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Abstract. We study the set of periods of the Morse–Smale diffeomor-
phisms on the n-dimensional sphere Sn, on products of two spheres of
arbitrary dimension Sm×Sn with m 6= n, on the n-dimensional complex
projective space CPn and on the n-dimensional quaternion projective
space HPn. We classify the minimal sets of Lefschetz periods for such
Morse–Smale diffeomorphisms. This characterization is done using the
induced maps on the homology. The main tool used is the Lefschetz
zeta function.

1. Introduction

Understanding the periodic orbits and the set of periods of a map is
a very important problem in dynamical systems. The Lefschetz numbers
are one of the most useful tools to study the existence of fixed points and
periodic orbits of self-maps on compact manifolds. In this paper we obtain
information on the set of periods of certain diffeomorphisms on compact
manifolds using the Lefschetz zeta function, which is a generating function
of the Lefschetz numbers of the iterates of a map.

Let M be a compact manifold, let f : M → M be a continuous map,
and denote by fm the m−th iterate of f . A point x ∈ M such that
f(x) = x is called a fixed point, or a periodic point of period 1 of f . A
point x ∈ M is called periodic of period k > 1 if fk(x) = x and fm(x) 6= x
for all m = 1, . . . , k − 1, and the set formed by the iterates of x, i.e.
{x, f(x), . . . , fk−1(x)}, is called the periodic orbit of the periodic point
x.

As usual N denotes the set of all positive integers. Then Per(f) is the set
{k ∈ N : f has a periodic orbit of period k}.

A fixed point x of a C1 map f is called hyperbolic if all the eigenvalues of
Df(x) have modulus different than one. A periodic point x of f of period
k is called a hyperbolic periodic point if it is a hyperbolic fixed point of fk.
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We denote by Diff(M) the space of all C1 diffeomorphisms on a compact
Riemannian manifold M . We say that two maps f, g ∈ Diff(M) are topo-
logically equivalent if there exists a homeomorphism h : M → M such that
h ◦ f = g ◦ h. A map f ∈ Diff(M) is called structurally stable if there exists
a neighbourhood U ⊂ Diff(M) of f such that every g ∈ U is topologically
equivalent to f .

A map f ∈ Diff(M) is quasi unipotent on homology if all the eigenvalues
of the nontrivial induced maps on the homology groups of M with rational
coefficients, are roots of unity. We denote by F(M) the set of elements
of Diff(M) being quasi unipotent on homology and having finitely many
periodic points, all of them hyperbolic. Among the maps in F(M) there are
the Morse-Smale diffeomorphisms (see [7, 21]). Those are very important
from the dynamical point of view because the family of the Morse–Smale
diffeomorphisms is structurally stable inside the class of all diffeomorphisms
(see for details [7, 19, 20, 23]).

Even if we will refer to Morse–Smale diffeomorphisms along the paper
because of their dynamical interest, all the results hold for any map of
the class F(M). In order to define the Morse-Smale diffeomorphisms we
introduce the following concepts.

We say that x ∈M is a nonwandering point of f if for any neighborhood
U of x there is a positive integer m such that fm(U) ∩ U 6= ∅. We denote
by Ω(f) the set of nonwandering points of f . Clearly if γ is a periodic orbit
of f , then γ ⊆ Ω(f).

Let d be the metric on M and suppose that x ∈ M is a hyperbolic fixed
point of f . We define the stable manifold of x as the set

W s(x) = {y ∈M : d(x, fm(y))→ 0 as m→∞},

and the unstable manifold of x as the set

W u(x) = {y ∈M : d(x, f−m(y))→ 0 as m→∞}.

In the same way we define the stable and unstable manifolds of a hyper-
bolic periodic point x ∈M of period k as the stable and unstable manifolds
of the hyperbolic fixed point x under fk, respectively. We say that the sub-
manifoldsW s(x) andW u(x) have a transversal intersection if at every point
of intersection, their separate tangent spaces at that point together generate
the tangent space of the ambient manifold M at that point.

A diffeomorphism f : M →M is Morse–Smale if

(1) Ω(f) is finite,
(2) all the periodic points of f are hyperbolic, and
(3) for every x, y ∈ Ω(f), W s(x) and W u(y) have a transversal inter-

section.
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Clearly, condition (1) implies that Ω(f) is the set of all periodic points of
f .

