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Abstract. Using the qualitative theory of differential equations,

the global dynamics of a cosmological model based on Hořava-

Lifshitz gravity is studied in the space with zero curvature in the

presence of the non-zero cosmological constant. The study shows

that there may be three unstable finite equilibrium positions under

the Hořava-Lifshitz cosmology model and that the final evolution

of the orbits of the cosmological model in the physical region of

interest may tend towards some infinite equilibrium position, which

may correspond to the late-time state of the universe.

1. Introduction

A decade ago Hořava [1] brought forward a new theory on space-

time asymmetric gravitation, called Hořava-Lifshitz gravity, together

with the scalar field theory of Lifshitz. This theory’s applications to

cosmology, dark energy, and black hole have stimulated many studies

(See review papers [20], [21] or regular literature [2]-[19]).

Based on whether the value of Λ (cosmological constant) is zero and

the flatness of the universe, i.e. whether the space curvature k is equal

to zero, Leon et al. [8, 9, 10, 16] divided Hořava-Lifshitz cosmology

into four cases: (1) Λ = 0, k = 0; (2) Λ = 0, k ̸= 0; (3) Λ ̸= 0, k = 0;
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(4) Λ ̸= 0, k ̸= 0 under the classic FLRW metric. They either studied

partially the three-dimensional dynamics of Hořava-Lifshitz cosmology,

or analyzed its two-dimensional dynamics under exponential potentials.

For the cosmological constant Λ that scientists have been concerning

about, Carlip [22] argued that the vacuum fluctuations under the stan-

dard effective field theory produce a huge Λ and produce high k on the

Planck scale, but it is almost invisible at the observable scale. Com-

pared with the prediction in the standard Λ cold dark matter model,

Valentino et al. [23] proposed that the cosmological space may be a

closed three-dimensional sphere, i.e., the cosmological space’s curvature

may be positive, based on the enhanced lensing amplitude in the cos-

mic microwave background power spectra confirmed by Planck Legacy

2018 release [24]. Although this study provides the latest results, the

debate about the universe’s shape has not yet been settled. An impor-

tant reason is that the calculation of the critical density of the universe

depends on the measurement of the Hubble constant, which is different

as estimated from different cosmological data. Then the boundary line

of the universe is fuzzy. So it is too early to say that the universe must

be closed.

The global dynamics of the Hořava-Lifshitz cosmology under the

background of FLRW with k = 0,Λ = 0 was studied in [5], and the

case of k ̸= 0,Λ = 0 has also been addressed in [6]. In this paper we

will consider the flat universe with Λ ̸= 0. More precisely, in this paper

we present the global dynamics of the Hořava-Lifshitz cosmology in the

three-dimensional space including the infinity, neither partial or local

dynamics, nor the two-dimensional case. The motivation for consider-

ing the cosmological constant and scalar field here is to fully explain the
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universe’s dynamic evolution and final state under the Hořava-Lifshitz

gravitational model.

2. The cosmological equations

In order to describe the cosmological model, we first briefly review

the Hořava-Lifshitz theory of gravity proposed in [1]. The field content

in this theory can be derived from the space vector Ni and scalar N,

see [10, 11]. They are actually common ‘lapse’ and ‘shift’ variables in

general relativity. From this the complete metric can be expressed as

(1) ds2 = −N2dt2 + gij(dx
i +Nidt)(dxj +Njdt), Ni = gijN

j,

where gij is a spatial metric, here i and j are natural numbers from 1

to 3. The coordinate transformations follow t → l3t, xi → lxi. Note

that gij is invariant, the same as N, but Ni is scaled to l−2Ni.

According to the detailed-balance condition, the full gravitational

action of Hořava-Lifshitz is expressed as

(2)

Sg =

∫
dtd3x

√
gN

{
2

κ2

(
KijK

ij − λK2
)
− κ2

2w4
CijC

ij

+
µκ2

2w2

ϵijk
√
g
Ril∇jR

l
k −

µ2κ2

8
RijR

ij

− µ2κ2

8(3λ− 1)

(
1− 4λ

4
R2 + ΛR− 3Λ2

)}
,

where Cij = ϵijk∇k

(
4Rj

i −Rδji
)
/(4

√
g) denotes the Cotton tensor,

Kij = (ġij − ∇iNj − ∇jNi)/(2N) represents the extrinsic curvature,

ϵijk is the totally antisymmetric unit tensor, and ϵijk/
√
g is the stan-

dard general covariant antisymmetric tensor, the indices can be raised

or lowered using the metric gij. κ, λ, w and µ are all constants, for
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more details see [1].

