalsR2\{(0, 0)}.

Hence the origin is a global center.
If b(x) �≡ 0 and α = 2n − 2 − m < 0, then the degree d of the polynomial differential

system (2) is d = max{2n−1,m+1} = m+1, an even number. Therefore, from the results
of [7] and [11] there are no global centers, because the differential system always has some
orbit that goes or comes from the infinity. 	
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The next result deals with the (1, n)-quasihomogeneous case.

Proposition 4 The origin of the polynomial differential system (2) satisfying (3) is a global
center if β = n − 1 = m with b2β − 4n < 0 and α > 0.

Proof Under the conditions of the proposition system (2) becomes

ẋ = pn(x, y) = −y, ẏ = q2n−1(x, y) = x2n−1 + bn−1x
n−1y,

where pn and q2n−1 are (1, n)-quasihomogeneous of degrees n and 2n − 1, respectively.
Then system (2) is (1, n)-quasihomogeneous of degree n − 1. These differential systems are
invariant under the similarity transformation

(x, y, t) �→ (λx, λn y, λ1−nt)

for all λ ∈ R. In other words, the foliation generated by pn(x, y)dy − q2n−1(x, y)dx = 0
is invariant under the dilation (x, y) �→ (λx, λn y) and consequently the center needs to be
global. 	


Any polynomial differential system can be extended analytically to the Poincaré disc with
the circle of the infinity invariant by this extended flow. This extension is called the Poincaré
compactification, see the details Chapter 5 of [6] for example. Using their notation we see
that we need to analyze the infinite singular points of the local chart U1 as well as the origin
of the local chartU2. Moreover, if we do the extension of the polynomial differential system
ẋ = P(x, y), ẏ = Q(x, y) of degree d = max{deg P, deg Q} then we need to study the
nature of the following singularities:

(a) In the local chart U1 the singular points on v = 0 of the polynomial differential system
u̇ = P̂(u, v), v̇ = Q̂(u, v) obtained after the change to local coordinates in U1 given by
(x, y) �→ (u, v) with x = 1/v and y = u/v.

(b) In the local chart U2 the singularity at the origin of the polynomial differential system
u̇ = P̄(u, v), v̇ = Q̄(u, v) obtained via the change to local coordinates in U2 expressed
as (x, y) �→ (u, v) with x = u/v and y = 1/v.

The next result shows that the analysis of the infinite singular points of the polynomial
differential system (2) with α > 0 are restricted to the local chart U2.

Proposition 5 The polynomial differential system (2) with α > 0 has no singularities at
infinity in the local chart U1.

Proof In the local chart U1 we perform the change (x, y) �→ (u, v) with x = 1/v and
y = u/v, and we get that system (2) is transformed into

u̇ = 1 + u2v2n−2 + ub̂(v), v̇ = uv2n−1 , (5)

where b̂(v) = v2n−2b(1/v) ∈ R[v] since m < 2n − 2 because α > 0. Notice that b̂ is odd
because b is also odd, in particular b̂(0) = 0. This means that system (5) has no singular
points on the line v = 0, that is, at the infinity of U1. 	


We recall that a polynomial differential system with a unique finite singularity (which is
a center) and without a line of singular points at infinity, has a global center if and only if
all its eventual infinite singular points have local phase portrait formed by two hyperbolic
sectors with both separatrices on the invariant infinite circle.
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The proof of the forthcoming Propositions 7 and 12 is based in the following desingular-
ization algorithm described first in [2]. The method is different from the classical blow-up
technique of blowing-up in two different directions, and gluing the two blow-ups. It consists
in adding a linear change previous to the blow-up to avoid making the blow-up in an already
characteristic direction. In this way all the blow-ups can be done always in the same direction
creating a more methodical way of work.