In the last quarter of the 20th century there appeared some papers ded-
icated to understand the connections between the dynamics of the Morse–
Smale diffeomorphisms and the topology of the manifold where they are
defined. Without trying to be exhaustive, see for instance [5, 18, 21, 22, 23].
This interest continues during this first part of the 21st century, see for
example [2, 3, 9, 10, 15, 16, 17].

In this paper we study the set of periods of Morse–Smale diffeomorphisms
on the n−dimensional sphere Sn, on products of two spheres of arbitrary
dimension Sm×Sn with m 6= n, and on the projective spaces CPn and HPn.
More precisely, our goal is to describe the set MPerL(f) (see Definition 4)
that those diffeomorphisms can exhibit for arbitrary values of n and m.

The set of periods for Morse–Smale diffeomorphisms on a product of any
number of spheres of the same dimension has been studied in [2]. For the par-
ticular case of Sn, we give more detailed results considering the orientation
of the diffeomorphisms. The set of periods for Morse–Smale diffeomorphims
on the two-dimensional sphere has been studied with more details in [1, 11].

In [8] the authors study the Lefschetz periodic point free self-maps on
Sm×Sn, CPn and HPn. Our results give extended information in the same
line for the Morse–Smale diffeomorphisms.

The main results of this paper are Theorems 8, 9 and 10, where we char-
acterize the possible sets for MPerL(f) in function of the action of f on the
homology and on the parity of the numbers n and m.

Related with these results the reader can look at the set of periods for
homeomorphisms (respectively continuous maps) on Sn and on Sm × Sn

which have been studied in [13] (respectively [14]).
We also remark that the results obtained along this paper hold in any

compact manifold with the same homology as the manifolds considered here.
More precisely, they hold for any manifold homotopy equivalent to Sn, Sm×
Sn, CPn and HPn, respectively.

2. Lefschetz numbers and the Lefschetz zeta function

Let f : M →M be a continuous map on a compact manifold of dimension
n. We denote by H0(M, Q), . . . , Hn(M, Q) the homology groups ofM with
rational coefficients. A continuous map f : M →M induces n+1 morphisms
on the homology groups of M , f∗i : Hi(M, Q)→ Hi(M, Q), i ∈ {0, . . . , n}.
For more details, see [24].
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Definition 1. Let M be a compact manifold and let f : M → M be a
continuous map. The Lefschetz number of f is defined as

L(f) =
n∑

i=0
(−1)i tr(f∗i),

where tr(f∗i) denotes the trace of f∗i.

A very important result which relates the Lefschetz number of a map f
and the existence of fixed points of f is the Lefschetz Fixed Point Theorem,
which says that if L(f) 6= 0, then f has a fixed point. For a proof, see [4].

In order to obtain information about the set of periods of a map f it
is useful to have information of the sequence {L(fm)}∞m=0 of the Lefschetz
numbers of all the iterates of f .

Definition 2. Let f : M →M be a continuous map on a compact manifold.
The Lefschetz zeta function of f is defined as

Zf (t) = exp
( ∞∑

m=1

L(fm)
m

tm
)
.

This function generates the whole sequence of Lefschetz numbers of f ,
and it may be independently computed through

(1) Zf (t) =
n∏

k=0
det (Ink

− t f∗k)(−1)k+1
,

(see for more details [6]) where n is the dimension ofM , nk is the dimension
of Hk(M, Q), Ink

is the nk × nk identity matrix, and we take det (Ink
−

t f∗k) = 1 if nk = 0. Note that the expression given in (1) is a rational
function of t.

For a C1 map f having a finite number of periodic points, all of them being
hyperbolic, we give another characterization of the Lefschetz zeta function
introduced by Franks in [6].

Let f : M →M be a C1 map on a compact manifold without boundary,
and let γ be a hyperbolic periodic orbit of f of period p. For each x ∈ γ, let
Eu

x denote the linear subspace of the tangent space TxM ofM at x, generated
by the eigenvectors of Dfp corresponding to the eigenvalues whose moduli
are greater than 1, and let Es

x denote the linear subspace of TxM generated
by the remaining eigenvectors. We denote by u and s the dimensions of the
spaces Eu

x and Es
x, respectively.

