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Abstract. In this paper by using the Poincaré compactification
in R

3 we make a global analysis for the virus system

ẋ = λ− dx− βxz, ẏ = −ay + βxz ż = ky − µz

with (x, y, z) ∈ R
3, β > 0, λ, a, d, k and µ are nonnegative pa-

rameters due to their biological meaning. We give the complete
description of its dynamics on the sphere at infinity. For two sets
of the parameter values the system has invariant algebraic surfaces.
For these two sets we provide the global phase portraits of the virus
system in the Poincaré ball (i.e. in the compactification of R3 with
the sphere S2 of the infinity).

1. Introduction and statement of the main results

In this work we do a global analysis of the virus system

(1)
ẋ = P (x, y, z) = λ− dx− βxz,
ẏ = Q(x, y, z) = −ay + βxz,
ż = R(x, y, z) = ky − µz,

where the state variables are (x, y, z) ∈ R3, β > 0, λ, a, d, k and µ are
nonnegative parameters due to their biological meaning. As usual, the
dots denote derivative with respect to the time t. Note that β cannot be
zero otherwise the differential system becomes linear, and consequently
its study is trivial. System (1) was proposed in the book [7]. For
more studies related with virus models, including the importance of
our model (1), we refer the readers to [5, 8].

Let R[x, y, z] be the ring of real polynomials in the variables the
variables x, y and z. We say that F = F (x, y, z) ∈ R[x, y, z] is a Dar-
boux polynomial of system (1) if it satisfies (∇F ) · (P,Q,R) = KF ,
where K = K(x, y, z) is a real polynomial of degree at most 1, called
the cofactor of F (x, y, z). If the cofactor is zero, then F (x, y, z) is a
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polynomial first integral of system (1). If F (x, y, z) is a Darboux poly-
nomial, then the algebraic surface F (x, y, z) = 0 is called an invariant
algebraic surface; i.e. if an orbit of system (1) has a point on this
surface, then the whole orbit is contained in it.

We say that a C1 function I(x, y, z, t) is an invariant of the differen-
tial system (1) if dI/dt = 0 on the trajectories of the system. When an
invariant function is independent of the time t, then it is a first integral.
When a system has a Darboux polynomial F with a constant factor
k = k0 ∈ R, then the function I(x, y, z, t) = F (x, y, z)e−k0t is called a
Darboux invariant of that system, see Chapter 8 of [3].

We say that the Darboux polynomials F1, . . . , Fn generate all the
Darboux polynomials of system (1) if any Darboux polynomial F of
system (1) can be written as F = F α1

1
· · ·F αn

n with αk ∈ N for k =
1, . . . , n.

The following theorem proved in [9] summarizes the results on the
existence of invariant algebraic surfaces for system (1).

Theorem 1. When βk(λ2 + d2) 6= 0, a set of generators for the set of
all Darboux polynomials of system (1) are given in Table 1.

Darboux Polynomial Cofactor Parameters
F0 = x, K = −d− βz, λ = 0,
F1 = x+ y − λ/d, K = −d, a = d 6= 0,
F2 = x+ y + (a− d)z/k − λ/d, K = −d, µ = d 6= 0.

Table 1. Invariant algebraic surfaces of system (1).

As any polynomial differential system the virus system (1) can be
extended to an analytic system on a closed ball of radius one, whose
interior is diffeomorphic to R3 and its boundary, the 2–dimensional
sphere S2, plays the role of the infinity because in R3 one can go or
come from infinity in as many directions as points have S2. This closed
ball is denoted by B and called the Poincaré ball. The technique for
doing such an extension is precisely the Poincaré compactification for
a polynomial differential system in R3, which is described in details in
[2], see also [1]. By using this compactification technique the dynamics
of system (1) at infinity can be determined.

Theorem 2. The phase portrait of the Poincaré compactification of
system (1) at the infinity S2 is topologically equivalent to the one de-
scribed in Figure 1.
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Figure 1. Phase portrait of the virus system (1) at the
infinity S2 of the Poincaré ball. The circles of S2 con-
tained in x = 0 and z = 0 are filled of singular points.
Additionally there are two diammetrally opposite singu-
lar points on z = 0 of nodal type.

