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Abstract. We classify the global dynamics of a family of Kolmogorov systems
depending on three parameters which has ecological meaning as it modelizes a
predator-prey system. We obtain all their topologically distinct global phase
portraits in the positive quadrant of the Poincaré disc, so we provide all the
possible distinct dynamics of these systems.

1. Introduction

Rosenzweig and MacArthur introduced in [8] the following predator-prey model

ẋ = rx
(

1− x

K

)
− y mx

b+ x
,

ẏ = y

(
−δ + c

mx

b+ x

)
,

where the dot as usual denotes derivative with respect to the time t, x ≥ 0 denotes
the prey density (#/unit of area) and y ≥ 0 denotes the predator density (#/unit of
area), the parameter δ > 0 is the death rate of the predator, the functionmx/(b+x)
is the # prey caught per predator per unit time, the function x→ rx(1− x/K) is
the growth of the prey in the absence of predator, and c > 0 is the rate of conversion
of prey to predator.

The Rosenzweig and MacArthur system is a particular system of the general
predator–prey systems with a Holling type II, see [2, 3].

In [4] Huzak reduced the study of the Rosenzweig and MacArthur system to
study a polynomial differential system. In order to do that the first step is to do
the rescaling (x, y, b, c, δ) = (x/K, (m/rK)y, b/K, cm/r, δ/r). After denoting again
(x, y, b, c, δ) by (x, y, b, c, δ) and doing a time rescaling multiplying by b + x, the
obtained polynomial differential system of degree three is

ẋ = x(−x2 + (1− b)x− y + b),

ẏ = y((c− δ)x− δb),
(1)

where b, c and δ are positive parameters. This system is studied in the positive
quadrant of the plane R2 where it has ecological meaning. See systems (1.1) and
(2.2) of [4].

Huzak [4] focus his work in the study of the periodic sets that can produce
the canard relaxation oscillations after perturbations. He finds three types of limit
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periodic sets and studies their cyclicity by using the geometric singular perturbation
theory and the family blow-up at (x, y, δ) = (0, br/m, 0). He proves that the upper
bound on the number of limit cycles of the system is 1 or 2 depending on the
parameters.

Systems (1) are particular Kolmogorov systems. These systems were proposed in
1936, see [5], as an extension of the Lotka-Volterra systems to arbitrary dimension
and arbitrary degree.

We want to complete the study of the dynamics of systems (1) and classify
all their phase portraits on the closed positive quadrant of the Poincaré disc, in
this way we also can control the dynamics of the system near the infinity. This
classification is given in the following result, except for the case with the parameters
satisfying 0 < bδ < c− δ, δ(δ(b+ 1) + c(b− 1))2 − 4c(c− δ)2(c− δ(b− 1)) < 0 and
1 + c − d − b − bd > 0, in wich we make a conjecture about the expected global
phase portrait.

Theorem 1. The global phase portait of system (1) in the closed positive quadrant
of the Poincaré disc is topologically equivalent to one of the 3 phase portraits of
Figure 1 in the following way:

• If bδ ≥ c− δ the phase portrait is equivalent to phase portrait (A).
• If 0 < bδ < c− δ and δ(δ(b+ 1) + c(b− 1))2 − 4c(c− δ)2(c− δ(b− 1)) ≥ 0
the phase portrait is equivalent to phase portrait (B).

• If 0 < bδ < c− δ and δ(δ(b+ 1) + c(b− 1))2 − 4c(c− δ)2(c− δ(b− 1)) < 0
and 1 + c− d− b− bd < 0 the phase portrait is equivalent to phase portrait
(C).

(A) (B) (C)

Figure 1. Phase portraits of system (1) in the positive quadrant
of the Poincaré disc.

Conjecture. The global phase portait of system (1) in the closed positive quadrant
of the Poincaré disc if 0 < bδ < c − δ and δ(δ(b + 1) + c(b − 1))2 − 4c(c − δ)2(c −
δ(b − 1)) < 0 and 1 + c − d − b − bd > 0 is also topologically equivalent to the one
in Figure 1(C).