Consider the matter source action due to a scalar field, ϕ, as follows

(3) S =

∫
dtd3x

√
gN

(
3λ− 1

4

ϕ̇2

N2
− V (ϕ)

)
,

and the metricNi = 0, gij = a2(t)γij, γijdx
idxj = r2dΩ2

2+dr2/(1−kr2).

Here a(t) represents the scale factor of the expanding universe, which

is dimensionless, and γij refers to the constant curvature metric with

maximal symmetry. For the flat space we take k = 0 in this paper.

For the sake of simplicity, κ2 and N are normalized, and then the

corresponding cosmological model can be interpreted as

(4)

H2 =
ϕ̇2

24
+

V (ϕ)

6(3λ− 1)
− µ2Λ2

16(3λ− 1)2
,

Ḣ +
3

2
H2 = − ϕ̇2

16
+

V (ϕ)

4(3λ− 1)
− 3µ2Λ2

32(3λ− 1)2
,

ϕ̈+ 3Hϕ̇+
2V ′(ϕ)

3λ− 1
= 0,

where H is the Hubble parameter and has the form ȧ(t)/a(t).

Considering that V (ϕ) admits various mathematical forms (see [9,

25, 26, 27]), we take V (ϕ) = (ϱϕ)2n/2n with a natural number n and a

constant ϱ > 0 in this paper. Following [9, 10] we do the dimensionless

transformation

(5)

x =
ϕ̇

2
√
6H

, y =

√
V (ϕ)√

6H
√
3λ− 1

, z =
Λµ

4(3λ− 1)H
,

s = −V ′(ϕ)

V (ϕ)
, f(s) ≡ V ′′(ϕ)

V (ϕ)
− V ′(ϕ)2

V (ϕ)2
.
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Thus we obtain f(s) = −s2/(2n), which is a power-law potential, so

ds/dN =
√
6xs2/n, here N denotes the new time variable. Further-

more it follows from equations (4) and (5) that

(6)

x2 + y2 − z2 = 1,

Ḣ

H
= −3x2.

Therefore the field equations become the dimensionless form

(7)

dx

dN
=

√
6s (z2 − x2 + 1) + 3x (x2 − 1) ,

dz

dN
= 3zx2,

ds

dN
=

√
6

n
xs2.

For more details on system (7) see the equations (205)-(207) of [9]

or equations (52)-(54) of [16].

The present paper gives a fully description of the global dynamics of

system (7) in the physical area of interestG = {(x, z, s) ∈ R3 : x2 − z2 ≤ 1}.

In sections 3 and 4 we will investigate the phase portraits of system

(7) at finite and infinite equilibrium points on invariant planes and

surface. In section 5 we will discuss the phase portraits of system (7)

inside the Poincaré ball restricted to the region G. An introduction to

the Poincaré ball that can be used to study the dynamics of the system

(7) near infinity can be found in the appendix. Based on these sections,

considering the symmetry of system (7), we will study the global dy-

namics of system (7) adding its behavior at infinity. Moreover we will

give the final discussion and summary in the last section 6.
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3. Phase portraits on two invariant planes z = 0, s = 0

and on the invariant surface x2 − z2 = 1

In order to understand the local phase portraits of equilibrium points

(finite and infinite) and the global phase portraits of system (7) in the

aforementioned regionG (refer to [9] or [16] again), we begin to describe

the phase portraits on the invariant planes z = 0, s = 0 and on the

invariant surface x2 − z2 = 1.

From a dynamic point of view, if the initial point of universe evo-

lution is on an invariant plane or an invariant surface, then the evolu-

tionary trajectory of the universe will always remain on this plane or

surface, which is why we call it “invariant”.

3.1. The invariant plane z = 0. On the plane z = 0 system (7)

reduces to

(8)

dx

dN
= (x2 − 1)

(
3x−

√
6s
)
,

ds

dN
=

√
6

n
xs2.