We go further and describe the global dynamics of system (1) for
fixed values of the parameters having the invariant planes F1 = 0 or
F2 = 0 described in Table 1.

Theorem 3. The following statements hold for system (1) when βk(λ2+
d2) 6= 0.

(a) For d = a 6= 0 system (1) has the Darboux polynomial

F1(x, y, z) = x+ y − λ/d

and the Darboux invariant

Id(x, y, z, t) = (x+ y − λ/d)edt.

The singular points on F1(x, y, z) = 0 are described in Table 2.
The phase portraits of system (1) restricted to the compactified
invariant plane F1(x, y, z) = 0 are described in Figure 7.

(b) For d = µ 6= 0 system (1) has the Darboux polynomial

F2(x, y, z) = x+ y +
(a− d)

k
z − λ

d
and the Darboux invariant

Id(x, y, z, t) =

(

x+ y +
(a− d)

k
z − λ

d

)

edt.

The singular points on F2(x, y, z) = 0 are described in Table 2.
The phase portraits of system (1) restricted to the compactified
invariant plane F2(x, y, z) = 0 are described in Figure 7.
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We remark that system (1) restricted to the invariant plane F0 =
x = 0 with λ = 0 is linear.

We say that a set V ⊂ B is invariant by the flow of system (1) if for
any p ∈ V the whole orbit passing through p is contained in V . The
sphere of the infinity always is an invariant set. Let ϕ(t) = ϕ(t, p) be
the solution of the compactified system (1) passing through the point
p ∈ B when t = 0, defined on its maximal interval Ip = R (because B
is compact). Then the α–limit set of ϕ is the invariant set

α(ϕ) = {q ∈ B : ∃ {tn} such that tn → −∞ and ϕ(tn) → q as n → ∞}.

In a similar way the ω–limit set of ϕ is the invariant set

ω(ϕ) = {q ∈ B : ∃ {tn} such that tn → ∞ and ϕ(tn) → q as n → ∞}.

The following theorem gives a complete description of the α– and ω–
limit sets in the Poincaré ball, including its boundary S2, for system
(1) having the invariant algebraic surfaces of Table 1.

Theorem 4. Let γ be an orbit of the compactified system (1) with
βk 6= 0. Assume a = d 6= 0, or µ = d 6= 0. If γ is contained in the
interior of B and outside the invariant plane F1 = 0 if a = d 6= 0, or
F2 = 0 if µ = d 6= 0, then the following two statements hold.

(a) The α–limit set of γ is some of the four infinite singular points
q, q′, E2, E

′

2
contained in the boundary of the plane Fi = 0 for

i = 1, 2.
(b) The ω–limit set of γ is contained in the closure of the invariant

plane Fi = 0 in the Poincaré ball. More precisely,
If µ = λ = 0, or λ = a = 0, then ω(γ) ⊂ {(0, 0, z), z ∈ R}, i.e.
the straight line x = 0 of Figure 7.

If µ = 0 and λ 6= 0, or a = 0 and λ 6= 0, then ω(γ) ⊂
{P0, E2, E

′

2
}.

If µ 6= 0 and βkλ = d2µ, or a 6= 0 and βkλ = ad2, then
ω(γ) = {P0}.
If µ 6= 0 and βkλ 6= d2µ, or a 6= 0 and βkλ 6= ad2, then
ω(γ) ⊂ {P0, P1}.
Here P0, P1 are singular points of system (1), contained in the
plane F1 = 0 (see Table 2), E2 is the origin of the local chart
U2, q = (−1, 0, 0) is a singular point in the local chart U1, and
E ′

2
and q′ are the diametrally opposite points to E2 and q in the

Poincaré sphere.
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The paper is organized as follows. In section 2 we prove Theorem 2 by
using the Poincaré compactification for a polynomial vector field in R3.
In section 3 we prove Theorem 3 by using the Poincaré compactification
for a polynomial vector field in R2. For precise definitions of all these
notions see Chapter 5 of [3]. Finally the proof of Theorem 4 is given
in section 4.