We define the orientation type ∆ of γ to be +1 if Dfp(x) : Eu
x → Eu

x

preserves orientation, that is, if detDfp(x) > 0 with x ∈ γ, and to be −1 if
it reverses orientation, that is, if detDfp(x) < 0. Note that the definitions
of ∆ and u do not depend on the periodic point x, but only on the periodic
orbit γ.
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For a C1 map f : M →M having only finitely many periodic orbits, all of
them hyperbolic, we define the periodic data, Σ, as the collection composed
by all triples (p, u, ∆) corresponding to all the hyperbolic periodic orbits of
f , where a same triple can occur more than once provided that it corresponds
to different periodic orbits. The following result was proved by Franks in
[6].

Theorem 3. Let f : M →M be a C1 map on a compact manifold without
boundary, having finitely many periodic points, all hyperbolic, and let Σ be
the periodic data of f . Then the Lefschetz zeta function of f satisfies

Zf (t) =
∏

(p, u, ∆)∈Σ
(1−∆ tp)(−1)u+1

.

Note that the Morse–Smale diffeomorphisms satisfy the hypotheses of
Theorem 3. Then the result will be useful to obtain information on the
set of periods for Morse-Smale diffeomorphisms from the comparsion of the
expressions of the Lefschetz zeta functions in Theorem 3 and in (1).

3. Minimal set of Lefschetz periods of Morse–Smale
diffeomorphisms

Definition 4. Let f be a map satisfying the hypotheses of Theorem 3. The
minimal set of Lefschetz periods of f , MPerL(f), is the set given by the
intersection of all sets of periods forced by the different representations of
Zf (t) as products of the form (1± tp)±1.

As an example, consider the following Lefschetz zeta function of a Morse–
Smale diffeomorphism f on the four-dimensional torus T4,

Zf (t) = (1− t3)2(1 + t3)
(1− t)6(1 + t)3 = (1− t3)(1− t6)

(1− t)6(1 + t)3 = (1− t3)(1− t6)
(1− t)3(1− t2)3

= (1− t3)2(1 + t3)
(1− t)3(1− t2)3 ,

(2)

see for instance [12], which can be expressed in four ways as a product of
factors of the form (1± tp)±1 as a quotient of polynomials of degree 9.

By Theorem 3, the first expression of the Lefschetz zeta function (2)
ensures the existence of periodic orbits of periods 1 and 3 for f . In the same
way, the second expression of Zf (t) provides the periods {1, 3, 6} for f , the
third expression of Zf (t) provides the periods {1, 2, 3, 6}, and finally the
fourth expression provides the periods {1, 2, 3}. In this case we have that
the minimal set of Lefschetz periods of f is

MPerL(f) = {1, 3} ∩ {1, 3, 6} ∩ {1, 2, 3, 6} ∩ {1, 2, 3} = {1, 3}.

Note that if Zf (t) is constant equal to 1, then MPerL(f) = ∅.
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Remark 5. Even if the minimal set of Lefschetz periods of a Morse–Smale
diffeomorphism is empty, one can still obtain some information on the set
of periods from Theorem 3. For example, suppose that the Lefschetz zeta
function of a map f satisfying the hypotheses of Theorem 3 is Zf (t) = 1+t2.
It can be expressed as products of terms of the form (1± tp)±1 in infinitely
many ways,

1 + t2 = 1− t4

1− t2 = 1− t4

(1 + t)(1− t) = 1− t8

(1 + t)(1− t)(1 + t4) ,

and so on. In this case we have clearly MPerL(f) = ∅, but each of the
infinitely many expressions of Zf (t) forces either the period 2 or the periods
{2, 4}, or the periods {1, 4}. Then, f has either a periodic orbit of period
2, or periodic orbits of periods 2 and 4, or periodic orbits of periods 1 and
4.

Remark 6. By Theorem 3 an even period n, can never be contained in the
set MPerL(f). Indeed, the following expressions

1− tn = (1 + tn/2)(1− tn/2), 1 + tn = 1− t2n

1− tn = 1− t2n

(1 + tn/2)(1− tn/2)
,

show that if the term 1 − tn or 1 + tn, with n even, appears in one of the
expressions of Zf (t), one can always obtain a new expression of Zf (t) where
the period n does not appear.

Remark 7. Along the paper, for every possible Lefschetz zeta function of
a given map f , in general we will write only one of the possible equivalent
expressions of Zf (t). We will provide the expression of Zf (t) that forces a
smaller set of periods, and consequently it will be sufficient to describe the
set MPerL(f). From remark 6 we note that providing an expression of Zf (f)
that forces only even periods is sufficient to ensure that MPerL(f) = ∅.