The phase portrait of the above system in the strip z = 0 and x2 −

z2 ≤ 1 has been presented in [5] (see Figure 1). System (8) contains

a hyperbolic equilibrium point e0 = (0, 0) and two semi-hyperbolic

equilibrium points e1 = (1, 0), e2 = (−1, 0), where e0 is a saddle point,

and the other two are saddle-nodes.

3.2. The invariant plane s = 0. On the plane s = 0 system (7)

reduces

(9)
dx

dN
= 3x (x2 − 1) ,

dz

dN
= 3zx2.
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x

s

Figure 1. The phase portrait of system (7) on the
invariant plane z = 0 in the region −1 ≤ x ≤ 1.

Note that each point on the line x = 0 is an equilibrium point. In order

to eliminate the common factor x of the above equation. Introducing

the transformation with respect to time dτ1 = xdN yields

(10)
dx

dτ1
= 3 (x2 − 1) ,

dz

dτ1
= 3zx,

which has two hyperbolic equilibrium points e1 = (1, 0) and e2 =

(−1, 0). Here e1 is an unstable node and has two eigenvalues 3 and

6, but e2 is a stable node and has eigenvalues -3 and -6.

According to the Poincaré compactification method (see Chapter 5 of

[28] for more details), we perform the Poincaré transformation x = 1/v,
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z = u/v on the local chart U1, then system (9) becomes

(11)
du

dN
= 3uv2,

dv

dN
= 3v (v2 − 1) .

The transformation can help us to plot the vector field of system (9)

on the local chart U1, and can also show the trajectory going to or

coming from infinity. Since all the points at infinity (i.e. at v = 0)

of system (11) are equilibrium points, we do the transformation of the

time dτ2 = vdN , and the system (11) becomes

(12)
du

dτ2
= 3uv,

dv

dτ2
= v2 − 1.

However there is no equilibrium points in system (12).

System (9) on the local chart U2 (Poincaré transformation x = u/v,

z = 1/v) becomes

(13)
du

dN
= −3uv2,

dv

dN
= −3u2v.

Since this system’s linear term is always equal to zero, the correspond-

ing topological index is known to be zero by the Poincaré-Hopf The-

orem (for more details, see Theorem 6.30 in [28]). To study the local

phase portrait of the equilibrium point (0,0) of system (13), we use the

vertical blow-up techniques (see Ref. [29]), i.e., let w = v/u then we

have

(14)
du

dN
= −3u3w2,

dw

dN
= 3u2w(w2 − 1).

Rescaling system (14)’s time variable N as dτ3 = 3u2wdN , yields

(15)
du

dτ3
= −uw,

dw

dτ3
= w2 − 1.
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This system admits two equilibrium points (0,−1) and (0, 1) on u = 0.

Both of these two points are hyperbolic unstable saddle points with

eigenvalues of −2, 1 and 2, −1, respectively. The local phase portrait

around them is shown in Figure 2(a). Note the time rescaling between

the above two systems, the local phase portrait of system (14) can

be found in Figure 2(b). Additionally, all points on the axes u = 0

and w = 0 are singularities of system (14). Since u > 0 and w > 0

in the first quadrant I of Figure 2(b), then v = uw will decrease as

u decreases, so the local phase portrait in the quadrant I of the u-w

coordinate system (corresponding to system (14)) can be equivalently

converted to the portrait in the first quadrant of the u-v coordinate

system (corresponding to system (13)). Similarly the local phase por-

traits in the quadrants II, III and IV of the u-w coordinate system

can also be equivalently converted to these portraits in the third, sec-

ond and fourth quadrants of the u-v coordinate system, respectively.

Therefore the local phase portrait of system (13) is displayed in Figure

2(c), and the corresponding local phase portrait at the origins of U2

and the symmetrical V2 in the invariant plane s = 0 can be found in

Figure 2(d).

In summary, considering that the straight lines x = 0 and z = 0

are invariant under the flow of system (9), we can obtain that in the

Poincaré disk with s = 0, the global phase portrait is restricted to the

strip −1 ≤ x ≤ 1 in Figure 3.