2. Proof of Theorem 2

In this section we analyze the flow of system (1) at infinity. Consider
system (1) or equivalently its associated polynomial vector field X =
(λ− dx− βxz,−ay + βxz, ky − µz).

In the next three subsections we will study the Poincaré compactifi-
cation, p(X), of system (1) in the local charts Ui and Vi, i = 1, 2, 3 in
order to understand the global behavior of the solutions near infinity.
See [1] for more details on these charts.

2.1. In the local chart U3. Using the results of [1] we have that the
expression of the Poincaré compactification Z3 = p(X) of system (1)
in the local chart U3 is given by

(2)
ż1 = −βz1 + z3((µ− d)z1 + λz3 − kz1z2),
ż2 = βz1 + z3((µ− a)z2 − kz2

2
),

ż3 = −z2
3
(kz2 − µ).

In the points of the sphere S
2 that correspond to the points at infinity

we have z3 = 0, and so system (2) becomes

ż1 = −βz1, ż2 = βz1, ż3 = 0.

After eliminating the common factor z1 (by rescaling of the time) we
do not obtain any singular point in the local chart U3 which is dis-
tinguished. From this system we see that system (2) has at infinity a
continuum of singular points given by (0, z2, 0). Moreover DZ3(0, z2, 0)
has, for each z2, the eigenvalues −β and 0 with multiplicity 2. By the
normal hyperbolicity theory (see [4] for details) to each point (0, z2, 0)
it arrives two orbits, see Figure 2. Note that the equilibria (0, z2, 0)
with z2 ∈ R represent half of a great circle through the north pole of
S2. The orbits of the system in the local chart U3 at infinity have the
phase portrait given in Figures 2 and 1.
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z1

z2

Figure 2. The phase portrait in the local chart U3 at infinity.

2.2. In the local chart U1. In the same way the Poincaré compacti-
fication Z1 = p(X) of system (1) in the local chart U1 is

(3)
ż1 = βz2(z1 + 1) + z3((d− a)z1 − λz1z3),
ż2 = βz2

2
+ z3((d− µ)z2 + kz1 − λz2z3),

ż3 = z3(dz3 + βz2 − λz2
3
).

System (3) restricted to infinity (that is with z3 = 0 ) becomes

ż1 = βz2(z1 + 1), ż2 = βz2
2
, ż3 = 0.

So there is a line of singular points which is z2 = 0. These singular
points are such that DZ1(z1, 0, 0) has, for each z1 the eigenvalue 0 with
multiplicity 3. After eliminating the common factor z2 (by a rescaling
of the time) we get that the unique singular point is q = (−1, 0, 0)
which is an unstable node. Note that the equilibria (z1, 0, 0) for z1 ∈ R

represent in the Poincaré sphere S2 half of the equator. The orbits
of the system in the local chart U1 at infinity have the phase portrait
given in Figures 3 and 1.

2.3. In the local chart U2. The expression of the Poincaré compact-
ification Z2 = p(X) in the local chart U2 is

(4)
ż1 = −βz1z2(z1 + 1) + z3((a− d)z1 + λz3),
ż2 = −βz1z

2

2
+ z3(k + (a− µ)z2),

ż3 = z3(az3 − βz1z2).

Now the unique point of the local chart U2 which is not covered by the
local charts U1, V1, U3 and V3 is the origin of coordinates of U2. System
(4) restricted at the infinity (that is with z3 = 0 ) becomes

ż1 = −βz1z2(z1 + 1), ż2 = −βz1z
2

2
, ż3 = 0.
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Figure 3. The phase portrait in the local chart U1 at infinity.

There are two lines of singular points z1 = 0 and z2 = 0. After removing
these two lines of singular points, there is a singular point q = (−1, 0, 0)
which is a stable node and its local phase portrait is the one given in
Figure 4.

q

z1

z2

Figure 4. Local phase portrait at the origin of U2 at infinity.

