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Abstract. We investigate the plane dynamical system given by the secant map applied to
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1. Introduction and statement of the results

The main goal of this paper is to investigate the dynamical system generated by the so
called secant map, or secant method when considering it as a root finding algorithm, applied
to the real monic polynomial of degree k ≥ 2,

p(x) = akx
k + ak−1x

k−1 + · · ·+ a1x+ a0, ak = 1, aj ∈ R, j = 0, . . . k − 1,

under the presence of real multiple roots. The secant map writes as

S(x, y) =

(
y, y − p(y)

x− y
p(x)− p(y)

)
. (1)

We refer to [GJ19] for a detailed discussion of the dynamics generated by S when all real
roots of p are simple. As in [GJ19] we consider S : R2 → R2 (with poles), but of course there
is a natural extension of this problem by assuming p as a complex monic polynomial and thus
S : C2 → C2. See [BF18] for a discussion on this context.

Let α be a root of p, and consider the set

A(α) = {(x, y) ∈ R2 |Sn(x, y)→ (α, α), as n→∞}. (2)

Because S is a root finding algorithm it is natural to investigate the structure and distribution
of the sets A(α) for all roots of p; we notice that S(α, α) = (α, α). From the numerical point
of view points in A(α) define good initial conditions converging to α.

In the present work we assume that at least one real root of p, α ∈ R, has multiplicity
d ≥ 2, i.e. p(j)(α) = 0 for 0 ≤ j ≤ d − 1 and p(d)(α) 6= 0. This case is interesting itself but
it is also relevant when studding the bifurcation phenomena of several simple roots colliding
together.

Theorem A. Let p be a real, monic polynomial and let α be a real multiple root of p of
multiplicity d ≥ 2. Let S be the secant map defined in (1). The following statements hold.
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(a) If d is an odd number then the point (α, α) belongs to A(α). Indeed there is an open
neighbourhood U of (α, α) such that U ⊂ A(α).

(b) If d is an even number then (α, α) belongs to the boundary of A(α). In fact, it belongs
to the common boundary of all the basins of attraction associated to simple real roots
of p, i.e.,

(α, α) ∈
⋂

τ∈R, p(τ)=0, p′(τ)6=0

∂A(τ).

Theorem A has several implications when we use the secant method as a root finding
algorithm applied to a polynomial p with multiple roots. If the multiplicity of the root α of
p is odd, it inherits the local dynamics as it was a simple root, i.e., all initial seeds in a small
neighbourhood converge to (α, α) (see Theorem A(a)). However if α is a multiple root of
even multiplicity the local dynamics is quite different. Although most of the initial seeds near
(α, α) converge to it, there are nearby initial conditions converging to all simple real roots
of p (see Theorem A(b)). It seems plausible, and numerical experiments support it, that in
fact (α, α) belongs to the boundary of all roots of p, not only the simple ones. As we said
before, Theorem A will be also useful for studding the bifurcation phenomena coming from
the collision of several roots.

In Figure 1 we illustrate Theorem A applied to pd(x) = (x + 2)x(x − 1)d, d = 2, 3, 4, 5.
Colours red, blue and green, correspond to seeds converging to the roots x = 1, x = 0, x = −2,
respectively. According to Theorem A the dynamical plane of Sp near the corresponding fixed
point (1, 1) change drastically for different values of d. We notice that in Figures 1(b) and
1(d) there are green points near (1, 1) although it is difficult to see. White colour corresponds
to an unbounded critical cycle (for a discussion see [BF18, GJ19].

The paper is organized as follows. In Section 2 we introduce terminology and tools from a
series of papers on rational iteration. In Sections 3 and 4 we compute the Taylor’s polynomial
associated to the secant map at some points, which is the main tool to prove the Theorem A.
Finally Section 5 is devoted to prove Theorem A.

2. Plane rational iteration

For our purposes we follow the notation, and use some results and ideas, introduced and
developed in the series of papers [BGM99, BGM03, BGM05]. Consider the plane rational
map given by

T :

(
x
y

)
7→
(
F (x, y)
N(x, y)/D(x, y)

)
, (3)

where F , N and D are differentiable functions. Set

δT = {(x, y) ∈ R2 |D(x, y) = 0} and ET = R2 \
⋃
n≥0

T−n(δT ).