3.3. The invariant surface x2 − z2 = 1. Under the flow of system

(7), we first verify that x2 − z2 = 1 is the invariant surface. If l =

l(x, z, s) = x2 − z2 − 1, then the surface x2 − z2 = 1 is invariant, only
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(a)

I

III

II

IV

(b)

I

IVII

III

(c) (d)

Figure 2. In (a), (b), and (c), there are the local phase
portraits of the equilibrium points of systems (15), (14),
and (13), respectively. In (d), there are the local phase
portraits at the origins of U2 and V2 for s = 0.

if there exists a polynomial P satisfying the equation

∂l

∂x

dx

dN
+

∂l

∂z

dz

dN
+

∂l

∂s

ds

dN
= Pl,
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x

z

Figure 3. The phase portrait restricted to the re-
gion x2 − z2 ≤ 1 on the invariant plane s = 0 inside
the Poincaré disc.

which is exactly the case with P = 2x(3x −
√
6s). The polynomial

here is derived with the help of the software Mathematica, and more

information on invariance can be found in [28].

On the surface x2 − z2 = 1 system (7) writes

(16) dx

dN
= 3x (x2 − 1) ,

ds

dN
=

√
6

n
xs2.

Then except for s-axis that is filled with equilibrium points, the above

system also has two finite semi-hyperbolic equilibrium points e1 = (1, 0)
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and e2 = (−1, 0). It follows from Theorem 2.19 of [28] that both e1

and e2 are saddle-nodes.

System (16) on the local chart U1 can be written as

(17)
du

dN
= u

[√
6

n
u+ 3 (v2 − 1)

]
,

dv

dN
= 3v (v2 − 1) .

This system admits two infinite hyperbolic equilibrium points e5 =

(0, 0) and e6 = (
√
6n/2, 0), where e5 is a stable node and has eigenvalues

−3 of multiplicity two, and the other point e6 is an unstable saddle and

has two eigenvalues ±3.

System (16) on the local chart U2 can be written as

(18)
du

dN
= u

[
−
√
6

n
u+ 3 (u2 − v2)

]
,

dv

dN
= −

√
6

n
uv.

Rescaling the time dτ4 = udN we have

(19)
du

dτ4
= −

√
6

n
u+ 3 (u2 − v2) ,

dv

dτ4
= −

√
6

n
v.

The origin (0, 0) of the above system is a hyperbolic stable node with

eigenvalues −
√
6/n and a multiplicity of 2. In this way, the origin e7 =

(0, 0) of system (18) has a local phase portrait as shown in Figure 4.

In summary the global phase portraits of system (16) is integrated

in Figure 5.

3.4. The finite equilibrium points. System (7) allows three three-

dimensional finite equilibrium points p0 = (0, 0, 0), p1 = (1, 0, 0) and

p2 = (−1, 0, 0), p0 has eigenvalues −3, 0, 0, p1 and p2 have the same

eigenvalues 6, 3, 0. Here p1 and p2 are the intersection points of x2−z2 =

1, s = 0 and z = 0 that were just studied in the previous subsections
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Figure 4. The local phase portrait at the origin of
U2 for x2 − z2 = 1.

x

s

Figure 5. Phase portrait on the invariant surface
x2 − z2 = 1.
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3.1-3.3, that is, p1 and p2 are the equilibrium points e1 and e2, respec-

tively. The origin p0 is located in the middle of the intersection of z = 0

and s = 0, and it is the equilibrium point e0 studied in the previous

subsection 3.1.

4. Phase portrait on the surface of Poincaré ball at

infinity

The three-dimensional Poincaré compactification (see Appendix or

[30] for more details) is used to study the dynamics of the system (7)

near infinity in this section. So we have x = 1/z3, z = z1/z3, s = z2/z3

on the local chart U1, and then system (7) on the U1 is reduced to

(20)

dz1
dN

= z1
[
3z23 −

√
6z2 (−1 + z21 + z23)

]
,

dz2
dN

= z2

[
3 (z23 − 1) +

√
6z2

(
1 + n

n
− z21 − z23

)]
,

dz3
dN

= z3
[
3 (z23 − 1) +

√
6z2 (1− z21 − z23)

]
.

In different local charts, z3 = 0 corresponds to the infinity of R3.

