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Abstract. The global dynamics of a cosmological model based

on Hořava-Lifshitz gravity in the presence of curvature is described

by using the qualitative theory of differential equations.

1. Introduction

In recent years Hořava [1] proposed a spacetime asymmetric gravi-

tational theory similar to Lifshitz’s scalar field theory, also known as

Hořava-Lifshitz gravity. This theory has inspired a great deal of re-

search for its applications in cosmology and black hole physics (see

[2]-[17] or the review articles [18], [19] and the references therein).

Here we will investigate the global dynamics of the Hořava-Lifshitz

scalar field cosmology under the Friedmann-Lemâıtre-Robertson-Walker

background spacetime in the presence of curvature and no cosmological

constant term. The corresponding dimensionless field equations admit

the following form

(1)

dx

dt
= x (3x2 − 2z2 − 3) +

√
6s (1− x2 + z2) ,

dz

dt
= z (3x2 − 2z2 − 2) ,

ds

dt
= −2

√
6xf(s),
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where the power law potential f(s) = −s2/(2n) with a natural number

n. See equations equations (113)-(115) of [8] or (44)-(46) of [14] for

more details.

The Hořava-Lifshitz cosmological model with zero curvature and

without cosmological constant term was studied in [5]. Furthermore,

in the references [3, 7, 8, 9, 14], the authors either studied the global

dynamics of the planar case of system (1) considering only the vari-

ables x and z by using the two-dimensional Poincaré compactification,

or discussed only local dynamics of system (1) without investigate the

dynamics close to infinity. Our study fully describes the global dy-

namics of system (1) in the region G = {(x, z, s) ∈ R3 : x2 − z2 ≤ 1}

of physical interest.

2. Phase portraits on the invariant planes and surface

In order to study the local phase portraits of the finite and infinite

equilibrium points, and the global phase portraits of system (1) in the

region G, which is the meaningful region for cosmology, see again [8]

or [14]. We start discussing the phase portraits on its invariant planes

and surface

z = 0, s = 0, x2 − z2 = 1.

2.1. The invariant plane z = 0. On this plane system (1) becomes

(2)

dx

dt
= (x2 − 1)

(
3x−

√
6s
)
,

ds

dt
=

√
6

n
xs2.

The phase portraits of system (2) in the strip z = 0 and x2 − z2 ≤ 1,

i.e. in z = 0, −1 ≤ x ≤ 1, it has been studied in [5], and the phase
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portraits is shown in Figure 1, where the hyperbolic equilibrium point

e0 = (0, 0) is a saddle, both the semi-hyperbolic equilibrium points

e1 = (1, 0) and e2 = (−1, 0) are saddle-nodes.

x

s

Figure 1. The phase portraits of the invariant plane
z = 0 in the region −1 ≤ x ≤ 1.

2.2. The invariant plane s = 0. On this plane system (1) becomes

(3)
dx

dt
= x (3x2 − 2z2 − 3) ,

dz

dt
= z (3x2 − 2z2 − 2) ,

which has three equilibrium points e0 = (0, 0), e1 = (1, 0) and e2 =

(−1, 0). Here e0 is a hyperbolic stable node with eigenvalues -3 and -2,

both e1 and e2 are unstable hyperbolic nodes with eigenvalues 6 and 1.
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On the local chart U1 (see Chapter 5 of [20] for more details on the

Poincaré compactification) system (3) becomes

(4)
du

dt
= uv2,

dv

dt
= v (−3 + 2u2 + 3v2) .

Since this system vanishes at v = 0, all the points at infinity are equilib-

rium points. Taking the transformation with respect to time dτ = vdt

yields

(5)
du

dτ
= uv,

dv

dτ
= −3 + 2u2 + 3v2.

This system has two hyperbolic points at infinity, e3 = (−
√

6/2, 0) and

e4 = (
√

6/2, 0), both of them are unstable hyperbolic saddle points

with eigenvalues ±
√

6.

On the local chart U2 system (3) writes

(6)
du

dt
= −uv2, dv

dt
= v (2− 3u2 + 2v2) .

Rescaling the time of system (6) by letting dτ = vdt we obtain

(7)
du

dτ
= −uv, dv

dτ
= 2− 3u2 + 2v2.

In view of (0, 0) is not an equilibrium point of system (7), we will

not continue to study other infinite equilibrium points of system (7)

because they have been studied in local chart U1.

Therefore the global phase portraits of system (3) can be found in

Figure 2.