First we take the coordinates (u, v) of the local chartU2 defined via the change (x, y) �→
(u, v) with x = u/v and y = 1/v. We know that the only singularity on the line v = 0
of the resulting system is the origin, which is linearly zero. Next, since u = 0 is not a
characteristic direction at the origin, we perform a vertical blow up (u, v) �→ (u1, v1) =
(u, v/u) together with a time-rescaling dividing the vector field by u2n−3

1 to obtain the
polynomial differential system u̇1 = P1(u1, v1), v̇1 = Q1(u1, v1)with coprime components.
We analyze the singularities of this differential system on the line u1 = 0 as follows:

(i) If there is one linearly zero singularity then we translate it to the origin. Next we check
that both u1 = 0 and v1 = 0 are characteristic directions at the origin and then, before
doing a vertical blow-up, we translate the direction u1 = 0 to the direction u1 = v1 doing
the change of variables (u1, v1) �→ (u2, v2) = (u1 + v1, v1). After checking that the
negative bisectrix is not also a characteristic direction (otherwise one must do a different
twist as it is described in [2]) we continue the blow-up process. We do the vertical blow
up (u2, v2) �→ (u3, v3) = (u2, v2/u2), and after we rescale the time dividing the vector
field by a convenient power uγ

3 with γ ∈ N in such a way that the obtained polynomial
differential system u̇3 = P3(u3, v3), v̇3 = Q3(u3, v3) has coprime components.

(ii) We repeat the former steps transforming the system u̇i = Pi (ui , vi ), v̇i = Qi (ui , vi )
into u̇i+ j = Pi+ j (ui+ j , vi+ j ), v̇i+ j = Qi+ j (ui+ j , vi+ j ) for some j ∈ N until we reach
that all the singularities on ui+ j = 0 are hyperbolic or semi-hyperbolic. In case that one
parabolic sector appears in this process then the origin of system (2) cannot be a global
center. The local phase portrait at the hyperbolic and semihyperbolic singular points are
classified, see for instance Theorems 2.15 and 2.19 of [6], respectively.

Remark 6 There is another possibility for the desingularization which consists that along
the different blow-up, it could appear a singularity with an infinite number of characteristic
directions. This possibility is also nicely described in [2] and called star-like singularities. In
the cases analyzed in our study this possibility never occurs.

Proposition 7 The polynomial differential system (2) satisfying (3) has a center at the origin.
Assume that b(x) �≡ 0, β ≥ n and α > 0.

(i) When α = 1 then n ≥ 3 and there is no global center if n ∈ {3, 4}.
(ii) When α = 3 then n ≥ 5 and there is no global center if n = 5.

Proof Thedegree of system (2) isd = 2n−1.Moreover all the restrictions can be summarized
as

n > 2, n ≤ β ≤ m < 2n − 2. (6)

In the local chartU2 we do the change (x, y) �→ (u, v)with x = u/v and y = 1/v so system
(2) becomes

u̇ = −u2n − v2n−2 − ub†(u, v), v̇ = −u2n−1v − vb†(u, v), (7)
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being b†(u, v) = v2n−2b(u/v). We have that

b(u/v) =
m∑
j=β

b j (u/v) j = uβv−m Pm−β(u, v),

where Pm−β is a homogeneous polynomial of even degree m − β such that Pm−β(u, 0) =
bmum−β and Pm−β(0, v) = bβvm−β . Then taking into account that m < 2n − 2, from (6)
it follows that b†(u, v) is a homogeneous polynomial of degree 2n − 2 with b†(u, 0) = 0.
This implies that the only singularity of (7) on the line v = 0 is the origin.

Since (7) adopts the form u̇ = −v2n−2 + · · · , v̇ = · · · where the dots mean terms of
higher degree than 2n − 2, the origin is a linearly zero singular point and so we need to do a
blow up. Since u = 0 is not a characteristic direction of the origin of system (7), because the
unique characteristic direction is v = 0, we perform a vertical blow up: (u, v) �→ (u1, v1) =
(u, v/u). In these new coordinates system (7) becomes

u̇1 = −u2n1 − u2n−2
1 v2n−2

1 − u2n−1
1 b∗(v1), v̇1 = u2n−3

1 v2n−1
1 , (8)

where

b∗(v1) = v2n−2
1 b(1/v1) = vα

1 Q(v1) ∈ R[v1] (9)

and Q is an even polynomial with Q(0) = bm so that b∗(0) = 0. We reescale the time
dividing the differential system by u2n−3

1 and we obtain the system

u̇1 = P1(u1, v1) = −u31 − u1v
2n−2
1 − u21b

∗(v1), v̇1 = Q1(u1, v1) = v2n−1
1 , (10)

where the origin is the unique singularity of (10) on the line u1 = 0, and the origin is still a
linearly zero point. So one more blow-up is necessary.