Easily T = (T1, T2) : ET → ET defines a smooth dynamical system given by the iterates of T ;
that is {xn := Tn (x0)}n≥0, with x0 ∈ T . Clearly T sends points of δT to infinity unless N also
vanishes. At those points where T2 takes the form 0/0, the definition of T is uncertain in the
sense that the value might depend on the path we choose to approach the point. Although
those uncertain points are outside ET , they play a crucial role to understand the local and
global dynamics of T .

We say that a point Q ∈ δT ⊂ R2 is a focal point (of T ) if T2(Q) takes the form 0/0 (i.e.
N(Q) = D(Q) = 0), and there exists a smooth simple arc γ := γ(t), t ∈ (−ε, ε), with γ(0) =
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(1, 1)

(0, 0)

(−2,−2)

(a) p(x) = (x+ 2)x(x− 1)2.

(1, 1)

(b) Zoom of (a) near (1, 1)

(1, 1)

(0, 0)

(−2,−2)

(c) p(x) = (x+ 2)x(x− 1)4.

(1, 1)

(d) Zoom of (c) near (1, 1).

(1, 1)

(0, 0)

(−2,−2)

(e) p(x) = (x+ 2)x(x− 1)3.

(1, 1)

(0, 0)

(−2,−2)

(f) p(x) = (x+ 2)x(x− 1)5.

Figure 1. Dynamical plane of the secant map applied to the family of polynomials
p(x) = (x+ 2)x(x− 1)d for several values of d. We show in red (dark grey) the basin
of attraction of the multiple root of p corresponding to the fixed point of the secant
map located at (1, 1), in green (light grey) the basin of attraction of (−2,−2) and in
blue (black) the basin of attraction of (0, 0). The range of the pictures (a),(c),(e) and
(f) is [-3,3]x[-3,3].

Q, such that limt→0 T2(γ) exists and it is finite. The line LQ = {(x, y) ∈ R2 | x = F (Q)} is
called the prefocal line (over Q).
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Let γ passing through Q, not tangent to δT , with slope m at t = 0. Then T (γ) will be
a curve passing through some finite point (F (Q), y(m)) ∈ LQ at t = 0 (see figure 2). More
precisely the value of y(m) is given by

y(m) = lim
t→0

N(γ(t))

D(γ(t))
. (4)

A focal point Q is defined by the intersection of two (algebraic) curves: N(x, y) = 0 and
D(x, y) = 0. If they intersect transversally (at Q) we say that Q is a simple focal point;
otherwise Q is called a non simple focal point. In other words Q is simple if ∇N(Q) =
(Nx(Q), Ny(Q)) and ∇D(Q) = (Dx(Q), Dy(Q)) are linearly independent (i.e. Nx(Q)Dy(Q)−
Ny(Q)Dx(Q) 6= 0), while Q is non-simple if ∇N(Q) and ∇D(Q) are linearly dependent, i.e.
Nx(Q)Dy(Q)−Ny(Q)Dx(Q) = 0.

In the series of papers [BGM99, BGM03, BGM05] the authors prove, among other things,
many results to determine the sort of relationship between the slope m of the curve γ(t) at
t = 0 and the corresponding point (F (Q), y(m)) ∈ LQ depending on the type of focal point.
For instance if Q is simple (see [BGM99] for details) there is a one-to-one correspondence
between the slope m and points in the prefocal line LQ = {(x, y) ∈ R2 | x = F (Q)}. We
sketch the situation in Figure 2.

T

γ1

γ2

m2

m1

Q y(m1)

y(m2)

δT [D(x, y) = 0]

N(x, y) = 0

T (γ1)

T (γ2)

LQ [x = F (Q)]

Figure 2. Dynamics of T near a simple focal point Q.

If Q is a non simple focal point the situation is more delicate (see [BGM05] for details).
The authors studied the possible value(s) of the limit (4) depending on the precise algebraic
conditions implying Nx(Q)Dy(Q) −Ny(Q)Dx(Q) = 0. The major argument they used is to
compute the Taylor’s series of the functions N(x, y) and D(x, y) at the focal point Q. This is
also our main tool here, adapted to the case of the secant map. Indeed when α is a multiple
root of p then the point Q = (α, α) is a non simple focal point.

