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Abstract

It is well known that linear vector fields defined in Rn can not have limit cycles,
but this is not the case for linear vector fields defined in other manifolds. We study the
existence of limit cycles bifurcating from a continuum of periodic orbits of linear vector
fields on manifolds of the form (S2)m×Rn when such vector fields are perturbed inside
the class of all linear vector fields. The study is done using the averaging theory. We
also present an open problem concerning the maximum number of limit cycles of linear
vector fields on (S2)m × Rn.
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1 Introduction and statement of the main results

The study of periodic orbits of differential systems play an important role in the qualitative
theory of ordinary differential equations and their applications. A limit cycle is defined as a
periodic orbit of a differential system which is isolated in the set of all periodic orbits of the
system. There are many works concerning the study of limit cycles and their applications
(see for instance [3, 5, 6, 8] and the references quoted therein).
It is well know that linear vector fields in Rn can not have limit cycles, but this is not the
case if one considers linear vector fields in other manifolds different from Rn. The objective
of this paper is to study the existence of limit cycles of linear vector fields defined on the
manifolds (S2)n × Rn.
The problem of studying limit cycles of linear vector fields on manifolds different form Rn

was already treated in [14], where the authors consider linear vector fields on Sm × Rn, and
they conjecture that such vector fields may have at most one limit cycle.
Linear autonomous differential systems, namely, systems of the form ẋ = Ax + b, where A
is a n× n real matrix and b is a vector in Rn, are the easiest systems to study because their
solutions can be completely determined (see [1, 18]), but still they play an important role in
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the theory of differential systems. Thus when a nonlinear differential system has a hyperbolic
equilibrium point, the dynamics around that point is determined by the linearization of the
vector field at that point (Hartman-Grossman theorem, see [7]).
Also linear vector fields having invariant subspaces of periodic orbits can be perturbed inside
a concrete class of nonlinear differential systems to obtain limit cycles of these nonlinear
systems bifurcating from the periodic orbits of the linear system (see [4, 11, 12, 13]).
Moreover, linear differential systems of the form ẋ = Ax+Bu, where x are the state variables
and u is the control input, are applied in control theory for the modeling of hybrid systems
(see [9, 10]).
The preceeding exemples show some of the importance of linear differential systems. In this
paper we show that linear differential systems can have limit cycles when the manifold where
they are defined is different from Rn, and we consider the question of how many limit cycles
can have at most a linear vector field depending on the manifold where it is defined.
Let M be a smooth connected manifold of dimension n, and let TM be its tangent bundle.
A vector field on M is a map X : M → TM such that X(x) ∈ TxM , where TxM is the
tangent space of M at the point x.
A linear vector field in Rn is a vector field of the form X(x) = Ax + b, with x, b ∈ Rn and
where A is a n × n real matrix. As it is well known linear vector fields on Rn either do not
have periodic orbits or their periodic orbits form a continuum, and therefore they do not
have limit cycles.
In this paper we consider linear vector fields on some manifolds of the form (S2)m × Rn,
where S2 denotes the unit two-dimensional sphere. Here the sphere S2 is parameterized by
the coordinates (θ, ϕ), where θ ∈ [−π, π) denotes the azimuth angle and ϕ ∈ [−π/2, π/2] is
the polar angle. Hence the curve {ϕ = 0} is the equator of the sphere.
Let (θ1, ϕ1, . . . θm, ϕm, x1, · · · , xn) denote the coordinates of the space (S2)m × Rn. Then we
say that a vector field X is linear onM = (S2)m×Rn if the expression of X in the coordinates
z = (θ1, ϕ1, . . . θm, ϕm, x1, · · · , xn) ∈M is of the form X(z) = Az+ b, with b ∈M and where
A is a (2m+ n)× (2m+ n) real matrix.
A simple example in which a linear differential system on the manifold (S2)m×Rn has a limit
cycle is the following. Take m = 1, n = 0 and consider the linear system on the sphere S2

given by
θ̇ = 1, ϕ̇ = ϕ,

for θ ∈ [−π, π) and ϕ ∈ (−π/2, π/2), and

θ̇ = 0, ϕ̇ = 0

for ϕ = ±π/2. Then, clearly the equator of the sphere {ϕ = 0} is the only periodic orbit of
the system, and therefore it is a limit cycle.
In this paper we consider generic linear perturbations of some linear vector fields on three
different manifolds of the form (S2)m × Rn, and we study whether those families of linear
differential systems can have limit cycles.
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Let M = S2 × R and consider the linear differential system in M given by