Both u1 = 0 and v1 = 0 are characteristic directions at the origin of system (10).
Therefore before doing a vertical blow-up, we translate the direction u1 = 0 to the direction
u1 = v1 doing the change of variables (u1, v1) �→ (u2, v2) = (u1 + v1, v1). System (10) is
transformed into

u̇2 = v2n−2
2 (2v2 − u2) − (u2 − v2)

2(u2 − v2 + b∗(v2)), v̇2 = v2n−1
2 . (11)

Again the origin is the unique singular point of system (11) on the straight line u2 = 0, and it
is linearly zero. Since u2 = 0 is not a characteristic direction at the origin we do the vertical
blow up (u2, v2) �→ (u3, v3) = (u2, v2/u2) and rescale the time dividing the vector field by
u23. System (11) becomes

u̇3 = P3(u3, v3) = u3(−1 + v3)
3 + u2n−3

3 v2n−2
3 (−1 + 2v3)

−(−1 + v3)
2b∗(u3v3),

v̇3 = Q3(u3, v3) = −(−1 + v3)
3v3 + u2n−4

3 v2n−1
3 (1 − v3)

[1 + u2n−3
3 (1 − v3)

2n−3] + (1 − v3)
2v3b

∗(u3v3)/u3. (12)

Notice that system (12) is a polynomial differential system and u̇3|{u3=0} = 0, because
b∗(0) = 0. We recall that b∗(u3v3)/u3 = uα−1

3 vα
3 (bm + · · · ) with α ≥ 1. Then the number

of singular points of system (12) on the straight line u3 = 0 depends on the values of the odd
number α.

The case α = 1: The polynomial b∗(u3v3)/u3 restricted to u3 = 0 is bmv3, because
α = 1. Hence v̇3|{u3=0} = v3(−1+v3)

2(1+ (bm −1)v3) and the singularities of system (12)
on the straight line u3 = 0 are the points (0, 0), (0, 1) and (0, 1/(1 − bm)) when bm �= 1.
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The eigenvalues of (0, 0) are ±1 and therefore (0, 0) is a hyperbolic saddle point.
The eigenvalues of the singular point (0, 1/(1− bm)) are 0 and −b2m/(bm − 1)2 < 0 and

consequently it is semi-hyperbolic. We analyze its local flow using Theorem 2.19 of [6]. First
we translate the singularity to the origin with the change (u3, v3) �→= (u3, v3 −1/(1−bm))

and next we put the linear part in the Jordan canonical form u̇3 = · · · , v̇3 = v3 + · · · just by
the time-rescaling dividing the vector field by −b2m/(bm − 1)2. The outcome is that system
(12) is transformed into

u̇3 = Ā(u3, v3), v̇3 = v3 + B̄(u3, v3), (13)

for some polynomials Ā and B̄ with only nonlinear terms. Let v3 = f̄ (u3) be the solution of
v3 + B̄(u3, v3) = 0 near the origin, and ḡ(u3) = Ā(u3, f (u3)). Some computations reveal
that f̄ has order at least 2 at the origin and ḡ(u3) = βku

2k+1
3 + · · · for some integer k ≥ 1

and coefficient βk < 0. By Theorem 2.19 in [6], the former implies that the origin of system
(13) is a topological saddle.

The singular point (0, 1) of system (12) is linearly zero, so more blow-ups are needed.
We translate the singularity (0, 1) to the origin with the change (u3, v3) �→ (u4, v4) =
(u3, v3 − 1), and next we check that both u4 = 0 and v4 = 0 are characteristic directions at
the origin of the transformed system. Hence we do the linear change of variables (u4, v4) �→
(u5, v5) = (u4 + v4, v4) so that u5 = 0 is not characteristic direction at the origin and the
blow-up (u5, v5) �→ (u6, v6) = (u5, v5/u5), that transforms the differential system (12) into

u̇6 = u2n−3
6 (1 − v6)

2n−4(1 + u6v6)
2n−2(1 − 3v6 + 2u6v6 − 4u6v

2
6)

−u6v
2
6(1 − u6 + 2u6v6)[u26v6 + b∗(ξ(u6, v6))/(v6 − 1)],

v̇6 = v6
[ − u2n−4

6 (1 − v6)
2n−3(1 + u6v6)