Remark 1. Focal points are also known as indeterminacy points in the general theory of
several complex variables.
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3. Taylor’s polynomials of the secant map

In this section we will present useful expressions of the secant map at the point (α, β) where
both α and β are roots of the polynomial p. Set m ≥ 1 and

qm(x, y) :=

m−1∑
`=0

xm−1−`y`, m = 1, . . . , k

q(x, y) :=

k∑
m=1

amqm(x, y).

(5)

Lemma 3.1 ([GJ19, Lemma 2.1 and 2.2]). The following statements hold.

(a) For m = 1, . . . k we have

xm − ym = (x− y)qm(x, y).

(b) The (symmetric) polynomial q(x, y) defined above satisfies

p(x)− p(y) = (x− y)q(x, y).

In other words, the factor (x− y) divides the expression p(x)− p(y) and the resultant
quotient is a (symmetric) polynomial of degree k − 1.

(c) The secant map defined in (1) writes as

S(x, y) =

(
y,
yq(x, y)− p(y)

q(x, y)

)
:=

(
y,
N(x, y)

D(x, y)

)
(6)

for all (x, y) ∈ R2 \ δS.

Next lemma gives precise Taylor’s polynomials of N(x, y) and D(x, y) and hence of the
rational map S(x, y) at a point (α, α), where α is a root of p with multiplicity d ≥ 2.

Lemma 3.2. Let p be a polynomial of degree k and let α be a root of p of multiplicity d with
2 ≤ d ≤ k − 1. Then,

S(x, y) =

(
y,
N(x, y)

D(x, y)

)
=

(
y, α+

N1(x, y)

D(x, y)

)
where

D(x, y) =
k∑

m=d

p(m) (α)

m!

m−1∑
`=0

(x− α)m−1−`(y − α)`, (7)

N1(x, y) =(x− α)(y − α)
k∑

m=d

1

m!
p(m) (α)

m−1∑
`=1

(x− α)m−1−`(y − α)`−1 (8)

Proof. First we prove (7). We claim that

D(x, y) =
k∑

m=1

p(m)(x0)

m!

m−1∑
`=0

(x− x0)m−1−`(y − x0)`, x0 ∈ R.

Assuming that the claim is true, then (7) follows immediately by substituting x0 = α where

α satisfies p(j)(α) = 0 for 0 ≤ j ≤ d− 1 and p(d)(α) 6= 0.
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To see the claim observe that for any given x0 ∈ R we have

p(x) =
k∑

m=0

p(m)(x0)

m!
(x− x0)m and p(y) =

k∑
m=0

p(m)(x0)

m!
(y − x0)m.

Then

D(x, y) = q(x, y) =
p(y)− p(x)

y − x
=

k∑
m=1

p(m)(x0)

m!

[
(y − x0)m − (x− x0)m

(y − x0)− (x− x0)

]
.

Using Lemma 3.1(a) we have that

D(x, y) =
k∑

m=1

p(m)(x0)

m!
qm(x− x0, y − x0) =

k∑
m=1

p(m)(x0)

m!

m−1∑
`=0

(x− x0)m−1−`(y − x0)`,

proving the claim. In particular we notice that(
m
`

)
∂Dm

∂xm−`y`
(α, α) =

1

m+ 1
p(m+1) (α) . (9)

Now we prove (8) by computing the Taylor’s polynomial expression of N(x, y) = yq(x, y)−
p(y) at the point (α, α). Of course we have

N(x, y) =
k∑

m=1

1

m!

m∑
`=0

(
m
`

)
∂mN

∂xm−`∂y`
(α, α) (x− α)m−`(y − α)`. (10)

Since N(x, y) = yq(x, y)− p(y) we have that

∂`N
∂y`

(x, y) = y ∂
`q
∂y`

(x, y) + ` ∂
`−1q
∂y`−1 (x, y)− p(`)(y), ` > 0

∂mN
∂xm (x, y) = y ∂

mq
∂xm (x, y), m > 0

∂mN
∂xm−`∂y`

(x, y) = y ∂mq
∂xm−`∂y`

(x, y) + ` ∂m−1q
∂xm−`∂y`−1 (x, y), m− ` > 0, ` ≥ 0.