We observe that the flows in the Vi charts for i = 1, 2, 3 are the same
as the ones in the respective Ui charts for i = 1, 2, 3 but with the time
reversed because the compactified vector field p(X) in Vi coincides with
the vector field in Ui multiplied by −1 for each i = 1, 2, 3. See [1].

From subsections 2.1, 2.2 and 2.3 it follows the proof of Theorem 2.

3. Proof of Theorem 3

In Theorem 1 it was proved that the virus system (1) has the invari-
ant algebraic surfaces F1(x, y, z) = x + y − λ/d = 0 when a = d 6= 0
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and F2 = x + y + (a− d)z/k − λ/d = 0 when µ = d 6= 0. It is easy to
see that Id(x, y, z, t) = Fi(x, y, z)e

dt satisfies

dId
dt

=
∂Id
∂t

+
∂Id
∂x

ẋ+
∂Id
∂y

ẏ +
∂Id
∂z

ż = edt
(

Fi(x, y, z)d+
dFi

dt

)

= 0,

where i = {1, 2}. Therefore Id is a Darboux invariant of system (1).
This completes the proof of the first part of statements (a) and (b) of
Theorem 3.

System (1) has two isolated singular points in R3, namely

(5) p0 =

(

λ

d
, 0, 0

)

, p1 =

(

aµ

βk
,
λ

a
− dµ

βk
,
λk

aµ
− d

β

)

.

Note that these two singular points are on the two invariant algebraic
surfaces F1(x, y, z) = 0 when a = d 6= 0 and F2(x, y, z) = 0 when
µ = d 6= 0. In what follows we shall analyze the flow of the system in
these planes and relate their dynamics with the dynamics at infinity.

3.1. Phase portrait on {F1(x, y, z) = 0}. We can consider in this
subsection system (1) with a = d 6= 0 and βkd(λ2 + d2) 6= 0. System
(1) restricted to the invariant plane F1(x, y, z) = 0 is given by the
differential system

(6) ẋ = λ− dx− βxz, ż = −kx− µz +
kλ

d
.

Doing the change of variables (with a rescaling of time)

(7) x =
d2

βk
X +

λ

d
, z =

d

β
Z, t = dT,

system (6) becomes

(8) ẋ = −x− a1z − xz, ż = −x− a2z

where a1 = βkλ/d3, a2 = µ/d ∈ [0,∞), and we have renamed the new
variables (X,Z) by (x, z), and the dot denotes derivative with respect
to the new time T .

We now study the infinite singular points of system (8). We will use
the Poincaré compactification for a polynomial vector field in R

2 which
is described in Chapter 5 of [3].

3.1.1. Infinite singular points. System (8) in the local chart U1 becomes

ż1 = −z2 + z1(z1 + (1− a2)z2 + a1z1z2), ż2 = z2(z1 + z2 + a1z1z2).

When z2 = 0 the only infinite singular point is the origin. Since the
origin is nilpotent, using Theorem 3.5 of [3] we obtain that the phase
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portrait of the origin consists of one hyperbolic, one elliptic and two
parabolic sectors, see Figure 5.

z1

Figure 5. Local phase portrait at the origin of U1 at infinity.

Now it only remains to study if the point (0, 0) of the local chart U2

is a singular point. System (8) in the local chart U2 writes

(9) ż1 = −z1 + z2(−a1 + (a2 − 1)z1 + z2
1
), ż2 = z2

2
(a2 + z1).

By a linear change of coordinates this system can be written as

ż1 = −a2z
2

1
+a1z

3

1
−z2

1
z2, ż2 = z2−a1z

2

1
+(1−a2)z1z2+a1z

2

1
z2−z1z

2

2
.

Therefore (0, 0) is a semi–hyperbolic point. By Theorem 2.19 of [3] if
a2 6= 0 we have that (0, 0) is a saddle–node point and going back to
system (9) its local phase portrait is the one described in Figure 6.