2n−2(3 + 4u6v6) + v6(1 + 2u6v6)

×(−u26(1 − v6)v6 + b∗(ξ(u6, v6)))
]
, (14)

where ξ(u6, v6) = u6(1−v6)(1+u6v6) = u6+· · · . From (9) we get that b∗(ξ) ∈ R[ξ ]with
the lower order term b∗(ξ) = ξ(bm +· · · ). Thus we have b∗(ξ(u6, v6))/(v6−1) ∈ R[u6, v6]
so (14) is a polynomial differential system. Indeed

b∗(ξ(u6, v6)) = (ξ(u6, v6))Q(ξ(u6, v6)) = (ξ(u6, v6))(bm + O(ξ)),

hence system (14) becomes u̇6 = um1
6 P̂(u6, v6), v̇6 = um2

6 Q̂(u6, v6), where m1,m2 ∈ N, P̂
and Q̂ are polynomials non divisible by u6 and

m1 = min{2n − 3, 3, 2n − 1 − m}, m2 = min{2n − 4, 2, α}.
Doing a time-rescaling we divide the polynomial differential system (14) by uγ

6 with γ =
min{m1,m2} = α = 1 and system (14) becomes

u̇6 = P6(u6, v6) = u2n−4
6 (1 − v6)

2n−4(1 + u6v6)
2n−2(1 − 3v6 + 2u6v6 − 4u6v

2
6)

−v26(1 − u6 + 2u6v6)[u26v6 + b∗(ξ(u6, v6))/(v6 − 1)],
v̇6 = Q6(u6, v6) = v6

[ − u2n−5
6 (1 − v6)

2n−3(1 + u6v6)
2n−2(3 + 4u6v6)

+v6(1 + 2u6v6) × (−(1 − v6)v6u6 + b∗(ξ(u6, v6)/u6))
]
, (15)

with b∗(ξ(u6, v6)) = ξ(u6, v6)Q(ξ(u6, v6)) = u6(1 − v6)(1 + u6v6)(bm + · · · ). Then, for
system (15) we have u̇6|{u6=0} = 0, and the equation v̇6|{u6=0} = 0 becomes v26(1−v6) = 0.
The formermeans that system (15) has the singular points (0, 0) and (0, 1) on the line u6 = 0.
Moreover, the eigenvalues associated to the point (0, 1) are ±bm so it is a hyperbolic saddle.
On the contrary the point (0, 0) still remains linearly zero and more blow-ups are needed.
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We analyze the singularity (0, 0). Both u6 = 0 and v6 = 0 are characteristic directions
and so we perform the linear change (u6, v6) �→ (u7, v7) = (u6 + v6, v6) which transforms
the system into another of the form u̇7 = bmv27 + · · · , v̇7 = bmv27 + · · · if n ≥ 4, or
u̇7 = u27−5u7v7+(4+bm)v27 +· · · , v̇7 = −v7(3u7−(3+bm)v7)+· · · when n = 3. Hence
this new system has not u7 = 0 as characteristic direction at the origin except in the particular
case n = 3 and bm = −4 which will be analyzed later in Remark 8. So we continue assuming
(n, bm) �= (3,−4) and we perform the blow-up (u7, v7) �→ (u8, v8) = (u7, v7/u7). These
changes transform system (15) into a differential system with a common factor u8 which can
be removed by a time-rescaling and we obtain a system

u̇8 = P8(u8, v8), v̇8 = Q8(u8, v8), (16)

such that P8(0, v8) = 0 and Q8(0, v8) = (1 − v8)v8(−4 + 4v8 + bmv8) if n = 3, or
bm(1 − v8)v

2
8 when n ≥ 4. Therefore the singularities of (16) on the straight line u8 = 0

are the points (0, 0) and (0, 1) with the additional singular point (0, 4/(4+ bm) when n = 3
and bm �= −4. This last point is a node with eigenvalues {λ1 = bm/(4 + bm), 4λ1} and this
proves statement (i) of the proposition in the case n = 3 and bm �= −4.