Now we want to evaluate the expressions above at the point (x, y) = (α, α). Since by definition
q(x, y) = D(x, y) we might use (7) to compute the desired derivates. Let m, ` ∈ N with
0 ≤ ` ≤ m.

∂mN

∂xm−`∂y`
(α, α) =



0 for m < d− 1

α ∂mD
∂xm−`∂y`

(α, α) for m = d− 1

α ∂
mD
∂ym

(α, α) +m ∂m−1D
∂ym−1 (α, α)− p(m)(α) for m > d− 1, m− ` = 0

α ∂
mD
∂xm

(α, α) for m > d− 1, ` = 0

α ∂mD
∂xm−`∂y`

(α, α) + ` ∂m−1D
∂xm−`∂y`−1 (α, α) for m > d− 1, ` ≥ 1.

(11)

From (7), (9) and (11) we can compute the partial derivatives of (10) depending on m and
` to get N(x, y) = αD(x, y) +N1(x, y).

�

Next two lemmas deal with the partial derivatives of the polynomials N(x, y) and D(x, y)
at points of the form (α1, α2) where α1 and α2 are different real roots of p of multiplicity

d1 ≥ 1 and d2 ≥ 1, that is p(j)(αk) = 0 for 0 ≤ j ≤ dk − 1 and p(dk)(αk) 6= 0, k = 1, 2. Notice
that D(x, y) = q(x, y) and N(x, y) = yq(x, y)− p(y).
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Lemma 3.3. Let p a polynomial of degree k and let α1 and α2 be two different real roots of
p with multiplicity d1 and d2, respectively. Let m, ` ∈ N with 0 < ` < m. Then

∂mq

∂xm
(α1, α2) =

1

α1 − α2

(
p(m) (α1)−m

∂m−1q

∂xm−1
(α1, α2)

)
,

∂mq

∂ym
(α1, α2) = − 1

α1 − α2

(
p(m) (α2) +m

∂m−1q

∂ym−1
(α1, α2)

)
,

∂mq

∂xm−`∂y`
(α1, α2) =

1

α1 − α2

(
`

∂m−1q

∂xm−`∂y`−1
(α1, α2)− (m− `) ∂m−1q

∂xm−`−1∂y`
(α1, α2)

)
.

(12)

Proof. From Lemma 3.1(b) we know that (x− y)q(x, y) = p(x)− p(y). On the one hand we
can write this expression in the following form

(x− α1)q(x, y)− (y − α2)q(x, y) + (α1 − α2)q(x, y) = p(x)− p(y), (13)

and on the other hand we have the Taylor’s polynomial of the relevant functions

p(x)− p(y) =
k∑

m=0

1

m!
p(m) (α) (x− α1)

m −
k∑

m=0

1

m!
p(m) (α2) (y − α2)

m,

q(x, y) =

k∑
m=1

1

m!

m∑
`=0

(
m
`

)
∂mq

∂xm−`∂y`
(α1, α2) (x− α1)

m−`(y − α2)
`.

(14)

From (14) we can solve (13) term by term: (x− α1)
m, (y − α2)

m and (x− α1)
m−`(x− α2)

`,
with m, ` ∈ N and 0 < ` < m. For instance from (14) the coefficient of (x− α1)

m in the left
hand side of (13) is

1

(m− 1)!

(
m− 1

0

)
∂m−1q

∂xm−1
(α1, α2) + (α1 − α2)

1

m!

(
m
0

)
∂mq

∂xm
(α1, α2)

while the coefficient of (x− α1)
m in the right hand side of (13) is

1

m!
p(m) (α) .

This gives the first equality in (12). We left the other computations to the reader. �

Notice that D(x, y) = q(x, y), and so the previous lemma gives explicit recursive expressions
of the partial derivatives of D(x, y). Similarly we can prove explicit recursive expressions of
the partial derivatives of N(x, y)

Lemma 3.4. Let p a polynomial of degree k and let α1 and α2 be two different real roots of
p with multiplicity d1 and d2, respectively. Let m, ` ∈ N with 0 < ` < m. Then

∂mN

∂xm
(α1, α2) = α2

∂mq

∂xm
(α1, α2) ,

∂mN

∂ym
(α1, α2) = m

∂m−1q

∂ym−1
(α1, α2) + α2

∂mq

∂ym
(α1, α2)− pm (α2) ,

∂mN

∂xm−`∂y`
(α1, α2) = `

∂m−1q

∂xm−`∂y`−1
(α1, α2) + α2

∂mq

∂xm−`∂y`
(α1, α2) .