2.3. The invariant surface x2 − z2 = 1. First we prove that the

surface x2 − z2 = 1 is invariant under the flow of system (1). If l =

l(x, z, s) = x2 − z2 − 1, then in order that the surface x2 − z2 = 1 be
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x

z

Figure 2. The phase portrait on the invariant plane
s = 0 restricted to the region x2 − z2 ≤ 1.

invariant we must have

∂l

∂x
ẋ+

∂l

∂z
ż +

∂l

∂s
ṡ = Kl,

for some polynomial K, and this is the case with K = 2(3x2 − 2z2 −
√

6xs).

On the surface x2 − z2 = 1 system (1) can be written as

(8) dx

dt
= x (x2 − 1) ,

ds

dt
=

√
6

n
xs2.

Then except for all the points on x = 0 which are equilibrium points,

system (8) also admits two finite equilibrium points e1 = (1, 0) and

e2 = (−1, 0). By using Theorem 2.19 of [20], we can find that both e1

and e2 are semi-hyperbolic saddle-nodes.
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On the local chart U1 system (8) becomes

(9)
du

dt
= u

(√
6

n
u+ v2 − 1

)
,
dv

dt
= v (v2 − 1) .

It has two infinite equilibrium points e5 = (0, 0) and e6 = (
√

6n/6, 0),

where e5 is a hyperbolic stable node with eigenvalues −1 of multiplicity

two, and e6 is a hyperbolic unstable saddle point with eigenvalues ±1.

On the local chart U2 system (8) writes

(10)
du

dt
= u

(
−
√

6

n
u+ u2 − v2

)
,
dv

dt
= −
√

6

n
uv.

Let dτ = udt we obtain

(11) du

dτ
= −
√

6

n
u+ u2 − v2, dv

dτ
= −
√

6

n
v.

The origin e7 = (0, 0) on the local chart U2 is a hyperbolic stable node

with eigenvalues −
√

6/n of multiplicity two.

In short the global phase portraits of system (8) is shown in Figure

3.

2.4. The finite equilibrium points. It is noted that system (1)

admits three finite equilibrium points p0 = (0, 0, 0) with eigenvalues

(−3,−2, 0), p1 = (1, 0, 0) and p2 = (−1, 0, 0) with the same eigenvalues

(6, 1, 0). Here p1 and p2 are located at the intersection of the invariant

planes z = 0, s = 0 and the invariant surface x2−z2 = 1, corresponding

to the equilibrium points e1 and e2 in subsections 2.1-2.3, respectively.

The origin p0 of system (1) lies at the intersection of the invariant

planes z = 0 and s = 0, which is the same point as the equilibrium

point e0 studied in subsections 2.1 and 2.2.
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x

s

Figure 3. The phase portrait of the invariant sur-
face x2 − z2 = 1.

3. Phase portraits on the Poincaré sphere at infinity

In order to describe the dynamics of system (1) at infinity. We use

the method of the three-dimensional Poincaré compactification (see [21]

for more details) x = 1/z3, z = z1/z3, s = z2/z3, then the analytical

vector field of system (1) on the local chart U1 becomes

(12)

dz1
dt

= z1
[
z23 −

√
6z2 (−1 + z21 + z23)

]
,

dz2
dt

= z2

[
−3 + 2z21 + 3z23 +

√
6z2

(
1

n
+ 1− z21 − z23

)]
,

dz3
dt

= −z3
[
z21
(
−2 +

√
6z2
)

+
(
−3 +

√
6z2
)

(−1 + z23)
]
.

In the different local charts of the Poincaré sphere, the infinity of

R3 corresponds to z3 = 0, then system (12) has the equilibrium points

listed in Table 1. Except that the equilibrium point u31 denotes the
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origin of the local chart U3, the rest equilibrium points lie in the local

chart U1. Moreover the straight line s = 0 of the local chart U1 is filled

with the equilibrium points ua0 for all a ∈ R.

Table 1. Equilibrium points on the different local
charts of the Poincaré sphere at the infinity of R3.

Equilibrium points Eigenvalues

u11 = (0, 0, 0) (−3,−3, 0)

u12 =

(
−
√

6

2
, 0, 0

)
(0, 0, 0)

u13 =

(√
6

2
, 0, 0

)
(0, 0, 0)

u14 =

(
−1,

√
6

6
n, 0

)
(−1, 1,−2n)

u15 =

(
1,

√
6

6
n, 0

)
(−1, 1,−2n)

u16 =

(
0,

√
6

2

n

1 + n
, 0

) (
− 3

1 + n
,

3n

1 + n
, 3

)
ua0 = (a, 0, 0)

(
0,−3 + 2a2,−3 + 2a2

)
u31 = (0, 0, 0) (0, 0, 0)

For the case z3 = 0 system (12) is reduced to

(13)

dz1
dt

= −
√

6z1z2 (−1 + z21) ,

dz2
dt

= z2

[
−3 + 2z21 +

√
6z2

(
1

n
+ 1− z21

)]
.