θ̇ = 1, ϕ̇ = 0, ṙ = r − 1, (1.1)

for r ∈ R, θ ∈ [−π, π) and ϕ ∈ (−π/2, π/2), and with θ̇ = 0 on the straight lines R1 = {ϕ =
−π/2} and R2 = {ϕ = π/2}.
The solution of system (1.1) is given by

θ(t) = θ0 + t, ϕ(t) = ϕ0, r(t) = (r0 − 1)et + 1.

Thus the sphere {r = 1} is an invariant manifold with two equilibrium points at the north and
the south poles, and is foliated by periodic orbits of period 2π, corresponding to the parallels
of the sphere, except at the poles. Moreover the straight lines R1 and R2 are invariant.
First we shall study the bifurcation of limit cycles when we perturb system (1.1) inside
the class of all linear differential systems, and we shall see that one of the periodic orbits
contained in the sphere {r = 1} may bifurcate to a limit cycle under certain hypotheses.
We consider the class of differential systems

θ̇ = 1 + ε(a0 + a1θ + a2ϕ+ a3r),
ϕ̇ = ε(b0 + b1θ + b2ϕ+ b3r),
ṙ = r − 1 + ε(c0 + c1θ + c2ϕ+ c3r).

(1.2)

where ai, bi and ci, for i = 0, . . . , 3 are real numbers and with ε > 0 being a small parameter.
Note that this is the more general linear perturbation of system (1.1). For the class of systems
(1.2) we have the following result.

Theorem 1. For sufficiently small ε > 0 the linear differential system (1.2) has a limit cycle
bifurcating from a periodic orbit of system (1.1) provided that a1b2− a2b1 6= 0. Moreover this
limit cycle bifurcates from the periodic orbit of system (1.1) parameterized by (θ(t), ϕ(t), r(t)) =
(θ0 + t, ϕ0, 1), with

θ0 = a2(b0 + b3 + b1π)− b2(a0 + a3 + a1π)
a1b2 − a2b1

,

ϕ0 = b1(a0 + a3 + a1π)− a1(b0 + b3 + b2π)
a1b2 − a2b1

.

Theorem 1 is proved in section 3.
We remark that the existence of the limit cycle for system (1.2) does not depend on the
perturbation of the ṙ equation.
As an example of the previous result, consider the system

θ̇ = 1 + εaϕ, ϕ̇ = εbθ, ṙ = r − 1, (1.3)

with a, b ∈ R and ε > 0. In this case the sphere {r = 1} is still an invariant manifold.
Appliying Theorem 1 with a2 = a, b1 = b and the rest of the coefficients of the perturbation
being zero, we find that system (1.3) has a limit cycle bifurcating form the periodic orbit
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of system (1.1) parameterized by (θ(t), ϕ(t), r(t)) = (−π + t, 0, 1). That is, there is a limit
cycle bifurcating from the periodic orbit corresponding to the equator of the sphere {r = 1}
of system (1.1). Moreover this limit cycle is still contained in the sphere {r = 1}.
Next we consider linear differential systems defined on higher dimensional manifolds. We
take M = S2 × S2 × R and

θ̇ = 1, ϕ̇ = 0, ν̇ = 1, φ̇ = 0, ṙ = r − 1, (1.4)

for (θ, ϕ, ν, φ, r) ∈ M , with θ, ν ∈ [−π, π) and ϕ, φ ∈ (−π/2, π/2), and with θ̇ = 0 when
ϕ = ±π/2 and ν̇ = 0 when φ = ±π/2.
The general solution of system (1.4) is