The equilibrium points of the system (20) are listed in Table 1, where

the equilibrium point u31 represents the origin of the local chart U3,

and the other equilibrium points lie in the local chart U1. Additionally,

for any constant a, ua0 means that s = 0 on local chart U1 is filled with

equilibrium points.

For the case z3 = 0 system (20) becomes

(21)

dz1
dN

=
√
6z1z2 (1− z21) ,

dz2
dN

= z2

[
−3 +

√
6z2

(
1 + n

n
− z21

)]
.
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Table 1. The equilibrium points on the local charts of
the surface of the Poincaré ball at R3 infinity.

Equilibrium points Eigenvalues

u11 = (0, 0, 0) −3,−3, 0

u12 =

(
−1,

√
6

2
n, 0

)
−3, 3,−6n

u13 =

(
1,

√
6

2
n, 0

)
−3, 3,−6n

u14 =

(
0,

√
6n

2(n+ 1)
, 0

)
− 3

n+ 1
,

3n

n+ 1
, 3

ua0 = (a, 0, 0) −3,−3, 0

u31 = (0, 0, 0) 0, 0, 0

Rescaling the time dτ5 = z2dN , system (20) is reduced to

(22)

dz1
dτ5

=
√
6z1 (1− z21) ,

dz2
dτ5

= −3 +
√
6z2

(
1 + n

n
− z21

)
.

Then system (22) allows equilibrium points ei,1, ei,2 and ei,3, the coor-

dinates of which are (∓1,
√
6n/2) and (0,

√
6n/(2n+ 2)), respectively.

Note that the subscript “i” here has no special meaning. Although the

corresponding equilibrium points are indeed on the infinite Poincaré

sphere, they are just to distinguish them from the equilibrium points

on the invariant planes and surface. The equilibrium points ei,1 and ei,2

are hyperbolic unstable saddles with eigenvalues 3 and −6n, and the

equilibrium point ei,3 is a hyperbolic unstable node with eigenvalues

3n/(1+n) and 3. The phase portrait on local chart U1 of the Poincaré

sphere at infinity is shown in Figure 6.
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e i,2e i,1

e i,3

z

s

Figure 6. The phase portrait of system (7) on the
local chart U1 at infinity.

On the local chart U2 we have Poincaré compactification x = z1/z3, z =

1/z3, s = z2/z3, the system (7) becomes

(23)

dz1
dN

= −z1z
2
3 +

√
6z2 (1− z21 + z23) ,

dz2
dN

= z1z2

(
−3z1 +

√
6

n
z2

)
,

dz3
dN

= −3z21z3.
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To study the phase portrait at infinity we take z3 = 0, and changing

the time dτ6 = z2dN system (23) is equivalent to

(24)

dz1
dτ6

=
√
6 (1− z21) ,

dz2
dτ6

= z1

(
−3z1 +

√
6

n
z2

)
.

Since (0, 0) is the non-equilibrium point of system (24), there is no

need to continue to investigate the equilibrium points at infinity in U2.

These have been discussed in the chart U1.

On the local chart U3 we have Poincaré compactification x = z1/z3, z =

z2/z3, s = 1/z3, then system (7) writes

(25)

dz1
dN

= z1

[
−
√
6(1 + n)

n
z1 + 3z21 − 3z23

]
+
√
6 (z22 + z23) ,

dz2
dN

= z1z2

(
−
√
6

n
+ 3z1

)
,

dz3
dN

= −
√
6

n
z1z3.

It can be followed from system (25) that

(26)

dz1
dN

= z1

[
−
√
6(1 + n)

n
z1 + 3z21

]
+
√
6z22 ,

dz2
dN

= z1z2

(
−
√
6

n
+ 3z1

)
.

Note that the origin (0, 0) is a linearly zero equilibrium point of the

above system. According to the Poincaré-Hopf Theorem, the topolog-

ical index is zero. The vertical blow-up technique will be applied to
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investigate its local phase portrait. Then defining w = z2/z1 we have

(27)

dz1
dN

= z21

[√
6

(
−1 + n

n
+ w2

)
+ 3z1

]
,

dw

dN
=

√
6z1w (w2 − 1) .