After changing the of time dτ = z2dt system (13) becomes

(14)

dz1
dτ

= −
√

6z1 (−1 + z21) ,

dz2
dτ

= −3 + 2z21 +
√

6z2

(
1

n
+ 1− z21

)
.
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Then this system has three equilibrium points ei,1, ei,2 and ei,3 with

coordinates (−1,
√

6n/6), (1,
√

6n/6) and (0,
√

6n/(2(1 + n))), respec-

tively. Here both ei,1 and ei,2 are unstable saddle points with eigenval-

ues
√

6/n and −2
√

6. ei,3 is an unstable node with eigenvalues
√

6 and
√

6(1 + n)/n. The phase portrait on the Poincaré sphere at infinity on

local chart U1 is shown in Figure 4.

z

s

Figure 4. The phase portrait of system (1) at in-
finity on local chart U1.

On the local chart U2 in view of Poincaré compactification x =

z1/z3, z = 1/z3, s = z2/z3, system (1) writes

(15)

dz1
dt

= −z1z23 +
√

6z2 (1− z21 + z23) ,

dz2
dt

= z2

(
2− 3z21 +

√
6

n
z1z2 + 2z23

)
,

dz3
dt

= z3 (2− 3z21 + 2z23) .
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Since we want to study the infinity we take z3 = 0, rescaling the

time dτ = z2dt system (15) is equivalent to

(16)

dz1
dτ

=
√

6 (1− z21) ,

dz2
dτ

= 2− 3z21 +

√
6

n
z1z2.

For any constant b, since (b, 0) is not the equilibrium point of the system

(16), we will not continue to discuss other infinite equilibrium points

of the system (16). Because this has been discussed in the case U1.

On the local chart U3 the three-dimensional Poincaré compactifica-

tion is x = z1/z3, z = z2/z3, s = 1/z3, then system (1) becomes

(17)

dz1
dt

= z1

[
−
√

6(1 + n)

n
z1 + 3z21 − 2z22 − 3z23

]
+
√

6 (z22 + z23) ,

dz2
dt

= z2

[
−
√

6

n
z1 + 3z21 − 2 (z22 + z23)

]
,

dz3
dt

= −
√

6

n
z1z3.

For the case z3 = 0 from system (17) we obtain

(18)

dz1
dt

= z1

[
−
√

6(1 + n)

n
z1 + 3z21 − 2z22

]
+
√

6z22 ,

dz2
dt

= z2

(
−
√

6

n
z1 + 3z21 − 2z22

)
.

It is noted that (0, 0) is a linearly zero equilibrium point, the topological

index is zero from the Poincaré-Hopf theory (see Theorem 6.30 of [20]

for more details). In order to study its local phase portrait we shall

use vertical blow-ups (see for instance [22]) by letting w = z2/z1, then
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we obtain

(19)

dz1
dt

= z21

[√
6

(
− 1

n
− 1 + w2

)
+ (3− 2w2) z1

]
,

dw

dt
= −
√

6z1w (−1 + w2) .

Eliminating the common factor z1 of system (19) by changing the time

dτ = z1dt it yields

(20)

dz1
dτ

= z1

[√
6

(
− 1

n
− 1 + w2

)
+ (3− 2w2) z1

]
,

dw

dτ
= −
√

6w (−1 + w2) .

System (20) admits three equilibrium points ei,4 = (0,−1), ei,5 = (0, 1)

and ei,6 = (0, 0) on z1 = 0, where ei,4 and ei,5 are two hyperbolic stable

nodes with eigenvalues −
√

6/n and −2
√

6, ei,6 is a hyperbolic unstable

saddle point with eigenvalues
√

6 and −
√

6(1 + n)/n. The local phase

portraits around ei,4, ei,5 and ei,6 are shown in Figure 5(a). Note that

there is a time rescaling dτ = z1dt between systems (19) and (20), so

the direction of the trajectories in the local phase portraits of system

(19) is opposite to that of Figure 5(a) when z1 < 0, see Figure 5(b)

for more details. In addition, all points on the w axis, i.e. z1 = 0, are

singularities of system (19). Thus the local phase portraits at (0, 0) of

system (18) is shown in Figure 5(c). Then the phase portrait in the

local chart U3 is shown in Figure 6.