θ(t) = θ0 + t, ϕ(t) = ϕ0, ν(t) = ν0 + t, φ(t) = φ0, r(t) = (r0 − 1)et + 1,

and thus the product of spheres {r = 1} ∼= (S2)2 is an invariant manifold foliated by periodic
orbits of period 2π, except for the four points {r = 1, ϕ = ±π/2, φ = ±π/2}, which are
equilibrium points.
We consider the most general perturbation of the differential system (1.4) inside the class of
all linear differential systems, namely

θ̇ = 1 + ε(a0 + a1θ + a2ϕ+ a3ν + a4φ+ a5r),
ϕ̇ = ε(b0 + b1θ + b2ϕ+ b3ν + b4φ+ b5r)
ν̇ = 1 + ε(c0 + c1θ + c2ϕ+ c3ν + c4φ+ c5r),
φ̇ = ε(d0 + d1θ + d2ϕ+ d3ν + d4φ+ d5r)
ṙ = r − 1 + ε(e0 + e1θ + e2ϕ+ e3ν + e4φ+ e5r),

(1.5)

with ai, bi, ci, di, ei ∈ R for i = 0, . . . , 5, and with ε > 0 being a small parameter. In the
following result we give sufficient conditions on the coefficients of system (1.5) in order that
there is a limit cycle bifurcating from a periodic orbit of the corresponding unperturbed
system.

Theorem 2. For sufficiently small ε > 0 the differential system (1.5) has a limit cycle
bifurcating from a periodic orbit of system (1.4) provided that

det


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

 6= 0.

Moreover this limit cycle bifurcates from the periodic orbit of system (1.4) parameterized
by (θ(t), ϕ(t), ν(t), φ(t), r(t)) = (θ0 + t, ϕ0, ν0 + t, φ0, 1), where (θ0, ϕ0, ν0, φ0) is the unique
solution of the linear system

a1θ0 + a2ϕ0 + a3ν0 + a4φ0 = −a0 − a1π − a3π − a5,

b1θ0 + b2ϕ0 + b3ν0 + b4φ0 = −b0 − b1π − b3π − b5,

c1θ0 + c2ϕ0 + c3ν0 + c4φ0 = −c0 − c1π − c3π − c5,

d1θ0 + d2ϕ0 + d3ν0 + d4φ0 = −d0 − d1π − d3π − d5.
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Theorem 2 is proved in section 4.
Finally we consider the linear differential system defined in M = R2 × S2, for (x, y, θ, ϕ) ∈
R2 × S2, with θ ∈ [−π, π) and ϕ ∈ (−π/2, π/2), given by

ẋ = −y, ẏ = x, θ̇ = 1, ϕ̇ = 0, (1.6)

and with θ̇ = 0 in the planes P1 = {ϕ = −π/2} and P2 = {ϕ = π/2}, which are invariant.
The general solution of system (1.6) is

x(t) = x0 cos t− y0 sin t, y(t) = x0 sin t+ y0 cos t, θ(t) = θ0 + t, ϕ(t) = ϕ0,

and therefore the whole phase space is filled by periodic orbits of period 2π, except for the
two equilibrium points (x, y, θ, ϕ) = (0, 0, θ,−π/2) and (x, y, θ, φ) = (0, 0, θ, π/2).
We consider the most general linear perturbation of system (1.6) and we study the existence
of limit cycles bifurcating from the periodic orbits of system (1.6).
Let

ẋ = −y + ε(a0 + a1x+ a2y + a3θ + a4ϕ),
ẏ = x+ ε(b0 + b1x+ b2y + b3θ + b4ϕ),
θ̇ = 1 + ε(c0 + c1x+ c2y + c3θ + c4ϕ),
ϕ̇ = ε(d0 + d1x+ d2y + d3θ + d4ϕ),

(1.7)

be the perturbed system, with ai, bi, ci, di ∈ R for i = 0, . . . , 4, and where ε > 0 is a small
parameter. For this linear differential system we have the following result.

Theorem 3. For sufficiently small ε > 0 the linear differential system (1.7) has a limit cycle
bifurcating from a periodic orbit of system (1.6) provided that

det
b2 + a1 a2 − b1

b1 − a2 b2 + a1

 6= 0 and det
c3 c4

d3 d4

 6= 0.

