THE SECANT MAP APPLIED TO A REAL POLYNOMIAL WITH MULTIPLE ROOTS

Antonio Garijo*
Departament d'Enginyeria Informàtica i Matemàtiques Universitat Rovira i Virgili, 43007 Tarragona, Catalonia
Xavier Jarque
Departament de Matemàtiques i Informàtica
Universitat de Barcelona, 08007 Barcelona, Catalonia

Abstract

We investigate the plane dynamical system given by the secant map applied to a polynomial p having at least one multiple root of multiplicity $d>1$. We prove that the local dynamics around the fixed points related to the roots of p depend on the parity of d.

1. Introduction and statement of the results. The main goal of this paper is to investigate the dynamical system generated by the so called secant map, or secant method when considering it as a root finding algorithm, applied to the real monic polynomial of degree $k \geq 2$,

$$
p(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}, a_{k}=1, a_{j} \in \mathbb{R}, j=0, \ldots k-1,
$$

under the presence of real multiple roots. The secant map writes as

$$
\begin{equation*}
S(x, y)=\left(y, y-p(y) \frac{x-y}{p(x)-p(y)}\right) \tag{1}
\end{equation*}
$$

We refer to [5] for a detailed discussion of the dynamics generated by S when all real roots of p are simple. As in [5] we consider $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as a rational map (with poles). We note that S defines a rational map $S: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$. See [1] for a discussion on this context.

Let α be a root of p, and consider the set

$$
\begin{equation*}
\mathcal{A}(\alpha)=\left\{(x, y) \in \mathbb{R}^{2} \mid S^{n}(x, y) \rightarrow(\alpha, \alpha), \text { as } n \rightarrow \infty\right\} \tag{2}
\end{equation*}
$$

Because S is a root finding algorithm, it is natural to investigate the structure and distribution of the sets $A(\alpha)$ for all roots of p. If α is a simple root, then S is regular (analytic) at (α, α), and $S(\alpha, \alpha)=(\alpha, \alpha)$. If α is a multiple root, then the map $S: R^{2} \rightarrow R^{2}$ may (or may not) be continuous at (α, α), but it is not C^{∞} smooth there.

[^0]
[^0]: 2020 Mathematics Subject Classification. Primary: 37G35, 37N30; Secondary: 37C70.
 Key words and phrases. Root finding algorithms, rational iteration, secant method, multiple root.

 This work has been partially supported by MINECO-AEI grants MTM-2017-86795-C3-2-P and MTM-2017-86795-C3-3-P, the Maria de Maeztu Excellence Grant MDM-2014-0445 of the BGSMath and the AGAUR grant 2017 SGR 1374.

 * Corresponding author: antonio.garijo@urv.cat.