In Figure 2 are represented the regions and surfaces in the parameters space in
which each one of the phase portraits are realised. In the region I and over the
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Figure 2. The regions I, II-a, II-b, III and the surfaces sepa-
rating the different phase portraits: S1 : {d = c/(b+ 1) | b, c ≥ 0},
S2 : {d = (1 + c− b)/(b+ 1) | b, c ≥ 0, (1 + c− b)/(b+ 1) < c/(b+ 1)} and
S3 : {d = c(1− b)/(1 + b) | b, c ≥ 0}

.

surface S1 the phase portrait is the one in Figure 1(A) and in the region III the
phase portrait is the one in Figure 1(B). In region II there are two subregions, II-a
and II-b. It is proved that in the region II-a the phase portrait is the one in Figure
1(C) and we conjecture that the phase portrait is the same in the region II-b and
over the surfaces S2 and S3.

2. Preliminaries

Here we introduce the Poincaré compactification, as it allows to control the
dynamics of a polynomial differential system near the infinity.

Consider a polynomial system in R2

ẋ1 = P (x1, x2),

ẋ2 = Q(x1, x2),

of degree d; the sphere S2 =
{
y ∈ R3 : y21 + y22 + y23 = 1

}
, which we will call the

Poincaré sphere, and its tangent plane at the point (0, 0, 1) which we identify with
R2.

We can obtain an induced vector field in S2\S1 by means of central projections
f+ : R2 → S2 and f− : R2 → S2, which are defined as

f+(x) =

(
x1

∆(x)
,
x2

∆(x)
,

1

∆(x)

)
and f−(x) =

(
−x1
∆(x)

,
−x2
∆(x)

,
−1

∆(x)

)
,
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where ∆(x) =
√
x21 + x22 + 1. The differential Df+ and Df− provide a vector field

in the northern and southern hemisphere respectively. The points of the equator S1
of S2 correspond with the points at infinity of R2, and we can extend analytically
the vector field to these points of the equator multiplying the field by yd3 . This
extended field is called the Poincaré compactification of the original vector field.
Then we must study the dynamics of the Poincaré compactification near S1, for
studying the dynamics of the original field in the neighborhood of the infinity.

We will work in the local charts (Ui, φi) and (Vi, ψi) of the sphere S2, where
Ui =

{
y ∈ S2 : yi > 0

}
, Vi =

{
y ∈ S2 : yi < 0

}
, φi : Ui −→ R2 and ψi : Vi −→ R2

for i = 1, 2, 3 with φi(y) = ψi(y) = (ym/yi, yn/yi) for m < n and m,n 6= i.

The expression of the Poincaré compactification in the local chart (U1, φ1) is

(2) u̇ = vd
[
−u P

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v̇ = −vd+1 P

(
1

v
,
u

v

)
,

in the local chart (U2, φ2) is

(3) u̇ = vd
[
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

)]
, v̇ = −vd+1 Q

(
u

v
,

1

v

)
,

and in the local chart (U3, φ3) the expression is

(4) u̇ = P (u, v), v̇ = Q(u, v).

The expression for the Poincaré compactification in the local charts (Vi, ψi), with
i = 1, 2, 3 is the same as in the charts (Ui, φi) multiplied by (−1)d−1.

As we want to study the behaviour near the infinity, we must study the infinite
singular points, i.e., the singular points of the Poincaré compactification which lie
in the equator S1. Note that it will be enough to study the infinite points on the
local chart U1 and the origin of the local chart U2, because if y ∈ S1 is an infinite
singular point, then −y is also an infinite singular point and they have the same or
opposite stability depending on whether the system has odd or even degree.

We shall present the phase portraits of the polynomial differential systems (1) in
the Poincaré disc, i.e. the orthogonal projection of the closed northern hemisphere
of S2 onto the plane y3 = 0. This will be enough since the orbits of the Poincaré
compactification on S2 are symmetric with respect to the origin of R3 so we only
need to consider the flow in the closed northern hemisphere.

See chapter 5 of [1] for more details about the Poincaré compactification.

3. Finite Singular Points

First we study the finite singular points of system (1) in the closed positive
quadrant. The origin P0 = (0, 0) and the point P1 = (1, 0) are singular points for
any values of the parameters, and P2 =

(
bδ/(c− δ), (−bc(δ + bδ − c))/(c− δ)2

)
is

a positive singular point if c 6= δ and 0 < bδ < c − δ. Note that if bδ = c − δ then
P1 = P2.

