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ABSTRACT

In this paper, we deal with discontinuous piecewise differential systems formed by two differential systems separated by a straight line when
these two differential systems are linear centers (which always are isochronous) or quadratic isochronous centers. It is known that there is a
unique family of linear isochronous centers and four families of quadratic isochronous centers. Combining these five types of isochronous
centers, we obtain 15 classes of discontinuous piecewise differential systems. We provide upper bounds for the maximum number of limit
cycles that these fifteen classes of discontinuous piecewise differential systems can exhibit, so we have solved the 16th Hilbert problem for
such differential systems. Moreover, in seven of the classes of these discontinuous piecewise differential systems, the obtained upper bound
on the maximum number of limit cycles is reached.
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To solve the 16th Hilbert problem, i.e., to find an upper bound for
the maximum number of limit cycles that a given class of differ-
ential systems can exhibit, is in general an unsolved problem. For
the classes of discontinuous piecewise differential systems here
studied, we can obtain the solution using the first integrals of the
linear and quadratic isochronous centers.

I. INTRODUCTION AND MAIN RESULTS

We consider planar differential systems of the form

dx

dt
= P(x, y),

dy

dt
= Q(x, y),

where P(x, y) and Q(x, y) are polynomial functions, and the degree
of the systems is the maximum degree of such polynomials. In

particular, in this paper we consider discontinuous piecewise differ-
ential systems of the form

(ẋ, ẏ) = F(x, y) =
{

F−(x, y) = (f−(x, y), g−(x, y)) if x < 0,
F+(x, y) = (f+(x, y), g+(x, y)) if x > 0,

(1)

being bi-valued on the separation line x = 0. Following Ref. 9, a
point (0, y) is a crossing point if f−(0, y)f+(0, y) > 0. If there exists
a periodic orbit of the discontinuous differential system (1) having
exactly two crossing points, then we call it a crossing periodic orbit. A
crossing limit cycle is an isolated periodic orbit in the set of all cross-
ing periodic orbits of system (1). In what follows for simplicity, we
shall say limit cycle instead of crossing limit cycle.

The analysis of planar continuous piecewise linear systems
is well established when the number of linear zones is small, see
Ref. 33 and the references therein. They frequently appear in many
non-linear engineering devices, which are accurately modelled by
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