Figure 6. Local phase portrait at the origin of U2 at infinity.

On the other hand, if a2 = 0 but a1 6= 0, (0, 0) is a stable topological
node. Finally, when a2 = a1 = 0, the system becomes

ż1 = −z2
1
z2, ż2 = z2(1 + z1 − z1z2),

so there is a line of singular points which is z2 = 0. After eliminating
the common factor z2 (by a rescaling of the time) we do not obtain any
singular point in the local chart U2 which is distinguished.
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3.1.2. Finite singular points. In what follows we shall study the local
stability at the singular points of system (8) for the parameters a1 and
a2.

Case 1: a2 = 0. In this case system (8) becomes

ẋ = −x− a1z − xz, ż = −x.

When a1 = 0 the system has a continuum of singular points (0, z) on
the straight line x = 0. When a1 6= 0, the unique singular point is
(0, 0). The eigenvalues are

λ1 =
−1 +

√
1 + 4a1
2

and λ2 =
−1 −

√
1 + 4a1
2

.

As a1 > 0, the origin is a saddle.

Case 2: a2 6= 0. In this case system (8) has exactly the two finite
singular points:

P0 = (0, 0), and P1 =

(

a2 − a1,
a1 − a2

a2

)

.

The eigenvalues of the linear part at these singular points are

−(a2 + 1)±
√

(a2 + 1)2 + 4(a1 − a2)

2
for P0, and

−(a1 + a2
2
)±

√

(a1 + a2
2
)2 + 4a2

2
(a2 − a1)

2
for P1.

When a2 < a1, P0 is a saddle and P1 is an attractor node. On the
other hand, when a1 < a2, P0 is an attractor node and P1 is a saddle.
Finally, when a1 = a2, we have that P0 = P1. It is semi-hyperbolic
and using Theorem 2.19 of [3] we conclude that it is a saddle-node. In
short we have Table 2.

Parameters Finite singular points Figures

a1 = a2 = 0 line x = 0 Figure 7 (a)
a2 = 0, a1 > 0 P0 saddle Figure 7 (b)
a2 > 0, a1 = a2 P0 = P1 saddle–node Figure 7 (c)
a2 > 0, a1 < a2 P0 stable node, P1 saddle Figure 7 (d)
a2 > 0, a1 > a2 P0 saddle , P1 stable node Figure 7 (d)

Table 2. Finite singular points for the differential sys-
tem (8) and for the parameters a1 = βkλ/d3 and a2 =
µ/d if a = d 6= 0, and a1 = βkλ/d3 and a2 = a/d if
µ = d 6= 0.
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Taking into account the local information on the finite and infinite
singular points of system (8) we get that the global phase portraits
of systems (8) are topologically equivalent to those described in the
Figure 7.

(a) (b)

(c) (d)

P0

P0
P0

P1

E2
E2

E2
E2

E ′

2 E ′

2

E ′

2
E ′

2

q

qq

q

q′

q′

q′

q′

Figure 7. Phase portrait in the Poincaré disc of the
virus system (1) on the invariant planes F1 = x + y −
λ/d = 0 if a = d 6= 0.

3.2. Phase portrait on F2(x, y, z) = 0. In this subsection we consider
system (1) with µ = d 6= 0 and βkd 6= 0. System (1) restricted to the
invariant plane F2(x, y, z) = 0 is given by the differential system

(10) ẋ = λ− dx− βxz, ż = −kx− az +
kλ

d
.

Doing the change of variables in (7) system (10) can be written as

(11) ẋ = −x− a1z − xz, ż = −x− a2z,

where a1 = βkλ/d3 and a2 = a/d and again we have renamed (X,Z)
as (x, z), and the dot means derivative with respect to the new time T .
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Systems (8) and (11) are the same and so their global phase portraits
are exactly the same. In short, taking into account the results of this
subsection we have proved Theorem 3.

4. Proof of Theorem 4

In this section we describe the α– and the ω–limit sets of all orbits
of system (1) contained in B and outside the invariant planes F1 = 0
and F2 = 0.