Now we study the local phase portraits at these singular points. The origin is a
saddle point, as the eigenvalues of the Jacobian matrix at this point are b and −δb.
At the point P1 the eigenvalues are −b − 1 and −δb + c − δ. The first eigenvalue
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is always negative, but we distinguish three cases depending on the second one. If
c− δ < bδ then P1 is a stable node; if c− δ > bδ then P1 is a saddle; if c− δ = bδ
P1 is a semi-hyperbolic singular point, so from [1, Theorem 2.19] we obtain that
P1 = P2 is a saddle-node.

At the singular point P2 the eigenvalues of the Jacobian matrix are

λ1,2 =
2

(c− δ)2
(A±

√
δB),

where

A = δ(c− δ)− bδ(c+ δ) and B = δ(δ(b+ 1) + c(b− 1))2 − 4c(c− δ)2(c− δ(b− 1)).

If B < 0 then the eigenvalues are complex. In this case for A > 0 the singular
point P2 is an unstable focus, and for A < 0 it is a stable focus. We deal with this
case B < 0 in Section 6, where we study the Hopf bifurcation which takes place at
P2.

If B = 0 we have λ1 = λ2 = A/(c−δ)2 and in this case A cannot be zero, because
if A = 0 then b = c−δ

c+δ , and replacing this expression B = −4c2(c− δ)3/(c+ δ), so
one of the conditions c = 0 or c − δ = 0 must hold, but this is a contradiction as
c > 0 from the hypotheses, and if c = δ then b = 0 again in contradiction with the
hypotheses. Then A 6= 0 and its sign determines if the singular point is either a
stable or an unstable node.

If B > 0 both eigenvalues are real. The determinant of the Jacobian matrix is

− b2cδ

(c− δ)2
(bδ + δ − c),

which is positive because the singular point P2 exists only if condition bδ < c − δ
holds. Then both eigenvalues are nonzero and have the same sign, particularly, if
A > 0 both are positive and P2 is an unstable node, and if A < 0 both are negative
and P2 is a stable node.

The local phase portrait of the singular point P2 in the case with A = 0 will be
proved in Subsection 6.1.

In summary, we describe in Table 1 the finite singular points according the values
of the parameters b, c and δ.

Case Conditions Finite singular points
1 bδ > c− δ. P0 saddle, P1 stable node.
2 bδ = c− δ. P0 saddle, P1 saddle-node.
3 0 < bδ < c− δ, B ≥ 0, A > 0. P0 saddle, P1 saddle, P2 unstable node.
4 0 < bδ < c− δ, B ≥ 0, A < 0. P0 saddle, P1 saddle, P2 stable node.
5 0 < bδ < c− δ, B < 0, A > 0. P0 saddle, P1 saddle, P2 unstable focus.
6 0 < bδ < c− δ, B < 0, A < 0. P0 saddle, P1 saddle, P2 stable focus.
7 0 < bδ < c− δ, B < 0, A = 0. P0 saddle, P1 saddle, P2 weak stable focus.

Table 1. The finite singular points in the closed positive quadrant.
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4. Infinite Singular Points

In this section we will consider the Poincaré compactification of system (1) as it
allows to study the behavior of the trajectories near infinity.

In the chart U1 system (1) writes

u̇ = uv2 − b(δ + 1)uv2 + (b+ c− δ − 1)uv + u,

v̇ = uv2 − bv3 + (b− 1)v2 + v.
(5)

The only singular point over v = 0 is the origin of U1, which we denote by
O1. The linear part of system (5) at the origin is the identity matrix, so O1 is an
unstable node.

In the chart U2 system (1) writes

u̇ = −u3 + (δ + 1− b− c)u2v + b(δ + 1)uv2 − uv,
v̇ = (δ − c)uv2 + bδv3.

(6)

The origin of U2 is a singular point, O2, and the linear part of system (6) at
O2 is identically zero, so we must use the blow-up technique to study it. We do a
horizontal blow up introducing the new variable w1 by means of the variable change
vw1 = u, and get the system

ẇ1 = v2w3
1 + (1− b)v2w2

1 + bw1v
2 − w1v,

v̇ = (δ − c)w1v
3 + bδv3.