Moreover this limit cycle bifurcates form the periodic orbit of system (1.6) passing through
the point (x0, y0, θ0, ϕ0) where

x0 = (2b2 + 2a1)b3 − 2a3b1 + 2a2a3

b2
2 + b2

1 + a2
2 + a2

1 + 2a1b2 − 2a2b1
,

y0 = − (2b1 − 2a2)b3 + 2a3b2 + 2a1a3

b2
2 + b2

1 + a2
2 + a2

1 + 2a1b2 − 2a2b1
,

θ0 = −(πc3 + c0)d4 − πc4d3 − c4d0

c3d4 − c4d3
,

ϕ0 = c0d3 − c3d0

c3d4 − c4d3
.

Theorem 3 is proved in section 5.
As an example consider the system

ẋ = −y + εay, ẏ = x+ εbx, θ̇ = 1 + εcϕ, ϕ̇ = εdθ, (1.8)

5



with a, b, c, d ∈ R, and ε > 0. Appliying Theorem 3 with a2 = a, b1 = b, c4 = c, d3 = d
and the rest of the coefficients of the perturbation being zero, we obtain that system (1.8)
has a limit cycle bifurcating form the periodic orbit of system (1.6) passing through the
point (x0, y0, θ0, ϕ0) = (0, 0,−π, 0), provided that (a − b)cd 6= 0. That is, here the limit
cycle bifurcates from the periodic orbit corresponding to the equator of the invariant sphere
{x = y = 0} of system (1.6).
The key tool that we use for proving Theorems 1 - 3 is the averaging theory. For a general
introduction to this theory, see the books [17, 19]. As one can see in the proofs of Theorems
1 - 3, our method based on the averaging theory can produce at most one limit cycle for the
studied systems. Therefore the following open question is natural.
Open question. Let m and n be two non-negative integers. Is it true that a linear vector
field on the manifold (Sm)m × Rn can have at most one limit cycle?
A similar open question was stated in [14] concerning linear vector fields on the manifold
(S1)m × Rn.

2 Basic results on the averaging theory

In this section we state some basic results from the averaging theory that will be used to
prove the main results of the paper.
Let M be a smooth connected manifold of dimension n, and let F0, F1 : R ×M → Rn and
F2 : R×M × [0, ε0)→ Rn be C2, T -periodic functions. Given the differential system

ẋ(t) = F0(t, x), (2.1)

we consider a perturbation of this system of the form

ẋ(t) = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε). (2.2)

The objective is to study the bifurcation of T -periodic solutions of system (2.2) for ε > 0
small enough. A solution to this problem is given by the averaging theory.
We assume that there exists k ≤ n such that M = Mk ×Mn−k, where Mk is a manifold of
dimension k and Mn−k is a manifold of dimension n− k, and that the unperturbed system,
namely system (2.1), contains an open set, V ⊆ Mk, such that V is filled with periodic
solutions all of them with the same period. Such a set is called isochronous.
Let x(t, z, ε) be the solution of system (2.2) such that x(0, z, ε) = z. We write the linearization
of the unperturbed system (2.1) along the solution x(t, z, 0) as

ẏ = DxF0(t, x(t, z, 0))y, (2.3)

and we denote byMz(t) the fundamental matrix of the linear differential system (2.3) such
thatMz(0) is the n × n identity matrix, and by ξ : M = Mk ×Mn−k → Mk the projection
of M onto its first k coordinates, that is, ξ(x1, . . . , xn) = (x1, . . . , xk).
The following results give sufficient conditions for the existence of limit cycles for a system
of the form (2.2) bifurcating from the periodic orbits of system (2.1).
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Theorem 4. Let V ⊆ Mk be an open and bounded set, and let β0 : V → Mn−k be a C2

function. Assume
(i) Z = {zα = (α, β0(α)) : α ∈ V } ⊂ M and for each zα ∈ Z the solution x(t, zα, 0) of
system (2.1) is T-periodic.
(ii) For each zα ∈ Z, there is a fundamental matrix Mzα(t) of system (2.3) such that the
matrixM−1

zα
(0)−M−1

zα
(T ) has the k × (n− k) zero matrix in the upper right corner, and a

(n− k)× (n− k) matrix ∆α in the lower right corner with det(∆α) 6= 0.
Consider the function F : V → Rk defined by