Rescaling the time dτ7 = z1dN and eliminating the common factor z1

of system (27), then we obtain

(28)

dz1
dτ7

= z1

[√
6

(
−1 + n

n
+ w2

)
+ 3z1

]
,

dw

dτ7
=

√
6w (w2 − 1) .

Since there are three hyperbolic equilibrium points ei,4 = (0,−1), ei,5 =

(0, 1) and ei,6 = (0, 0) of system (28) on z1 = 0, the previous two are

stable nodes with eigenvalues of −2
√
6 and −

√
6/n, the last one is an

unstable saddle point with eigenvalues of −
√
6(n + 1)/n and

√
6. We

note that this is the same as the equilibrium points in the system (26)

of reference [6]. So the local phase portraits of systems (28), (27) and

(26) are shown in Figures 7(a), 7(b) and 7(c), respectively, and Figure 8

shows the phase portrait at the origin of the local chart U3.

Combined with the previous discussion, Figure 9 shows the global

phase portrait at infinity on the Poincaré sphere.

5. Phase portraits within the Poincaré sphere

conditioned to x2 − z2 ≤ 1

The dynamical system (7) is invariant under the two symmetry trans-

fromations about the origin and the z-axis, i.e., (x, z, s) 7→ (−x,−z,−s)

and (x, z, s) 7→ (−x, z,−s). So we divide the Poincaré ball restricted
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(a) (b)

(c)

Figure 7. The local phase portraits (a), (b), and (c) of
the above equilibrium points correspond to systems (28),
(27), and (26), respectively.

to the region G into four regions as follows

R1 : z ≤ 0, s ≥ 0. R3 : z ≥ 0, s ≥ 0.

R2 : z ≤ 0, s ≤ 0. R4 : z ≥ 0, s ≤ 0.

In view of the aforementioned symmetries, we only need to focus on

the phase portrait of system (7) in one region (such as R1).
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e i,1

e i,3

e i,2

u31

x

z

Figure 8. The phase portrait of system (7) in the
local chart U3 at infinity.

Combining the phase portrait in the invariant planes s = 0, and

z = 0 with the phase portrait in the invariant surface x2 − z2 = 1,

and the phase portrait at infinity, the phase portrait on the boundary

surface of R1 is as shown in Figure 10. Now we divide the boundary

surface of the region R1 into six parts (see Figure 11 for more details),

to show the phase portrait of R1 more clearly. It can be found from

Figures 10(a) and 10(b) that the equilibrium point u31 of the Poincaré

ball is stable on the front boundary surfaces F1 and F2, and there is a

stable parabolic sector and an elliptic sector segment F3. However, on

the back boundary surfaces B1 and B2, the north pole u31 is unstable.
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u13u12

u14

u11

u31

z

s

x

Figure 9. The global phase portrait of system (7)
on the Poincaré sphere at infinity.

5.1. Dynamics inside the region R1. System (7) has three finite

equilibrium points p0, p1 and p2. The dynamical behavior of system

(7) in the Interior of the region R1 depends on the comprehensive per-

formance of the flow in the surface and planes

h(x, z, s) = 0, x = 0, z = 0, s = 0,

where

h(x, z, s) =
√
6s (z2 − x2 + 1) + 3x (x2 − 1) .

The above planes and surface cut the region R1 into four different

subregions Si, i = (1, . . . , 4), see Figures 12 and 13 for more details.

It is noted that h < 0 in the subregions S1 and S4, and h > 0 in the
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Figure 10. Phase portraits on the boundary surface R1:
(a). The front boundary surface; (b). The back boundary
surface; (c). The bottom plane.

subregions S2 and S3. To avoid confusion, please note that the solid

and dotted lines in Figure 13 is consistent with those in Figure 12.

As it is shown in S1 (see Figure 13(a)) the upper surface is included in

the blue surface h = 0, and the bottom plane is included in the invariant

plane s = 0. According to Table 2, the orbits monotonically decrease in

the x and z directions. In the s direction, they monotonically increase,

so the orbits in the subregion S1 can only start at the finite equilibrium

point p1 and pass through the upper surface of S1 into the subregion
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Figure 11. The six boundaries of R1.