In summary joining the previous information we obtain the global

phase portraits at infinity in the Poincaré sphere in Figure 7.
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(a) (b)

(c)

Figure 5. In (a), (b) and (c) there are the local phase
portraits of the equilibrium points in systems (20), (19)
and (18), respectively.

4. Phase portraits inside the Poincaré ball restricted to

x2 − z2 ≤ 1

It is noted that system (1) is invariant under the symmetries (x, z, s) 7→

(−x,−z,−s) and (x, z, s) 7→ (−x, z,−s), so it is invariant under the
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x

z

Figure 6. The phase portrait of system (18), i.e.
the phase portrait at infinity in the local chart U3 of
system (1).

symmetry with respect to the origin and to the z-axis. Now we di-

vide the Poincaré ball restricted to x2 − z2 ≤ 1 into the following four

regions:

R1 : z ≤ 0, s ≥ 0. R2 : z ≤ 0, s ≤ 0.

R3 : z ≥ 0, s ≥ 0. R4 : z ≥ 0, s ≤ 0.

Then due to the symmetries we only need to study the phase portraits

of system (1) in the region R1.

Combining the phase portraits of the invariant surface x2 − z2 = 1

with the phase portraits of the planes z = 0, and s = 0, together

with the phase portrait at infinity, we get the phase portraits on the

boundary of the region R1 as shown in Figures 8-10. Here we explain

the definition of the three-dimensional cartesian coordinate system in

this paper as follows: we regard the xz-plane as the horizontal plane
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z

s

x

Figure 7. The global phase portrait at infinity in
the Poincaré sphere. The North Pole of the Poincaré
ball is the equilibrium point u31. The symmetric
points of u12 and u13 with respect to the center of
the sphere are U12 and U13, respectively.

in R3, where the direction of the z-axis is horizontal towards the right.

If the z-axis axis rotates 90 degrees clockwise we get the x-axis. The

s-axis is vertical upward, and then xzs constitutes a three-dimensional

right-handed cartesian coordinate system.

In order to show the phase portraits more clearly, the boundary of

the region R1 is divided into six surfaces according to the orientation

towards us, the back to us and the bottom area. See Figure 11 for more

details. It is noted that the North Pole u31 of the Poincaré ball on the

front boundary surfaces F1 and F2 is stable, and there is an elliptic

sector and a stable parabolic sector segment of U3 on the boundary F3,

but it is unstable on the back boundary surfaces B1 and B2.
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z

s

x

Figure 8. Phase portrait in the front boundary of
the region R1.

z

s

x

Figure 9. Phase portrait in the back boundary of
the region R1.

5. Dynamics in the interior of the region R1

Note that the original system (1) admits the three finite equilib-

rium points p0, p1 and p2 in the three-dimensional cartesian coordinate



16 FABAO GAO1,2, AND JAUME LLIBRE2

z

s

x

Figure 10. Phase portrait in the bottom of the re-
gion R1.

U13

u31

p2

U13

u31

p2

U13

u12

p1

p0

u31

u12

u14

u31

u12

u14

p1

p2

u31

p1

p0

F1

F2

F3

B1 B2

C

Figure 11. The six boundary surfaces of the region R1.

system. The dynamical behavior of the system inside the region R1 de-

pends on the behavior of the flow in the following surfaces and planes

h(x, z, s) = 0, g(x, z) = 0, x = 0, z = 0, s = 0,
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where

h(x, z, s) = x (3x2 − 2z2 − 3) +
√

6s (1− x2 + z2) ,

g(x, z) = 3x2 − 2z2 − 2.

These surfaces and planes divide the region R1 into seven different

subregions R1i, i = (1, 2, . . . , 7), see Figures 12-19 for more details. It

should be noted that R11 and R13 represent parallel tunnels inside R1,

respectively. It is easy to verify that h > 0 in the subregions R12, R14,

R15 and R16, and h < 0 in the subregions R11, R13 and R17. Similarly,

we can find that g > 0 in the subregions R11, R12, R16 and R17, and

g < 0 in the subregions R13, R14 and R15. It should be noted that

the dotted and solid lines in Figures 13-19 are consistent with those in

Figure 12.

z

s

x

Figure 12. There are seven subregions inside the
region R1 of the Poincaré ball.