F(α) = ξ

(∫ T

0
M−1

zα
(t)F1(t, x(t, zα, 0)) dt

)
. (2.4)

If there exists a ∈ V with F(a) = 0 and with det(DF(a)) 6= 0, then there is a limit cycle
x(t, ε) of period T of system (2.2) such that x(0, ε)→ za as ε→ 0.

The result given by Theorem 4 can be found in the books of Malkin [15] and Rosseau [16].
For a shorter proof, see [2]. There the result is proved in Rn, but it can be easily extended
to a manifold M .
The next result allows to determine the existence of limit cycles in a system of the form (2.2)
in the case when there exists an open set, V ⊂ M , such that for all z ∈ V , the solution
x(t, z, 0) is T -periodic.

Theorem 5. Let V ⊆ M be an open and bounded set with V ⊆ M , and assume that for all
z ∈ V the solution x(t, z, 0) of system (2.2) is T -periodic. Consider the function F : V → Rn

defined by
F(z) =

∫ T

0
M−1

z (t)F1(t, x(t, z, 0)) dt. (2.5)

If there exists a ∈ V with F(a) = 0 and with det(DF(a)) 6= 0, then there is a limit cycle
x(t, ε) of period T of system (2.2) such that x(0, ε)→ a as ε→ 0.

For the proof of Theorem 5 see Corollary 1 of [2].

3 Proof of Theorem 1

We use the result from averaging theory given in Theorem 4 to deduce the existence of a
limit cycle of system (1.2), for some ε > 0 small enough, bifurcating from a periodic orbit of
the same system with ε = 0.
Since the general solution of the differential system (1.1), corresponding to system (1.2) with
ε = 0, is given by

θ(t) = θ0 + t, ϕ(t) = ϕ0, r(t) = (r0 − 1)et + 1,

it is clear that all the periodic solutions of that system are parameterized by

θ(t) = θ0 + t, ϕ(t) = ϕ0, r(t) = 1,
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with (θ0, ϕ0) ∈ S2\{ϕ0 = ±π/2}. Then, all the periodic solutions have period 2π and they
fill the invariant sphere {r = 1} except for the poles, which are equilibrium points.
Therefore, for applying Theorem 4 we take M = S2 × R and

k = 2, n = 3,
Mk = M2 = {(θ, ϕ, r) ∈M : r = 1} ∼= S2,

x = (θ, ϕ, r),
α = (θ0, ϕ0),

β0(α) = β0(θ0, ϕ0) = 1,
zα = (α, β0(α)) = (θ0, ϕ0, 1),
V = {(θ, ϕ, r) ∈M : r = 1, ϕ ∈ (−π

2 + δ0,
π
2 − δ0)}

with δ0 > 0 small enough such that

ϕ∗ := b1(a0 + a3 + a1π)− a1(b0 + b3 + b2π)
a1b2 − a2b1

∈ (−π
2 + δ0,

π
2 − δ0),

Z = V × {r = 1},
x(t, zα, 0) = (θ0 + t, ϕ0, 1),
F0(t, x) = (1, 0, r − 1),
F1(t, x) = (a0 + a1θ + a2ϕ+ a3r, b0 + b1θ + b2ϕ+ b3r, c0 + c1θ + c2ϕ+ c3r),

F2(t, x, ε) = 0,
T = 2π,

(3.1)

where we took V ⊂ M2 as an open subset that contains the periodic orbit for which it
bifurcates a limit cycle, as we shall see next.
The fundamental matrix Mzα(t) with Mzα(0) = Id of system (2.3) with F0 and x(t, zα, 0)
described above is the matrixMzα(t) = exp(DxF0 t), i.e.