(15)
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Proof. The proof follows the same strategy of the previous lemma noticing that

N(x, y) = yq(x, y)− p(y) = (y − α2)q(x, y)− α2q(x, y)− p(y)

and resolving term by term. �

4. Local behaviour of the secant map near focal points and multiple roots

Our main goal in this section is to study, using the Taylor’s polynomials described in the
previous section, the local behaviour of the secant map at two different type of points: (α, α)
with α being a root of p of multiplicity d > 1, and (α1, α2) with αj being a root of p with
multiplicity dj , j = 1, 2.

Let Γm,κ,τ,σ(t) = (ξ(t), µm,κ,τ,σ(t)) be a curve passing through (0, 0) at t = 0 with

ξ(t) = t+
1

2
t2 +

1

6
t3 +

1

24
t4 +O

(
t5
)

µm,κ,τ,σ(t) = mt+
κ

2
t2 +

τ

6
t3 +

σ

24
t4 +O

(
t5
)
,

(16)

where m (the slope), κ (the curvature), τ (the torsion) and σ are real parameters. If no
confusions arise we will not show the dependence of the curve on the parameters.

To simplify the exposition we introduce the following auxiliary map A1(t) = ξ(t)µ(t) and

the parameter λk = 1
k!p

(k) (α).

Lemma 4.1. Let Γ(t) as in (16). Then,

S (ξ(t) + α, µ(t) + α) =

(
µ(t) + α,

A(t)

B(t)
+ α

)
.

where

A(t) = tdA1(t)

k∑
m=d

λmt
m−d

m−1∑
`=1

(
1 +

1

2
t+

1

6
t2 +O(t3)

)m−1−` (
m+

κ

2
t+

τ

6
t2 +O(t3)

)`−1

B(t) = td−1
k∑

m=d

λmt
m−d

m−1∑
`=0

(
1 +

1

2
t+

1

6
t2 +

1

12
t3 +O(t4)

)m−1−` (
m+

κ

2
t+

τ

6
t2 +

σ

12
t3 +O(t4)

)`
.

(17)

Moreover,

A(t)

B(t)
=

tA1(t)
∑k
m=d λmt

m−d∑m−1
`=1

(
1 + 1

2
t+ 1

6
t2 +O(t3)

)m−1−` (
m+ κ

2
t+ τ

6
t2 +O(t3)

)`−1∑k
m=d λmt

m−d
∑m−1
`=0

(
1 + 1

2
t+ 1

6
t2 + 1

12
t3 +O(t4)

)m−1−` (
m+ κ

2
t+ τ

6
t2 + σ

12
t3 +O(t4)

)` . (18)

Proof. We focus on the second component of the secant map. From Lemma 3.2 we have

N (ξ(t) + α, µ(t) + α)

D (ξ(t) + α, µ(t) + α)
= α+

N1 (ξ(t) + α, µ(t) + α)

D (ξ(t) + α, µ(t) + α)
= α+

ξ(t)µ(t)
[∑k

m=d λm
∑m−1
`=1 ξm−1−`(t)µ`−1(t)

]
∑k
m=d λm

∑m−1
`=0 ξm−1−`(t)µ`(t)

.

Easy computations show that substituting the expressions of ξ(t) and µ(t) on the right
hand side of the above expression we get (17) and simplifying the factor td−1 in A(t) and B(t)
we obtain (18). �

Lemma 4.2. Let d ≥ 3 be an odd number and assume α is a multiple root of p of multiplicity
d. Then

lim
t→0

S (ξ(t) + α, µ(t) + α) = (α, α) .
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Proof. Using the above lemma it is enough to show that

lim
t→0

A(t)

B(t)
= 0.

On the one hand the numerator of (18) tends to 0 as t→ 0. On the other hand the denomi-
nator writes as

λd

[
1 +m+ . . .+md−1

]
+O(t). (19)

We claim that if d is an odd number then λd
(
1 +m+ . . .+md−1) is different from zero. The

claim follows from the fact that α is a root of p of multiplicity d (λd 6= 0) and

Gd(m) := 1 +m+ . . .+md−1 =

{
d if m=1
1−md
1−m otherwise.