S2. However in subregion S2 (see Figure 13(b), i.e. the remaining

part after S1 is extracted from the region R1 when x > 0, the orbits

monotonically increase in the x and s directions but monotonically

decrease in the z-direction. So we find that the orbits in S2 can only

start at p1 or the equilibrium points on the negative z-axis, and they

eventually move towards the infinity equilibrium point u12 fixed on the

surface of S2. Therefore the dynamic behavior of the orbits on these
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u31

p2

p0

p1

u12

h=0

z

s

x

Figure 12. There are four subregions inside the re-
gion R1 of the Poincaré ball.

two subregions can be represented in the following form

u12S2S1

p1

negative z-axis.

Table 2. The dynamics of the four subregions.

Subregions Associated Region Monotonicity

S1 h < 0, x > 0, z < 0, s > 0 ẋ < 0, ż < 0, ṡ > 0

S2 h > 0, x > 0, z < 0, s > 0 ẋ > 0, ż < 0, ṡ > 0

S3 h > 0, x < 0, z < 0, s > 0 ẋ > 0, ż < 0, ṡ < 0

S4 h < 0, x < 0, z < 0, s > 0 ẋ < 0, ż < 0, ṡ < 0

In subregion S3 (see Figure 13(c)) the left vertical plane facing us is

contained in the plane x = 0, and the right vertical plane is contained
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Figure 13. The four subregions Si of R1 (i = 1 · · · , 4).

in the invariant plane z = 0. In the opposite surfaces the left one is

included in the surface of the Poincaré sphere, and the right one is

included in the surface h = 0. Since the orbits in S3 monotonically

decrease in the z and s directions, and they increase monotonically

in the x direction, it follows that the orbits will eventually go to the

equilibrium point which lie in the equator or go to the negative z-axis

in that region, and the orbits in this region may only come from the

adjacent subregion S4 (see Figure 13(d)). The left and right surfaces
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of subregion S4 belong to the surfaces h = 0 and x2 − z2 = 1 (x < 0),

respectively. Since all the orbits are monotonically decreasing in S4,

the orbits in this region arrive from the infinite equilibrium point u31,

i.e. north pole of the Poincaré ball, and tend to the infinite equilibrium

points on the equator of this region at a future date, or enter into the

subregion S3. This dynamical behavior can be represented as follows

S4u31

equator in S4

S3

equator in S3

negative z-axis.

Therefore the orbits’ dynamic behavior inside the four subregions of

R1 investigated above can be condensed to

u31 negative z-axis u12.

p1

equator in S4

equator in S3

This flow chart states clearly that the orbits of system (7) included

in R1 have α-limit at p1 and the north pole u31 (also referred to as past

attractors or negative attractors) of the Poincaré sphere. Additionally

the orbits have ω-limit either at u12 (also called future attractor or

positive attractor), or other infinite equilibrium points on the equator

of subregions S3 and S4, which are located at the intersection of the

Poincaré ball and at the infinity of the invariant planes s = 0 in R3

when x < 0, see Figure 12 or Figures 13(c) and 13(d).
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Therefore all the global dynamical behavior of the system (7) is rep-

resented qualitatively and completely.

6. Conclusions

In the present paper we have fully described the global phase portrait

of Hořava-Lifshitz cosmology in the presence of non-zero cosmological

constant and zero curvature in the region of physical interest G. By

taking the fact that the cosmological equations remains invariant under

the two symmetries mentioned in section 5, the global phase portrait

of the cosmological model in G is provided completely.

From the perspective of cosmology, combining the phase portrait

analysis of system (7) in Sections 3-5 and the formulations of the den-

sity parameter and the equation-of-state parameter of dark energy in

[10], we know that the unstable finite equilibrium points p1 and p2 are

dominated by dark matter with negligible dark energy, and the finite

equilibrium p0 located on the equilibrium point line may also be char-

acterized by more physical dark matter if the initial conditions are not

in the invariant plane z = 0. Besides the initial conditions in the invari-

ant planes s = 0 and z = 0 as well as on the backside of the invariant

surface x2 − z2 = 1, the phase portrait displays that the eventual evo-

lution of the orbits of the cosmological model in G tends to the infinite

equilibrium point u12, which can be the late-time state of the universe

and to other infinite equilibrium points placed at the equator of the

Poincaré ball. For the Hořava-Lifshitz gravity in a FLRW space-time

with k = 0 and Λ ̸= 0, equations (5) implies that the Hubble pa-

rameter H tends to zero in forward time in this cosmological model,

and this is an important difference between the Hořava-Lifshitz model
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and the standard ΛCDM model where the universe evolves to a purely

Λ-dominated state with constant non-zero Hubble parameter.