Mzα(t) =


1 0 0
0 1 0
0 0 et

 . (3.2)

Note that since F0 defines a linear differential system, the fundamental matrix Mzα(t) is
independent of the initial conditions zα.
We also have

M−1
zα

(0)−M−1
zα

(2π) =


0 0 0
0 0 0
0 0 1− e−2π

 ,
and therefore, all the assumptions in the in the statement of Theorem 4 are satisfied.
With the described setting, the function F(α) = F(θ0, ϕ0) from the statement of Theorem 4
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associated with system (1.2) is

F(θ0, ϕ0) = ξ

(∫ 2π

0
M−1

zα
(t)F1(θ0 + t, ϕ0, 1) dt

)
= 2π(a0 + a1(θ0 + π) + a2ϕ0 + b3, b0 + b1(θ0 + π) + b2ϕ0 + b3).

We have det(DF) = 4π2(a1b2− a2b1), and therefore det(DF) 6= 0 for all (θ0, ϕ0) ∈ V . Thus,
the only solution of F = 0 is given by

θ0 = a2(b0 + b3 + b1π)− b2(a0 + a3 + a1π)
a1b2 − a2b1

,

ϕ0 = b1(a0 + a3 + a1π)− a1(b0 + b3 + b2π)
a1b2 − a2b1

.

(3.3)

Note that such solution (θ0, ϕ0), where ϕ0 = ϕ∗, is contained in the set V described in (3.1).
Hence, by Theorem 4, if ε > 0 is small enough, there is a periodic solution, (θ(t, ε), ϕ(t, ε), r(t, ε)),
of system (1.3), which is a limit cycle, and such that

(θ(0, ε), ϕ(0, ε), r(0, ε))→ (θ0, ϕ0, 1),

when ε→ 0, and where θ0 and ϕ0 are given in (3.3).

4 Proof of Theorem 2

We use the result from averaging theory given in Theorem 4 to prove that, for some ε > 0
small enough, there exist a limit cycle of system (1.5) bifurcating from a periodic orbit of
the same system with ε = 0.
Since the general solution of system (1.5) with ε = 0 (that is, the one of system (1.4)), is

θ(t) = θ0 + t, ϕ(t) = ϕ0, ν(t) = ν0 + t, φ(t) = φ0, r(t) = (r0 − 1)et + 1,

then all the periodic solutions of that system are

θ(t) = θ0 + t, ϕ(t) = ϕ0, ν(t) = ν0 + t, φ(t) = φ0, r(t) = 1,

with (θ0, ϕ0, ν0, φ0) ∈ S2\{ϕ0 = ±π/2}×S2\{ϕ0 = ±π/2}. That is, the periodic solutions fill
the invariant manifold {r = 1} except for the four equilibrium points {ϕ = ±π/2, φ = ±π/2},
and they have all period 2π.
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For applying Theorem 4 we take M = (S2)2 × R and

k = 4, n = 5,
Mk = M4 = {θ, ϕ, ν, φ, r ∈M : r = 1} ∼= (S2)2,

x = (θ, ϕ, ν, φ, r),
α = (θ0, ϕ0, ν0, φ0),

β0(α) = β0(θ0, ϕ0, ν0, φ0) = 1,
zα = (α, β0(α)) = (θ0, ϕ0, ν0, φ0, 1),
V = {(θ, ϕ, ν, φ, r) ∈M : r = 1, ϕ ∈ (−π

2 + δ0,
π
2 − δ0)}

with δ0 > 0 small enough such that ϕ0, φ0 satisfying (4.2) satisfy
ϕ0, φ0 ∈ (−π

2 + δ0,
π
2 − δ0),

Z = V × {r = 1},
x(t, zα, 0) = (θ0 + t, ϕ0, ν0 + t, φ0, 1),
F0(t, x) = (1, 0, 1, 0, r − 1),

F1(t, x) =



a0 + a1θ + a2ϕ+ a3ν + a4φ+ a5r

b0 + b1θ + b2ϕ+ b3ν + b4φ+ b5r

c0 + c1θ + c2ϕ+ c3ν + c4φ+ c5r

d0 + d1θ + d2ϕ+ d3ν + d4φ+ d5r

e0 + e1θ + e2ϕ+ e3ν + e4φ+ e5r


,

F2(t, x, ε) = 0,
T = 2π,

(4.1)

where we chose V ⊂ M4 as an open subset that contains the periodic orbit for which it
bifurcates a limit cycle, as we shall see next.
The fundamental matrixMzα(t) withMzα(0) = Id, of system (2.3) with F0 and x(t, zα, 0)
described above is the matrixMzα(t) = exp(DxF0 t), i.e.,

Mzα(t) =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 et


.