(20)

�

Lemma 4.3. Let d ≥ 2 be an even number and assume α is a multiple root of p of multiplicity
d. The following statements hold.

(a) If m 6= −1 then

lim
t→0

S (ξ(t) + α, µ(t) + α) = (α, α) .

(b) If m = −1 then

lim
t→0

S (ξ(t) + α, µ−1,κ,τ,σ(t) + α) = (α, yκ) ,

and the map κ 7→ yκ is one-to-one. Moreover, fixing any value of κ 6= −1 and
given any pair of values m, s ∈ R there exists a unique pair τκ, σκ ∈ R such that
S(Γ−1,κ,τκ,σκ) is a curve passing through the point (α, yκ) with slope m and curvature
s.

Proof. The proof of statement (a), m 6= −1, follows similarly as in the previous lemma. The
equalities and expressions (17), (18), (19) and (20) are exactly the same. The polynomial Gd
for d ≥ 2 even has a unique real zero at m = −1. Hence for m 6= −1 the same arguments as
before imply statement (a).

We turn our attention to the case when m = −1. Set

C(κ) =
dλd
4

(κ+ 1) + λd+1.

From Lemma 4.1, some computations show that

A(t) = −λdt+
dλd
4

(κ− 1)t2 +R1(κ, τ)t3 +O(t4),

B(t) = Ct+

(
R2(κ) +

dλd
12

(1 + τ)

)
t2 +

(
R3(κ, τ) +

dλd
24

(1 + σ)

)
t3 +O(t4),

A(t)

B(t)
= −λd

1

C
+

1

C2

(
R4(κ) +

d

4
λ2d(1 + τ)

)
t+

1

C3

(
R5(κ, τ) +

d

24
λd(1 + σ)

)
t2 +O(t3),

where Rj(κ, τ), j = 1, . . . , 5 are polynomials whose coefficients depend on λd, λd+1 and λd+2.
Consequently,

lim
t→0

S (ξ(t) + α, µ−1,κ,τ,σ(t) + α) =

(
α, α+ lim

t→0

A(t)

B(t)

)
=

(
α, α− λd

C(κ)

)
.
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This proves that the map κ 7→ yκ := α− λd/C(κ) is one to one. Since the parameters τ and
σ appear linearly on the expression of A(t)/B(t) it is easy to see that for any κ 6= −1, we
might arrange the values of τ and σ to make sure that the slope and curvature of the curve
S (α+ ξ, α+ µ−1,κ,τ,σ(t)) meet any pair {m, s}. �

5. Proof of Theorem A

We denote by D ((α, α) , ε) the disc centered at (α, α) of radius ε > 0 and by dist the
Euclidian distance. The proof of Theorem A splits into two lemmas.

Lemma 5.1. Let p a polynomial of degree k and let α be a real root of p of multiplicity d ≥ 1.
Set Q = {(x, y) ∈ R2 | x ≥ α and y ≥ α}. Let ε > 0 small enough. The following statements
hold.

(a) If d is an odd number then D ((α, α) , ε) ⊂ A(α).
(b) If d is an even number then D ((α, α) , ε) ∩Q ⊂ A(α). Moreover (α, α) ∈ ∂A(α).

Proof. If d = 1 this follows from [GJ19, Theorem A(a)].
So we first assume d > 1 is an odd number. From Lemma 4.2 we might extend continuously

the map S at the point (α, α) by defining S(α, α) = (α, α). We claim that for sufficiently
small values of ξ, µ ∈ R we have

dist (S (α+ ξ, α+ µ) , (α, α)) ≤ dist ((α, α) , (α+ ξ, α+ µ)) . (21)

To see the claim we use Lemma 3.2 to show that

S (α+ ξ, α+ µ) =

(
α+ µ, α+

N1 (α+ ξ, α+ µ)

D (α+ ξ, α+ µ)

)
, (22)

where

N1 (α+ ξ, α+ µ) = ξµ

k−1∑
m=d

p(m) (α)

m!

m−1∑
`=1

ξm−1−`µ`−1 = ξµ
p(d) (α)

d!

d−1∑
`=1

ξd−1−`µ`−1 +O (|ξ|+ |µ|)d+1 ,

D (α+ ξ, α+ µ) =

k∑
m=d

p(m) (α)

m!

m−1∑
`=0

ξm−1−`µ` =
p(d) (α)

d!

d−1∑
`=0

ξd−1−`µ` +O (|ξ|+ |µ|)d .