As shown in the subregion R11 (see Figure 13) the front surface

consists of three dashed lines and one solid line contained in the surface
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z

s

x

Figure 13. The subregion R11.

z

s

x

Figure 14. The subregion R12.

h = 0, and the surface on the back side (opposite to the above front

surface) contained in the surface g = 0.

In Table 2 we describe the behavior of ẋ, ż and ṡ in the seven sub-

regions R11, . . . , R17. From this table we obtain that the variables x

and z in the subregion R11 decrease monotonically, and the variable s

increases monotonically, so an orbit in the subregion R11 either crosses

the boundary h = 0 and enters into the subregion R12, or crosses the
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z
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x

Figure 15. The subregion R13.

z

s

x

Figure 16. The subregion R14.

boundary g = 0 and goes to the subregion R13, or crosses the intersec-

tion curve of the subregions R11, R12 and R13 into the subregion R14

with very low probability, i.e. an orbit in the subregion R11 will not

stay in the future in this region, but will exit through its boundaries

into other subregions, and these orbits in backwards time come from

the equilibrium point p1 in the subregion R11. This process can be
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z

s

x

Figure 17. The subregion R15.

z

s

x

Figure 18. The subregion R16.

simply summarized as follows

p1 R11 R13.

R12

R14
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z
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x

Figure 19. The subregion R17.

Table 2. Dynamical behavior in seven different subregions

Subregions Corresponding Region Increase or decrease

R11 h < 0, g > 0, x > 0, z < 0, s > 0 ẋ < 0, ż < 0, ṡ > 0

R12 h > 0, g > 0, x > 0, z < 0, s > 0 ẋ > 0, ż < 0, ṡ > 0

R13 h < 0, g < 0, x > 0, z < 0, s > 0 ẋ < 0, ż > 0, ṡ > 0

R14 h > 0, g < 0, x > 0, z < 0, s > 0 ẋ > 0, ż > 0, ṡ > 0

R15 h > 0, g < 0, x > 0, z < 0, s > 0 ẋ > 0, ż > 0, ṡ < 0

R16 h > 0, g > 0, x > 0, z < 0, s > 0 ẋ > 0, ż < 0, ṡ < 0

R17 h < 0, g > 0, x > 0, z < 0, s > 0 ẋ < 0, ż < 0, ṡ < 0

The front boundary of R12 (see Figure 14), i.e. the surface containing

the equilibrium points u12, u14, u31 and p1, is contained in the invariant

surface x2 − z2 = 1 (x > 0). The surface on the back side of R12 that

contains the equilibrium points p1 and u31 consists of two parts: the

upper part surface containing the infinite equilibrium point u31 is the

intersection of the subregions R12 and R14, which is contained in the
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surface g = 0, and the lower part surface containing the finite equi-

librium point p1, is the intersection of subregions R11 and R12 that is

contained in the surface h = 0. The equilibrium points in the subregion

R12 are the finite equilibrium point p1, the infinite equilibrium points

on the Poincaré sphere at s = 0 and the equilibrium point u14 at infin-

ity. However an orbit in the subregion R12 does not start from these

infinite equilibrium points at s = 0 or return to these points, but it

comes from the finite equilibrium point p1 or from the subregions R11

and R14 which have common boundaries with the subregion R12. This

is due to the fact that the variable z is decreasing monotonically and

the variables x and s are increasing monotonically inside the subregion

R12 according to Table 2. Moreover a trajectory in the subregion R12

will tend to the equilibrium point u14 at infinity. In summary, this

dynamic behavior process can be represented as

R12 u14.R11

p1

R14

In the subregion R13 (see Figure 15) the front surface composed

of three dashed lines and one solid line is contained in the surface

g = 0, and its opposite surface is contained in the surface h = 0.

From Table 2 an orbit in the subregion R13 may only comes from the

equilibrium points locate at the infinity on s = 0 in R13, or it comes

from the subregions R11. Then the orbit passes through the intersection

of subregions R13 and R14 (contained in the surface h = 0) and enters
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the subregion R14, or tends to the infinite equilibrium point u31, i.e. lies

in the North Pole of the Poincaré sphere. So we obtain the following

dynamics

R13

u31

R14.

s = 0 in R13

R11

In subregion R14 (see Figure 16) the front triangular surface is con-

tained in g = 0, and its opposite triangular surface is on the back side,

which is included in the plane x = 0. According to Table 2 an orbit

of the subregion R14 may come from the infinite equilibrium points on

x = 0, or come from the subregion R13 through the surface h = 0, or

from subregion R15 traversing plane x = 0, then go through the surface

g = 0 into the subregion R12, or directly goes to the infinite equilib-

rium point u31 at the North Pole of the Poincaré sphere. This can be

represented as

R14

R12

u31.