Remark 8 The complementary case (n, bm) = (3,−4) yields m = 3 by the condition α = 1
and system (2) becomes ẋ = −y, ẏ = x5 − 4x3y. In this particular case we do not perform
the former linear change (u6, v6) �→ (u7, v7) = (u6 + v6, v6). Instead we do (u6, v6) �→
(u7, v7) = (2u6 + v6, v6) that transforms the system into u̇7 = (u27 − 5u7v7 − 4v27)/2+· · · ,
v̇7 = −v7(3u7 + 5v7)/2 + · · · . Since u7 = 0 is not a characteristic direction at the origin,
now we do the blow-up (u7, v7) �→ (u8, v8) = (u7, v7/u7) and remove the common factor
u8 by a time-rescaling. The outcome is a system (16) with P8(0, v8) = 0 and Q8(0, v8) =
2(v8 − 1)v8(1+ v8), hence the singularities of (16) on the straight line u8 = 0 are the points
(0, 0) and (0,±1). The points (0, 0) and (0, 1) are hyperbolic saddles but (0,−1) is a node
which proves statement (i) of the proposition in the case n = 3 and bm = −4.

When n ≥ 4 the point (0, 1) is a hyperbolic saddle of system (16) with eigenvalues ±bm ,
and the point (0, 0) is still linearly zero and more blow-ups are needed. Before doing the
blow-up at (0, 0) we check, from the lower order terms of system (16), that both u8 = 0
and v8 = 0 are characteristic directions at the origin and therefore we do the linear change
(u8, v8) �→ (u9, v9) = (u8 + v8, v8). The resulting differential system has the form u̇9 =
bmv29 + · · · , v̇9 = bmv29 + · · · and u9 = 0 is not a characteristic direction at the origin.
Then we do the blow-up (u9, v9) �→ (u10, v10) = (u9, v9/u9) and system (16) becomes,
after performing the time-rescaling dividing the system by u10, the polynomial differential
system

u̇10 = P10(u10, v10), v̇10 = Q10(u10, v10), (17)

with P10(0, v10) = 0 and Q10(0, v10) having the expression bm(1 − v10)v
2
10. Therefore

the singularities of system (17) on the straight line u10 = 0 are the point (0, 1) which is a
hyperbolic saddle with eigenvalues ±bm , and the point (0, 0) which is still linearly zero and
more blow-ups are needed. Since both u10 = 0 and v10 = 0 are characteristic directions at the
origin of system (17), we do the linear change (u10, v10) �→ (u11, v11) = (u10 + v10, v10).
The transformed system has the form u̇11 = bmv211 + · · · , v̇11 = bmv211 + · · · if n ≥ 5, or
u̇11 = u211 − 7u11v11 + (6 + bm)v211 + · · · , v̇11 = v11(−5u11 + (5 + bm)v11) + · · · when
n = 4. Hence this system has not the characteristic direction u11 = 0 at the origin except
when n = 4 and bm = −6whichwill be analyzed later inRemark 9. Sowe continue assuming
(n, bm) �= (4,−6) and we perform the blow-up (u11, v11) �→ (u12, v12) = (u11, v11/u11).
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In these new coordinates and after the time-rescaling dividing this system by u12, system
(17) is written as the polynomial differential system

u̇12 = P12(u12, v12), v̇12 = Q12(u12, v12), (18)

such that P12(0, v12) = 0 and Q12(0, v12) = (1− v12)v12(−6+ 6v12 + bmv12) if n = 4, or
bm(1 − v12)v

2
12 when n ≥ 5. Therefore the singularities of system (18) on the straight line

u12 = 0 are the points (0, 0) and (0, 1)with the additional singular point (0, 6/(6+bm))when
n = 4 and bm �= −6. This last point is a node with eigenvalues {λ1 = bm/(6 + bm), 6λ1}
and this proves statement (i) of the proposition in the case n = 4 and bm �= −6.

Remark 9 The complementary case (n, bm) = (4,−6) gives m = 5 by the condition α = 1 ,
system (2) becomes ẋ = −y, ẏ = x7 − 6x5y. For this system we do not perform the former
linear change (u10, v10) �→ (u11, v11) = (u10 + v10, v10). Instead we do (u10, v10) �→
(u11, v11) = (2u10+v10, v10) transforming the system into u̇11 = (u211−7u11v11−6v211)/2+· · · , v̇11 = −v11(5u11 + 7v11)/2+ · · · . Since u11 = 0 is not a characteristic direction at the
origin, now we do the blow-up (u11, v11) �→ (u12, v12) = (u11, v11/u11) and remove the
common factor u12 rescaling the time. In this way we obtain a differential system (18) with
P12(0, v12) = 0 and Q12(0, v12) = 3(v12 − 1)v12(1 + v12), so having the singularities on
the straight line u12 = 0 given by the points (0, 0) and (0,±1). The points (0, 0) and (0, 1)
are hyperbolic saddles but (0,−1) is a node which proves statement (i) of the proposition in
the case (n, bm) = (4,−6).