Finally note that MPerL(f) is contained in the set of periods that are
conserved under homotopy. Indeed, for a Morse–Smale diffeomorphism f :
M →M on a compact manifold consider the set MPerms(f) :=

⋂
h∼f Per(h),

where h runs over all the Morse–Smale diffeomorphisms of M which are ho-
motopic to f . Then it is clear that

MPerL(f) ⊆ MPerms(f),

because two homotopic maps on a manifold M induce the same Lefschetz
zeta functions.
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4. Periods of Morse–Smale diffeomorphisms on Sn

Let n ∈ N and let Sn be the n−dimensional sphere. The homology groups
of Sn over Q are

Hk(Sn, Q) =
{
Q if k ∈ {0, n},
0 otherwise.

For a continuous map f : Sn → Sn the nontrivial induced maps on the
homology can be written as the integer matrices f∗0 = (1) and f∗n = (d),
where d is called the degree of f .

Let f : Sn → Sn be a Morse–Smale diffeomorphism. As we already men-
tioned before, the linear maps induced on the homology are quasi unipotent,
which means that all their eigenvalues are roots of unity. Then we must have
either d = 1, or d = −1. Also, the orientation of f is constant on Sn and is
determined by the sign of d.

Theorem 8. Let f : Sn → Sn be a Morse–Smale diffeomorphism. Then,

(a) If n is even and f preserves the orientation, then MPerL(f) = {1}.
(b) If n is even and f reverses the orientation, then MPerL(f) = ∅ but
{1, 2} ∩ Per(f) 6= ∅.

(c) If n is odd and f preserves the orientation, then MPerL(f) = ∅.
(d) If n is odd and f reverses the orientation, then MPerL(f) = {1}.

Proof. Computing the Lefschetz zeta function for f using equation (1), we
get

Zf (t) =
n∏

k=0
det (Ink

− t f∗k)(−1)k+1 = (1− t)−1 (1− td)(−1)n+1
,

and so for n even we have

Zf (t) = 1
(1− t)2 if d = 1, Zf (t) = 1

(1− t)(1 + t) = 1
1− t2 if d = −1,

and for n odd we have

Zf (t) ≡ 1 if d = 1, Zf (t) = 1 + t

1− t if d = −1.

It is clear that f satisfies the hypotheses of Theorem 3. Then the state-
ments follow directly applying Theorem 3 to each of the expressions obtained
for the Lefschetz zeta function Zf (t).

Indeed, for 1/(1−t)2 and (1+t)/(1−t) we have MPerL(f) = {1}, because
any other expression of the same Lefschetz zeta function as a product of
terms the form (1± tp)±1 would provide at least the period 1.
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For the function 1/(1−t2) = 1/((1−t)(1+t)) it is clear that MPerL(f) = ∅,
but by Remarks 5 and 6, we can ensure that {1, 2} ∩ Per(f) 6= ∅. Finally
we have MPerL(f) = ∅ when Zf (t) ≡ 1. �

5. Periods of Morse–Smale diffeomorphisms on Sm × Sn

Let m,n ∈ N, m 6= n, and consider the product of spheres Sm × Sn,
with m 6= n. Applying Künneth’s formula, the homology groups over Q of
Sm × Sn can be easily computed and are given by

Hk(Sm × Sn, Q) =
{
Q if k ∈ {0, m, n, m+ n},
0 otherwise.

Then for a continuous map f : Sm×Sn → Sm×Sn the linear maps induced
on the homology are given as the integer matrices f∗0 = (1), f∗m = (a),
f∗n = (b), f∗m+n = (d), where d is the degree of f . The rest of the induced
maps are the zero map.

Let f : Sm × Sn → Sm × Sn be a Morse–Smale diffeomorphism. Since the
linear maps induced by f on the homology are quasi unipotent, in this case
we have a, b, d ∈ {−1, 1}. Moreover, by the structure of the cohomology
ring of Sm× Sn, one has always that ab = d (see [8]) and hence the possibil-
ities for these values are restricted to a = b = d = 1, {a, b} = {−1, 1} and
d = −1, and a = b = −1, d = 1.

Theorem 9. Let M = Sm × Sn be with m 6= n, and let f : M → M be a
Morse–Smale diffeomorphism.

(i) If m and n are even, then
(a) If a = b = 1, then MPerL(f) = {1}.
(b) Otherwise, MPerL(f) = ∅ but {1, 2} ∩ Per(f) 6= ∅.