In section 3 we proved that Id(x, y, z, t) = Fi(x, y, z)e
dt is an invariant

of system (1) when a = d 6= 0 if i = 1 and µ = d 6= 0 if i = 2. Let

γ(t) = {(x(t), y(t), z(t)) : t ∈ R}
be an orbit of the compactified system (1) outside the planes Fi = 0
for i = 1, 2. Therefore

Id(t, x(t), y(t), z(t)) = h.

with h ∈ R \ {0}. So
(12) Fi(x(t), y(t), z(t)) e

dt = h, for all t ∈ R, i = {1, 2}.

Taking the limit in (12) when t → −∞, we obtain that

lim
t→∞

Fi(x(t), y(t), z(t)) = ±∞.

Therefore the α–limit is contained in the boundary of the plane Fi = 0
at infinity. Then from Figure 1 these α-limit sets can only be one of
the four singular points contained in the boundary of Fi = 0 at infinity,
i.e., q, q′, E2 and E ′

2
(see Figure 7). So, statement (a) is proved. Now

taking the limit in (12) when t → ∞, we obtain that

lim
t→∞

Fi(x(t), y(t), z(t)) = 0.

Therefore the ω–limit is contained in the closed plane Fi = 0 in the
Poincaré ball. To complete the study of the ω-limit sets we first study
the finite singular points in R3 whenever either d = a, or d = µ. Since
the study is the same we will focus in the case in which d = a. We
consider different cases.

Case 1: λ = µ = 0. In this case the singular points are located
at x = y = 0. Computing the eigenvalues of the Jacobian matrix
at the points of this line, we get that they are 0, −a and −a − zβ.
It follows from the normal hyperbolicity theory (see again [4]) that if
−a−z0β < 0 then the singular point (0, 0, z0) has a 2-dimensional stable
manifold, whereas if −a− z0β > 0 then the singular point (0, 0, z0) has
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a 1-dimensional stable manifold and 1-dimensional unstable invariant
manifold.

Case 2: µ = 0 and λ 6= 0. In this case the unique singular point is
(λ/a, 0, 0). Computing the eigenvalues of the Jacobian matrix at this
point we get

−a,
−a2 ±

√

a4 + 4akβλ

2a
.

Since akβλ > 0 we get that the singular point (λ/a, 0, 0) has a 2-
dimensional stable manifold and 1-dimensional unstable manifold.

Case 3: µ = kβλ/a2. In this case the unique singular point is again
(λ/a, 0, 0). Computing the eigenvalues of the Jacobian matrix at this
point we obtain

0, −a, −a3 + kβλ

a2

So by the normal hyperbolicity theory the singular point (λ/a, 0, 0) has
either a 2-dimensional stable manifold.

Case 4: µ 6= kβλ/a2. In this case there are two singular points which
are given in (5) (p0 and p1). Computing the eigenvalues of the Jacobian
matrix at these singular points we get

−a, −a(a + µ)±
√

(a2 + aµ)2 − 4a(a2µ− kβλ)

2a

for p0, and

−a, −aµ2 + kβλ±
√

(aµ2 + kβλ)2 + 4au2(a2µ− kβλ)

2aµ

for p1. So, p0 has a 2-dimensional stable manifold and 1-dimensional
unstable manifold when a2µ − kβλ < 0, and a 3-dimensional stable
manifold when a2µ − kβλ > 0. On the other hand, p1 has a 3-
dimensional stable manifold when a2µ− kβλ < 0, and a 2-dimensional
stable manifold and 1-dimensional unstable manifold when a2µ−kβλ >
0.

Now we can finish the proof of statement (b) of Theorem 4. Indeed,
the first assertion in statement (b) of Theorem 4 follows directly from
Case 1 and Figure 7 whereas the second assertion in statement (b) of
Theorem 4 follows directly from Case 2 and Figure 7. Moreover, the
third and four assertions in statement (b) of Theorem 4 follow from
Cases 3 and 4 and Figure 7.
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