(23)

On the one hand observe that

S (α, α+ µ) = (α+ µ, α) and S (α+ ξ, α) = (α, α) ,

and so (21) is satisfied on those lines with equality. On the other hand if ξµ 6= 0

S (α+ ξ, α+ µ) ≈

(
α+ µ, α+ µξ

∑d−1
`=1 ξ

d−1−`µ`−1∑d−1
`=0 ξ

d−1−`µ`

)
. (24)

Hence (21) is satisfied if and only if

µ

∑d−1
`=1 ξ

d−1−`µ`−1∑d−1
`=0 ξ

d−1−`µ`
< 1. (25)

Since d is odd we have from (20) that the denominator of (24) is bounded away from zero
and always positive. So a sufficient condition to satisfy the above inequality is

d−1∑
`=1

ξd−1−`µ` <
d−1∑
`=0

ξd−1−`µ`,

which is an immediate exercise.
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Second suppose d > 1 is an even number. All inequalities above works as well and the
denominator of (24) is bounded away from zero and it is always positive as long as ξ and µ are
positive numbers. So the same conclusion as before is obtained for points in D ((α, α) , ε)∩Q.
Notice, however, that Lemma 4.3 implies that there are curves (all with slope m = −1)
passing through (α, α) whose images by S are curves passing through any point of the form
(α, y), y ∈ R. Hence we conclude that (α, α) ∈ ∂A(α). �

Statement (a) of the lemma above implies statement (a) of Theorem A. Moreover from
statement (b) of the lemma above, to finish the proof of Theorem A all we need to do is to
show that (α, α) ∈ ∂A(β), for all β 6= α a simple root of p.

Lemma 5.2. Let α a root of p of even multiplicity dα, and let β 6= α any simple real root of
p. Then (α, α) ∈ ∂A (β).

Proof. We claim that there exist curves passing through (α, α) whose second image by S
correspond to curves passing through points (β, y) for almost every y ∈ R. Since points in
this vertical line (except a finite number) belong to A (β) the lemma follows. We see the
claim into two steps.

First, observe that Lemma 4.3(b) implies that, choosing parameters for a curve Γ̂(t) passing

through (α, α), its image S
(

Γ̂(t)
)

is a curve through the point (α, β) with arbitrary slope

and curvature.
Second, let us consider an arbitrary curve Γ(t) passing through the point (α, β) with slope

m = 0 and curvature κ ∈ R. Our goal is to show that varying κ ∈ R the image curve S (Γ(t))
is a curve passing through (β, yκ), yκ ∈ R, as desired.

To simplify the computations consider the curve in (16) of the form Γ0,κ,0,0 ignoring the
higher order terms; that is,

ξ(t) = t+
1

2
t2, µ0,κ,0,0(t) =

κ

2
t2 . (26)

Then

lim
t→0

S (ξ(t) + α, µ(t) + β) =

(
β, lim

t→0

N (ξ(t) + α, µ(t) + β)

D (ξ(t) + α, µ(t) + β)

)
.

�

The Taylor’s polynomial of N and D at a point (α, β) (see Lemmas 3.3 and 3.4 for the
expressions of the partial derivatives) we get

N

(
t+

1

2
t2 + α,

κ

2
t2 + β

)
=

1

2 (α− β)

(
βp′′ (α)− αp′ (β)κ

)
t2 +O(t3)

D

(
t+

1

2
t2 + α,

κ

2
t2 + β

)
=

1

2 (α− β)

(
p′′ (α)− p′ (β)κ

)
t2 +O(t3).

Thus

lim
t→0

S (ξ(t) + α, µ(t) + β) =

(
β,
βp′′ (α)− αp′ (β)κ

p′′ (α)− p′ (β)κ

)
,

and since p′(β) 6= 0 the result follows.
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