(7)

Now rescaling the time variable we cancel the common factor v, getting the system

ẇ1 = vw3
1 + (1− b)vw2

1 + bw1v − w1,

v̇ = (δ − c)w1v
2 + bδv2.

(8)

The only singular point on v = 0 is the origin, which is semi-hyperbolic. Applying
[1, Theorem 2.19] we conclude that it is a saddle-node. Studying the sense of
the flow over the axis we determine that the phase portrait around the origin of
system (8) is the one on Figure 3(a). If we multiply by v the sense of the orbits on
the third and fourth quadrants changes and all the points of the w1-axis become
singular points. With these modifications we obtain the phase portait for system
(7), given in Figure 3(b). Then we undo the blow up going back to the (u, v)-plane.
We must swap the third and fourth quadrants and shrink the exceptional divisor to
the origin. The phase portrait obtained for system (6) is not totally determined in
the shaded regions of the third and fourth quadrants, see Figure 3(c). This can be
solved by doing a vertical blow up but, in our case, it is not necessary because we
only need to know the phase portrait of O2 in the positive quadrant of the Poincaré
disc, which corresponds with the positive quadrant in the plane (u, v), in which the
phase portrait is well determined.
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v

w1

(a) Local phase portrait at
the origin of system (8)

v

w1

(b) Local phase portrait at
the origin of system(7)

v

u

(c) Local phase portrait at
the origin of system (6)

Figure 3. Desingularization of the origin of system (6).

As a conclusion the local phase portrait at the infinite singular points is the
same independently of the values of the parameters, so in all cases of Table 1 the
origin of the chart U1, i.e. the singular point O1, is an unstable node and the origin
of the chart U2, i.e. the singular point O2 has only one hyperbolic sector on the
positive quadrant of the Poincaré disc being one separatrix at infinity and the other
on x = 0.

5. Cases with no singular points in the positive quadrant

In the two first cases of Table 1 there is no singular points in the positive quad-
rant. The finite singular points are the origin P0 and P1 which are both over the
axes. The axes are invariant lines so there cannot exist a limit cycle surrounding
these singular points. Therefore as we have determined the local phase portrait at
the finite and infinite singularities, and we know there are no limit cycles, we can
study the global portrait in the first quadrant of the Poincaré disc.

In both cases we obtain the same result since in the case in which P1 is a saddle-
node, studying the sense of the flow we determine that the parabolic sector of the
saddle-node is always on the positive quadrant of the Poincaré disc. Analysing all
the possible alpha and omega-limits, the only possibility is that all the orbits leave
the infinite singular point O1 and go to the finite singular point P1. This phase
portait is given in Figure 1 (A).

6. Cases with singular points in the positive quadrant

6.1. Existence of limit cycles.

Theorem 2. If 0 < bδ < c− δ and A > 0, then there exists at least one limit cycle
surrounding singular point P2.

Proof. If conditions 0 < bδ < c−δ and A > 0 hold, then we have case 3 or 5 of Table
1. In both cases singular point P1 is a saddle which has an unstable separatrix on
the positive quadrant, P2 is either an unstable node or an unstable focus, and O1

is an unstable node. By Poincaré-Bendixon theorem, there must exists at least one
limit cycle which is the ω-limit of the orbits leaving O1, the orbits leaving P2 and
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the separatrix of P1, as there are no other singular points that can be the ω-limit
of all these orbits. �

In cases 5, 6 and 7 of Table 1 the Jacobian matrix at the point P2 has com-
plex eigenvalues because B < 0. In these cases we study the existence of Hopf
Bifurcation, leading to the following result.

Theorem 3. The equilibrium P2 of system (1) undergoes a supercritical Hopf bi-
furcation at b0 = (c − δ)/(c + δ). For b > b0 the system has a unique stable limit
cycle bifurcating from the equilibrium point P2.

Proof. The Jacobian matrix at this equilibrium is

A(b) =

 −
bδ(c(b− 1) + δ(b+ 1))

(c− δ)2
− bδ

c− δ

−bc(bδ + δ − c)
c− δ

0

 ,

and it has eigenvalues µ(b)± ω(b)i, where

(9) µ(b) =
b

2(c− δ)2
A and ω(b) =

b

2(c− δ)2
√
−δB.