R13

R15

x = 0 in R14

It can be noted from Figure 17 that the surface on the left of subre-

gion R15 (consisting of two dashed lines and one solid line) is contained

in plane x = 0, and the opposite surface to it is included in the surface

g = 0. According to Table 2 an orbit in the subregion R15 can only

come from the adjacent subregion R16, and then either enter into the
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subregion R14 adjacent to it, or directly tend to the finite equilibrium

point p0 located at the center of the Poincaré ball. This dynamics can

be denoted as

R16 R15

R14

p0.

We observe that the curved surfaces of the left and right sides of

the subregion R16 (see Figure 18) are contained in the surfaces g = 0

and h = 0, respectively. It is known from Table 2 that an orbit in the

subregion R16 can only come from the subregion R17 and crossing the

surface g = 0, it enters into the subregion R15. Thus we get that

R16 R15.R17

The left and right surfaces of subregion R17 (see Figure 19) are in-

cluded in the surface h = 0 and in the invariant surface x2 − z2 =

1 (x < 0), respectively. According to Table 2, it is known that all

three variables in subregion R17 are decreasing monotonically, so an

orbit in this subregion must come from the infinite equilibrium point

u31 located at the North Pole of Poincaré sphere and eventually tends

to the infinite equilibrium point U13 in the invariant plane s = 0. Then

we have that

R17 U13.u31
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The dynamic behavior of the orbits inside the seven subregions of

R1 discussed above can be summarized as

R13 R11 p1.u31R17U13

s = 0 in R13

R16 R15 R14 R12 u14

p0 x = 0 in R14

The above flow chart shows that the orbits of system (1) contained in

the interior of the region R1 have α-limit at the finite equilibrium point

p1, and the some orbits on the boundary of the region R1 have α-limit

at the x = 0 in R14, or s = 0 in R13. Moreover the orbits have ω-limit

either at the finite equilibrium point p0, or at the infinite equilibrium

points u14 and U13, where u14 is located on the intersection curve of

the Poincaré sphere and the invariant surface x2 − z2 = 1 (x > 0) at

infinity, and U13 is located on the intersection of the Poincaré sphere

and the invariant surfaces s = 0, x2 − z2 = 1 (x < 0) at infinity (see

Figure 12). Furthermore the orbits of system (1) on the boundary of

R1 also have α-limit and ω-limit at the infinite equilibrium point u31,

i.e. the North Pole of the Poincaré sphere.

In this way the qualitative global dynamic behavior of system (1) is

described.
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6. Discussion and conclusions

The physical meaning of the variables x, z and s in this paper can

be found in references [3, 7, 8, 9, 14]. So we have

(21) x =
φ̇

2
√

6H
, z =

µ

4(3λ− 1)a2H
s = −V

′(φ)

V (φ)
,

where λ is a dimensionless constant, V (φ) is the potential, µ is a con-

stant, and H = ȧ/a is the Hubble parameter, and a is the dimensionless

scale factor for the expanding universe.

Near infinity we note that the phase portrait described in Figure

2 has been obtained in [9], where the phase portrait of system (1) is

limited to s = 0. Now we have completely described the phase portrait

of system (1) with all s values in the region G as shown in Figures

8-10 and 12. By using the fact that system (1) remains invariant under

two aforementioned symmetries, we provide the complete global phase

portrait of system (1) in G. The phase portrait shows that the final

evolution of the orbital direction of system (1) within G tends to the

center of the Poincaré ball as well as the infinite equilibrium points

u14 and U13 located at the waist and equator of the Poincaré sphere

(except for the initial conditions s = 0), respectively. Based on Hořava-

Lifshitz gravity in a Friedmann-Lemâıtre-Robertson-Walker space-time

with non-zero curvature and without the cosmological constant term,

equations (21) imply that the value of Hubble parameter H is tending

to be zero in the cosmological model as time goes on.
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[19] T.P. Sotiriou, Hořava-Lifshitz gravity: a status report, Journal of Physics:

Conference Series 283, 012034, 2011.

[20] F. Dumortier, J. Llibre and J.C. Artés, Qualitative theory of planar differential

systems, Springer-Verlag, Berlin, 2006.



29

[21] A. Cima and J. Llibre, Bounded polynomial vector fields, Transactions of the

American Mathematical Society 318(2), 557-579, 1990.
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