We also have

M−1
zα

(0)−M−1
zα

(2π) =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1− e−2π


,
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and therefore, all the assumptions in the statement of Theorem 4 are satisfied.
With the described setting, the function F(α) = F(θ0, ϕ0, ν0, φ0) in the statement of Theorem
4 associated with system (1.5) is

F(θ0, ϕ0, ν0, φ0) = ξ

(∫ 2π

0
M−1

zα
(t)F1(θ0 + t, ϕ0, ν0 + t, φ0, 1) dt

)
= (F1,F2,F3,F4),

with

F1 = 2π(a0 + a1θ0 + a1π + a2ϕ0 + a3ν0 + a3π + a4φ0 + a5),
F2 = 2π(b0 + b1θ0 + b1π + b2ϕ0 + b3ν0 + b3π + b4φ0 + b5),
F3 = 2π(c0 + c1θ0 + c1π + c2ϕ0 + c3ν0 + c3π + c4φ0 + c5),
F4 = 2π(d0 + d1θ0 + d1π + d2ϕ0 + d3ν0 + d3π + d4φ0 + d5).

Also, we have

det(DF) = 16π4 det


a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

d1 d2 d3 d4

 6= 0,

by assumption. The initial conditions (θ0, ϕ0, ν0, φ0) such that F(θ0, ϕ0, ν0, φ0) = 0 are the
solutions of the linear system

a1θ0 + a2ϕ0 + a3ν0 + a4φ0 = −a0 − a1π − a3π − a5,

b1θ0 + b2ϕ0 + b3ν0 + b4φ0 = −b0 − b1π − b3π − b5,

c1θ0 + c2ϕ0 + c3ν0 + c4φ0 = −c0 − c1π − c3π − c5,

d1θ0 + d2ϕ0 + d3ν0 + d4φ0 = −d0 − d1π − d3π − d5.

(4.2)

Since det(DF) 6= 0, system (4.2) has a unique solution. Note that such solution (θ0, ϕ0, ν0, φ0)
is contained in the set V described in (4.1).
Hence, by Theorem 4, if ε > 0 is small enough, there is a periodic solution,

(θ(t, ε), ϕ(t, ε), ν(t, ε), φ(t, ε), r(t, ε)),

of system (1.5), which is a limit cycle, and such that

(θ(0, ε), ϕ(0, ε), ν(0, ε), φ(0, ε), r(0, ε))→ (θ0, ϕ0, ν0, φ0, 1),

when ε→ 0, and where θ0, ϕ0, ν0, and φ0 are given by the unique solution of system (4.2).

5 Proof of Theorem 3

Since the general solution of system (1.7) with ε = 0 is given by

x(t) = x0 cos(t)− y0 sin(t), y(t) = x0 sin(t) + y0 cos(t), θ(t) = θ0 + t, ϕ(t) = ϕ0,
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the whole phase space is filled by periodic solutions, except form the equilibrium points
(x, y, θ, ϕ) = (0, 0, θ,−π/2) and (x, y, θ, ϕ) = (0, 0, θ, π/2). Hence, the periodic solutions of
the differential system (1.6) fill an open set of the phase space M = R2 × S2.
To prove Theorem 3 we use the result given in Theorem 5 to deduce that there exist a limit
cycle of system (1.7), for some ε > 0 small enough, bifurcating from the periodic orbits of
the same system with ε = 0.
To clarify the notation, here the solution x(t, z, 0) from the statement of Theorem 5 will be
denoted by x(t, z, 0), and x will denote the first variable in the phase space.
For applying Theorem 5 we take M = R2 × S2 and