Appendix: The Poincaré compactification in R3 [28]

For a polynomial vector field X= (P1, P2, P3), and the degree n =

max {deg(Pi) : i = 1, 2, 3}, its differential system is

dx

dN
= P1(x, y, z),

dy

dN
= P2(x, y, z),

dz

dN
= P3(x, y, z).

Defining the unit sphere in R4 by S3 = {y = (y1, y2, y3, y4) ∈ R4 :

∥y∥ = 1}, we denote the northern hemisphere by S+ = {y ∈ S3 : y4 > 0},

the southern hemisphere by S− = {y ∈ S3 : y4 < 0}, the equator of

S3 by the 2-sphere S2 = {y ∈ S3 : y4 = 0}, the tangent space at the

point y of S3 by TyS3. Hence the tangent hyperplane T(0,0,0,1)S3 =

{(x1, x2, x3, 1) ∈ R4 : (x1, x2, x3) ∈ R3} is identified with R3. Moreover

let

f+ : R3 = T(0,0,0,1)S3 → S+, f+(x) =
1

∆x
(x1, x2, x3, 1),

and

f− : R3 = T(0,0,0,1)S3 → S−, f−(x) = − 1

∆x
(x1, x2, x3, 1),

be the two central projections, where ∆x =
(∑3

i=1 x
2
i + 1

)1/2
. Then f+

and f− are identified by R3 with the two hemispheres of S3. These two

central projections clarify two transcripts of X, i.e. Df+ ◦ X in S+,

and Df− ◦X in S−. Let X̃ be the vector field on S3\S2 = S+ ∪ S−.

Now we analytically continue the vector field X̃(y) to the entire

sphere S3 by p(X)(y) = yn−1
4 X̃(y). The continued vector field p(X)

is named Poincaré compactification of X. We note that the infinity
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of R3 represented by S2 is invariant for the vector field p(X). The

compactification for polynomial vector fields in R2 was introduced by

Poincaré, and one can find its extension to Rm from [30]. Next we shall

study the orthogonal projection of the closed S+ to y4 = 0, which is a

closed ball B (designated Poincaré ball) with radius 1, its inner area is

diffeomorphic to R3, and its boundary surface S2 is identified with R3

at infinity.

Since S3 is a differentiable manifold, we must consider eight local

charts (Ui, Fi) and (Vi, Gi) in order to study the dynamics of p(X),

where

Ui = {y ∈ S3 : yi > 0}, Vi = {y ∈ S3 : yi < 0},

and the diffeomorphisms

Fi : Ui → R3, Gi : Vi → R3 for i = 1, 2, 3, 4,

are the central projections’ inverses from the origin to the center of

the tangent planes at the points (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0)

and (0, 0, 0,±1), respectively. Then the expression of p(X) in the local

chart U1 is

zn3
(∆z)n−1

(−z1P1 + P2,−z2P1 + P3,−z3P1),

where Pi = Pi(1/z3, z1/z3, z2/z3). In the local chart U2 we have

zn3
(∆z)n−1

(−z1P2 + P1,−z2P2 + P3,−z3P2),

where Pi = Pi(z1/z3, 1/z3, z2/z3). In the local chart U3 we obtain

zn3
(∆z)n−1

(−z1P3 + P1,−z2P3 + P2,−z3P3),
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where Pi = Pi(z1/z3, z2/z3, 1/z3). In the local chart U4 we get

zn−1
3 (P1, P2, P3),

where Pi = Pi(z1, z2, z3). Furthermore the demonstration of p(X) in

the local chart Vi is the same as in the Ui multiplied by (−1)n−1.

In addition the above factor 1/(∆z)n−1 is omitted by doing a time

rescaling when we use the expressions of the compactified vector field

p(X) in the local charts.
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