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ON THE POLYNOMIAL SOLUTIONS OF THE POLYNOMIAL DIFFERENTIAL
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In this paper we deal with differential equations of the form yy′ = P (x, y) where y′ = dy/dx

and P (x, y) is a polynomial in the variables x and y of degree n in the variable y. We provide

an upper bound for the number of polynomial solutions of this class of differential equations, and

for some particular classes we study properties of their polynomial solutions.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The study of given solutions (as polynomial or rational solutions) of differential equations is of main

interest for understanding the set of solutions of a differential equation. Rainville [15] in 1936 char-

acterized all the Riccati differential equations of the form y′ = a0(x) + a1(x)y + y2, where a0 and

a1 are polynomials in x, having polynomial solutions. He also gave an algebraic method for studying

these polynomial solutions.

In 1954 Campbell and Golomb [7] gave an algorithm for computing all the polynomial solutions

of the differential equation a(x)y′ = a0(x) + a1(x)y + a2(x)y2, where a, a0, a1, a2 are polynomials

in x. In 2006 Behloul and Cheng [3] provided another algorithm for finding all the rational solutions

of the equation a(x)y′ =
∑n

i=0 ai(x)yi, where a, ai are polynomials in x.


