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a b s t r a c t 

A Hopf equilibrium of a differential system in R 

2 is an equilibrium point whose linear part has eigen- 

values ±ωi with ω � = 0 , where i = 

√ −1 . We provide necessary and sufficient conditions for the existence 

of a limit cycle bifurcating from a Hopf equilibrium of 2–dimensional polynomial Kolmogorov systems of 

arbitrary degree. We provide an estimation of the bifurcating small limit cycle and also characterize the 

stability of this limit cycle. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction and statements of the main results 

The Hopf bifurcation in some particular classes of Kolmogorov 

polynomial differential systems in dimension three has been stud- 

ied in [10,17] . In dimension two there is only a partial study in 

[3,21] . The objective of this paper is to characterize the generic 

Hopf bifurcation of the Kolmogorov polynomial differential systems 

in dimension two. More precisely, we provide sufficient conditions 

for the existence of a Hopf bifurcation, we estimate the size of the 

periodic orbit which bifurcates and we control its kind of stability 

or inestability. 

A polynomial differential system 

˙ x = 

dx 

dt 
= P (x, y ) , ˙ y = 

dy 

dt 
= Q(x, y ) , 

in R 

2 has degree n if the maximum of the degrees of the polyno- 

mials P and Q is n . A quadratic polynomial vector field X = (P, Q ) 

with x a factor of P and y a factor of Q is a Lotka–Volterra system . 

While an n –degree polynomial vector field X = (P, Q ) with x a fac- 

tor of P and y a factor of Q is a Kolmogorov system . 
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Lotka–Volterra systems were initially considered independently 

by Lotka in 1925 [19] and by Volterra in 1926 [25] , as a model 

for studying the interactions between two species. Later on Kol- 

mogorov [14] in 1936 extended these systems to arbitrary dimen- 

sion and arbitrary degree, these kinds of systems are now called 

Kolmogorov systems. 

Many natural phenomena can be modeled by the Kolmogorov 

systems such as the time evolution of conflicting species in biology 

[20] , chemical reactions [13] , hydrodynamics [7] , economics [23] , 

the coupling of waves in laser physics [15] , the evolution of elec- 

trons, ions and neutral species in plasma physics [16] , integrability 

[2] , etc. 

Here we study the polynomial Kolmogorov systems in the 

plane, i.e. differential systems of the form 

˙ x = x f (x, y ) , ˙ y = yg(x, y ) , (1) 

where f and g are polynomials of degree larger than 1. In fact we 

are interested in the existence of limit cycles of Kolmogorov sys- 

tems living in the positive quadrant of the plane, and consequently 

surrounding some equilibrium points (see for instance Theorem 

1.31 of [11] ) which are in the positive quadrant. 

We recall that a limit cycle of the Kolmogorov system (1) is a 

periodic solution of system (1) isolated in the set of all periodic 

solutions of (1) . In general to detect the existence of limit cycles is 

a difficult problem. 
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