We get µ(b0) = 0 for

(10) b0 =
c− δ
c+ δ

.

We are working under condition B < 0 and from this condition it can be deduced
that c − δ > 0, so the expression of b0 obtained is positive. Therefore at b = b0
the equilibrium point P2 has a pair of pure imaginary eigenvalues ±iω(b) and the
system will have a Hopf bifurcation if some Lyapunov constant is nonzero and
(dµ/db)(b0) 6= 0.

The equilibrium is stable for b > b0 (i.e. for A < 0) and unstable for b < b0 (i.e.
for A > 0). In order to analyze this Hopf bifurcation we will apply [6, Theorem
3.3], so we must prove if the genericity conditions are satisfied. We check that the
transversality condition is satisfied as

(11)
dµ

db
(b0) = − δ

2(c− δ)
< 0,

and the sign is determined because c− δ > 0.

To check the second condition we must compute the first Lyapunov constant.
We fix the value b = b0 and then the equilibrium P2 has the expression

(12) P2 =

(
δ

c+ δ
,

c2

(c+ δ)2

)
.

We translate P2 to the origin of coordinates obtainig the system

ε̇1 = −ε31 −
δ

c+ δ
ε21 − ε1ε2 −

δ

c+ δ
ε2,

ε̇2 = (c− δ)ε1ε2 +
c2(c− δ)
(c+ δ)2

,

(13)
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which can be represented as

(14) ε̇ = Aε+
1

2
B(ε, ε) +

1

6
C(ε, ε, ε),

where A = A(b0) and the multilinear functions B and C are given by

B(ε, η) =

 − 2δ

c+ δ
ε1η1 − ε1η2 − ε2η1

(c− δ)ε1η2 + (c− δ)ε2η1

 ,

C(ε, η, ζ) =

 6ε1η1ζ1

0

 .

We need to find two eigenvectors p, q of the matrix A verifying

Aq = iωq, AT p = −iωp, and < p, q >= 1,

as for example

(15) q =

 − δ

c+ δ

iω

 and p =


−c+ δ

2δ

iω
(c+ δ)3

2c2δ(c− δ)

 .

Now we compute

g20 = 〈p,B(q, q)〉 =
ω2(c+ δ)5 − c2δ2(c+ δ)

2δc4(c− δ)
+

ω(c+ δ)3

2c2δ(c− δ)
i,

g11 = 〈p,B(q, q)〉 = − δ(c+ δ)

2c2(c− δ)
, g21 = 〈p, C(q, q, q)〉 = − 3(c+ δ)4

4c4(c− δ)2
,

and the first Lyapynov coefficient

`1 =
1

2ω2
Re(ig20g11 + ωg21) = − (c+ δ)4

4c4ω(c− δ)2
,

which is negative for any values of the parameters, and so the second condition of
the theorem we are applying is satisfied and we can conclude that a unique stable
limit cycle bifurcates from the equilibrium point P2 through a Hopf Bifurcation for
b < b0 with b0 − b sufficiently small. �

Proposition 4. If 0 < bδ < c− δ and A > 0, the limit cycle surrounding singular
point P2 is unique.

Proof. This result follows from [7] by proving that system (1) with 0 < bδ < c− δ
and A > 0 satisfies conditions (i)-(iv) in Section 2 of [7].

Condition (i) holds taking g(x) = (c− δ)x which verifies g(0) = 0 and g′(x) > 0
for all x ≥ 0 as we have assumed c− δ > 0.

Condition (ii) holds for f(x) = −x2 + (1 − b)x + b, K = 1 and a = (1 − b)/2.
From condition A > 0 we deduce that

δ(c− δ)− bδ(c+ δ) > 0⇒ c− δ
c+ δ

>
bδ

δ
⇒ 1 >

c− δ
c+ δ

> b,

and condition b < 1 guarantees that a > 0.
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Condition (iii) holds for λ = bδ and x∗ = δb/(c − δ). It can be proved that
with the expressions chosen for a and x∗ the condition x∗ < a, is equivalent to the
condition A > 0:

x∗ < a⇔ δb

c− δ
<

1− b
2
⇔ 2δb < (1−b)(c−δ)⇔ δb+bc < c−δ ⇔ b <

c− δ
c+ δ

⇔ A > 0.