x = (x, y, θ, ϕ),
z = (x0, y0, θ0, ϕ0),

x(t, z, 0) = (x(t), y(t), θ(t), ϕ(t)) given by (5)
F0(t, x) = (−y, x, 1, 0),

F1(t, x) =


a0 + a1x+ a2y + a3θ + a4ϕ

b0 + b1x+ b2y + b3θ + b4ϕ

c0 + c1x+ c2y + c3θ + c4ϕ

d0 + d1x+ d2y + d3θ + d4ϕ

 ,

F2(t, x, ε) = 0,
T = 2π,
V = {(x, y, θ, ϕ) ∈M : ‖(x, y)‖ < 1 + κ, ϕ ∈ (−π

2 + δ0,
π
2 − δ0)},

with κ =
2
√
a2

3 + b2
3√

a2
1 + a2

2 + b2
1 + b2

2 + 2a1b2 − 2a2b1
,

and with δ0 > 0 small enough such that

ϕ∗ := c0d3 − c3d0

c3d4 − c4d3
∈ (−π

2 + δ0,
π
2 − δ0).

(5.1)

where we chose V ⊂ M as an open subset that contains the periodic orbit for which it
bifurcates a limit cycle, as we shall see next.
The fundamental matrixMz(t) of system (2.3) withMz(0) = Id and with F0 and x(t, z, 0)
described in (5.1) is given by

Mz(t) =


cos(t) − sin(t) 0 0
sin(t) cos(t) 0 0

0 0 1 0
0 0 0 1

 .

Therefore all the assumptions in the statement of Theorem 5 are satisfied.
With the described setting the function F(z) = F(x0, y0, θ0, ϕ0) in the statement of Theorem
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5 associated with system (1.7), namely,

F(x0, y0, θ0, ϕ0) =
∫ 2π

0
M−1

z (t)F1(t,x(t, x, 0)) dt,

is given by F = (F1,F2,F3,F4), which after some straightforward computations can be
written as

F1 = (πa2 − πb1)y0 + (πb2 + πa1)x0 − 2πb3,

F2 = (πb2 + πa1)y0 + (πb1 − πa2)x0 + 2πa3,

F3 = 2πc3θ0 + 2πc4ϕ0 + 2π2c3 + 2πc0,

F4 = 2πd3θ0 + 2πd4ϕ0 + 2π2d3 + 2πd0.

Assuming that

det(DF) = det


π(b2 + a1) π(a2 − b1) 0 0
π(b1 − a2) π(b2 + a1) 0 0

0 0 2πc3 2πc4

0 0 2πd3 2πd4

 6= 0, (5.2)

the linear system (F1,F2,F3,F4) = (0, 0, 0, 0) has a unique solution, given by

x0 = (2b2 + 2a1)b3 − 2a3b1 + 2a2a3

b2
2 + b2

1 + a2
2 + a2

1 + 2a1b2 − 2a2b1
,

y0 = − (2b1 − 2a2)b3 + 2a3b2 + 2a1a3

b2
2 + b2

1 + a2
2 + a2

1 + 2a1b2 − 2a2b1
,

θ0 = −(πc3 + c0)d4 − πc4d3 − c4d0

c3d4 − c4d3
,

ϕ0 = c0d3 − c3d0

c3d4 − c4d3
.

(5.3)

Note that such solution (x0, y0, θ0, ϕ0), where ϕ0 = ϕ∗, is contained in the set V described in
(5.1).
The condition (5.2) is clearly satisfied for all (x0, y0, θ0, ϕ0) ∈ V taking into account the
assumptions in the statement of Theorem 3.
Hence, by Theorem 5, there is a periodic solution (x(t, ε), y(t, ε), θ(t, ε), ϕ(t, ε)) of system
(1.7), which is a limit cycle, and such that

(x(0, ε), y(0, ε), θ(0, ε), ϕ(0, ε), r(0, ε))→ (x0, y0, θ0, ϕ0)

when ε→ 0, and where x0, y0, θ0 and ϕ0 are given in (5.3).
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