The computations with α = 1 and arbitrary Andreev number n ≥ 5 becomes heavy so we
do not do them.

The case α = 3: Clearly in this case n ≥ 5.
The case n = 5: The singularities of system (12) on the straight line u3 = 0 are a

hyperbolic saddle point at (0, 0) and a linearly zero point at (0, 1). Translating the point
(0, 1) to the origin with the change (u3, v3) �→ (u4, v4) = (u3, v3 − 1), doing the linear
change of variables (u4, v4) �→ (u5, v5) = (u4 + v4, v4) because both u4 = 0 and v4 = 0
are characteristic directions at the origin. Now u5 = 0 is not a characteristic direction at the
origin and we perform the blow-up (u5, v5) �→ (u6, v6) = (u5, v5/u5), and finally rescaling
the time dividing the system by u26, system (12) is transformed into

u̇6 = P6(u6, v6), v̇6 = Q6(u6, v6), (19)

with P6(0, v6) = 0 and Q6(0, v6) = (−1+v6)v
3
6. Therefore the singularities of system (19)

on the straight line u6 = 0 are the point (0, 1) which is a hyperbolic saddle and the linearly
zero point (0, 0).

We check that both u6 = 0 and v6 = 0 are characteristic directions at the origin of
system (19). Then we do the linear change of variables (u6, v6) �→ (u7, v7) = (u6 + v6, v6)

transforming the system into u̇7 = v27(bmu7 − (1 + bm)v7) + · · · , v̇7 = v27(bmu7 − (1 +
bm)v7) + · · · . We see that if bm �= −1 then u7 = 0 is not a characteristic direction at the
origin. The special case bm = −1 will be analyzed later in Remark 10. Continuing with
the generic case bm �= −1, we perform the blow-up (u7, v7) �→ (u8, v8) = (u7, v7/u7),
and the rescaling of the time dividing the system by u28. The outcome is that system (19) is
transformed into

u̇8 = P8(u8, v8), v̇8 = Q8(u8, v8), (20)

with P8(0, v8) ≡ 0 and Q8(0, v8) = (−1 + v8)v
2
8(−bm + v8 + bmv8). Therefore the

singularities of system (20) on the line u8 = 0 are a hyperbolic saddle at (0, 1), a semi-
hyperbolic point at (0, bm/(1 + bm)) and a linearly zero point at (0, 0). This last point will
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be desingularized following the standard process as follows: since u8 = 0 and v8 = 0 are
characteristic directions at the origin of system (20) we do first the linear change of variables
(u8, v8) �→ (u9, v9) = (u8 + v8, v8), since u9 = 0 is not a characteristic direction at the
origin we perform the blow-up (u9, v9) �→ (u10, v10) = (u9, v9/u9), and the rescaling of
the time dividing the system by u10. This sequence of changes brings system (20) to system

u̇10 = P10(u10, v10), v̇10 = Q10(u10, v10), (21)

with P10(0, v10) = 0 and Q10(0, v10) = −bm(−1 + v10)v
2
10. Then the singularities on

u10 = 0 are a hyperbolic saddle at (0, 1), and a linearly zero point at (0, 0). Repeating
again the desingularization process of the point (0, 0), namely we do the linear change of
variables (u10, v10) �→ (u11, v11) = (u10 + v10, v10) because u10 = 0 and v10 = 0 are
characteristic directions at the origin of system (21), and the system is transformed into
u̇11 = u211 − 7u11v11 + (6 + bm)v211 + · · · , v̇11 = −v11(5u11 − 5v11 − bmv11) + · · · . We
see that if bm �= −6 then u11 = 0 is not a characteristic direction at the origin. The special
case bm = −6 will be analyzed later in Remark 11. In the generic case bm �= −6, we do the
blow-up (u11, v11) �→ (u12, v12) = (u11, v11/u11), and the rescaling of the time dividing
the system by u12. After these changes system (21) is transformed into

u̇12 = P12(u12, v12), v̇12 = Q12(u12, v12), (22)

with a singularity of type node on u12 = 0. In short the center cannot be global.