Condition (iv) is satisfied with

x∗ =
δb

c− δ
and x∗ = 1− bc

c− δ
.

We have

(16)
d

dx

xf ′(x)

g(x)− λ
=
−2x2(c− δ) + 4xδb(b− 1)

((c− δ)x− δb)2
,

which is always negative as the polynomial in the numerator is negative in x = 0
and has no real roots.

Then, as conditions (i)-(iv) hold for our systems, we can conclude that the limit
cycle is unique. �

Remark 5. Theorem 3 proves that the unique limit cycle of system (1) appears
from the equilibrium point P2 in a Hopf bifurcation. From the proof of Theorem 3
the singular point P2 when B < 0 and A = 0 is a weak stable focus.

So far we have not proved if in cases 4, 6, and 7 of Table 1 there are or not limit
cycles. The following result proves that in some subcases there are not limit cycles.

Theorem 6. If 0 < bδ < c− δ, A < 0 and 1 + c < d+ b+ bd, then system (1) does
not have periodic orbits in the set {(x, y) ∈ R2 : x, z ≥ 0}.

Proof. Let

f(x, y) = x(−x2 + (1− b)x− y + b) and g(x, y) = y((c− δ)x− δb).

In order to prove the non existence of periodic orbits we use Bendixson-Dulac
Theorem that states that if there exists a function ϕ(x, y) such that the term

∆(x, y) =
∂(ϕf)

∂x
+
∂(ϕg)

∂y

does not change sign in a simply connected set S, then there are no periodic orbits
on S.
We consider the function ϕ(x, y) = 1/x, then:

∆(x, y) = 1 + c− d− 2x− b(d+ x)

x
.

We observe that there are no periodic orbits in the set

{(x, y) ∈ R2
+ : x ≥ 1},

because ẋ < 0 for all the points in this set and for the same reason there are no
periodic orbits crossing the line {x = 1, y ≥ 0}. As a consequence we can restrict
to the case x < 1 for which we obtain
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∆(x, y) < 1 + c− d− bd

x
− b < 1 + c− d− bd− b.

Then ∆(x, y) < 0 in
{

(x, y) ∈ R2 : 0 ≤ x ≤ 1, y ≥ 0
}
if 1+c−d−b−bd < 0 and we

conclude that there are no periodic orbits in the whole set
{

(x, y) ∈ R2 : x ≥ 0, y ≥ 0
}
.

�

Conjecture. If 0 < bδ < c− δ, A < 0 (i. e, we are in cases 4,6, or 7 of Table 1)
and 1 + c > d+ b+ bd, there are not limit cycles.

We have numerical evidences that the conjecture holds.

6.2. Phase portraits on the positive quadrant of the Poincaré disc. Now
we study the global phase portraits of system (1) on the positive quadrant of the
Poincaré disc when there is a singular point in the positive quadrant, assumming
the previous Conjecture.

In case 3 of Table 1, by Theorem 2 there exist a unique limit cycle which is
the ω-limit of all orbits leaving O1 and P2, and also the ω-limit of the unstable
separatrix leaving P1 in the positive quadrant. Then the global phase portraits is
the one on Figure 1(B).

In case 5 of Table 1 we have again that there exists a unique limit cycle attracting
all orbits in the positive quadrant. The global phase portrait is the same as the
one in case 3 but here the singular point in the positive quadrant is an unstable
focus instead of an unstable node. As the local phase portraits of these two singular
points are topologically equivalent we have again phase portrait (B) of Figure 1.

In cases 4, 6 and 7 of Table 1, if 1 + c < d + b + bd we have proved that there
are no limit cycles. In case 4 the only possibility is that the stable node P2 is
a global attractor for all orbits in the positive quadrant, and we have the global
phase portrait given in Figure 1(C). In cases 6 and 7 of Table 1, P2 is a stable focus
and attracts all the orbits of the positive quadrant. As the local phase portrait of
a stable focus is topologically equivalent to a stable node, we also have here the
phase portrait of Figure 1(C).

In the cases 4, 6 and 7 of Table 1, if the conditions 1 + c < d+ b+ bd does not
hold, we have asummed that there are not limit cycles, so the conjectured phase
portraits will be the same.
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