Remark 10 The complementary case (n, bm) = (5,−1) givesm = 5 by the condition α = 3
and system (2) becomes ẋ = −y, ẏ = x9 − x5y. For this system we do not perform
the previous linear change (u6, v6) �→ (u7, v7) = (u6 + v6, v6) and we do (u6, v6) �→
(u7, v7) = (2u6 + v6, v6) so that u7 = 0 is not a characteristic direction at the origin. Now
we do the blow-up (u7, v7) �→ (u8, v8) = (u7, v7/u7) and remove the common factor u28
rescaling the time. In this way we obtain a differential system (20) with P8(0, v8) = 0 and
Q8(0, v8) = (−1 + v8)v

2
8(1 + v8)/2, so having the singularities on the straight line u8 = 0

given by the points (0, 0) and (0,±1). The point (0, 1) is a hyperbolic saddle, the point (0,−1)
is semi-hyperbolic and the point (0, 0) is still linearly zero. After the linear transformation
(u8, v8) �→ (u9, v9) = (u8+v8, v8), u9 = 0 is not a characteristic direction at the origin and
we do the blow-up (u9, v9) �→ (u10, v10) = (u9, v9/u9) and the rescaling of the time dividing
the system by u10. The resulting system has, on the line u10 = 0, the singular points (0, 1)
which is a hyperbolic saddle and the linearly zero point (0, 0). Doing the linear transformation
(u10, v10) �→ (u11, v11) = (u10 +v10, v10), u11 = 0 is no longer a characteristic direction at
the origin and we do the blow-up (u11, v11) �→ (u12, v12) = (u11, v11/u11) and the rescaling
of the time dividing the system by u12. The resulting system has, on the line u12 = 0 the
singular points (0,−3)which is a hyperbolic node. This proves statement (ii) when bm = −1.

Remark 11 The specific case (n, bm) = (5,−6) gives m = 5 by the condition α = 3
and system (2) becomes ẋ = −y, ẏ = x9 − 6x5y. For this system, instead of the change
(u10, v10) �→ (u11, v11) = (u10 + v10, v10) we do (u10, v10) �→ (u11, v11) = (2u10 +
v10, v10) transforming the system into a systemwhere u11 = 0 is not a characteristic direction
at the origin. Now we do the blow-up (u11, v11) �→ (u12, v12) = (u11, v11/u11) and remove
the common factor u12 rescaling the time. The resulting system has a node on the straight
line u12 = 0 and this proves statement (ii) of the proposition in the case bm = −6.
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Proposition 12 The polynomial differential system (2) satisfying (3) has a center at the origin.
Assume that b(x) �≡ 0, β = n − 1, b2β − 4n < 0, α > 0, and m > n − 1. If n = 4 then
m ∈ {3, 5}, and when m = 5 the origin is not a global center.

Proof Under the hypothesis b(x) �≡ 0, β = n − 1, b2β − 4n < 0 and α > 0 we have that

n − 1 ≤ m ≤ 2n − 3 and n is even. In particular b(x) = bn−1xn−1 + · · · + bmxm with
b2n−1 + b2m �= 0 and

b2n−1 − 4n < 0. (23)

The degree of system (2) is d = 2n − 1 and

β = n − 1 ≤ m ≤ 2n − 3. (24)

Most of the computations already done for system (2) in the proof of Proposition 7 related
with the local chart U2 are repeated verbatim here.

We do not consider the case n = 2 because then m = 1 and the center is global by
Proposition 4.

If n = 4 thenm ∈ {3, 5} andwe only considerm = 5. Then the systemhas no global center
because the analogous to system (18), that is, u̇12 = P12(u12, v12), v̇12 = Q12(u12, v12) has
a node on the line u12 = 0. Therefore the origin is not a global center of system (2). 	


2.1 Proof of theorem 1

The proof of statement (i) follows by Proposition 3 whereas statement (ii) is a consequence
of Propositions 3 and 4.

2.2 Proof of theorem 2

The proof follows from Propositions 7 and 12.
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