(ii) If m and n are odd, then
(a) If a = b = −1, then MPerL(f) = {1}.
(b) Otherwise, MPerL(f) = ∅.

(iii) If m is even and n is odd, then
(a) If b = −1 and a = 1, then MPerL(f) = {1}.
(b) Otherwise, MPerL(f) = ∅.

(iv) If m is odd and n is even, then
(a) If a = −1 and b = 1, then MPerL(f) = {1}.
(b) Otherwise, MPerL(f) = ∅.

Proof. Computing the Lefschetz zeta function for f using equation (1) we
obtain

Zf (t) =
m+n∏
k=0

det (Ink
− t f∗k)(−1)k+1

= (1− t)−1(1− a t)(−1)m+1(1− b t)(−1)n+1(1− d t)(−1)m+n+1
.
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Depending on whether m and n are even or odd, and for each allowed
value of a, b, d ∈ {−1, 1} with ab = d, the expressions obtained for the
Lefschetz zeta functions in each case are displayed in Tables 1, 2, 3 and 4.

The proof follows directly from the information obtained from the men-
tioned tables and applying Theorem 3, taking into account the considera-
tions of Remarks 5, 6 and 7. �

Values for a, b Zf (t)
a = b = 1 1

(1−t)4

{a, b} = {−1, 1} 1
(1−t)2

1
(1+t)2 = 1

(1−t2)2

Table 1. Zf (t) for a quasi-unipotent diffeomorphism f on Sm×Sn,
with m 6= n and m, n even.

Values for a, b Zf (t)
a = b = 1 1
a = b = −1 (1+t)2

(1−t)2

{a, b} = {−1, 1} 1
Table 2. Zf (t) for a quasi-unipotent diffeomorphism f on Sm×Sn,
with m 6= n and m, n odd.

Values for a, b, d Zf (t)
a = b = 1 1

b = −1, a = 1 (1+t)2

(1−t)2

{b, d} = {−1, 1} 1
Table 3. Zf (t) for a quasi-unipotent diffeomorphism f on Sm×Sn,
with m 6= n and m even, n odd.

Values for a, b, d Zf (t)
a = b = 1 1

a = −1, b = 1 (1+t)2

(1−t)2

{a, d} = {−1, 1} 1
Table 4. Zf (t) for a quasi-unipotent diffeomorphism on Sm×Sn,
with m 6= n and m odd, n even.
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6. Periods of Morse–Smale diffeomorphisms on CPn and HPn

Let n ∈ N, n ≥ 1 and let CPn be the n-dimensional complex projective
space and let HPn be the n-dimensional quaternion projective space. Along
this section we consider these manifolds as real manifolds of dimension 2n
and 4n, respectively.

The homology groups of CPn over Q can be easily computed applying
Künneth’s formula and are given by

Hk(CPn, Q) =
{
Q if k ∈ {0, 2, . . . , 2n},
0 otherwise.

For a continuous map f : CPn → CPn, the induced linear maps on
the homology can be written as integer matrices as f∗k = (dk/2) for k ∈
{0, 2, 4, . . . , 2n}, with d ∈ Z, and f∗k = (0) otherwise (see [24]).

Similarly the homology groups of HPn over Q are given by

Hk(HPn, Q) =
{
Q if k ∈ {0, 4, . . . , 4n},
0 otherwise,

and for a continuous map f : HPn → HPn, the induced linear maps on
the homology can be written as f∗k = (dk/4) for k ∈ {0, 4, 8, . . . , 4n}, with
d ∈ Z, and f∗k = (0) otherwise (see [24]).

Let f : CPn → CPn (respectively, f : HPn → HPn) be a Morse-Smale
diffeomorphism. Since the linear maps induced on the homology are quasi
unipotent, we will have either d = 1 or d = −1, which determines also
whether f preserves or reverses the orientation.

Theorem 10. Let f : CPn → CPn (respectively, f : HPn → HPn) be a
Morse–Smale diffeomorphism. Then,

(a) If n is odd and f reverses the orientation, then MPerL(f) = ∅, but
{1, 2} ∩ Per(f) 6= ∅.

(b) Otherwise, MPerL(f) = 1.

Proof. We develop the proof for CPn, being the proof for HPn completely
analoguous.

We start with the case d = 1. Computing the Lefschetz zeta function for
f using (1), we get

Zf (t) =
2n∏

k=0
det (Ink

− t f∗k)(−1)k+1 = 1
(1− t)n+1 ,

since we have f∗k = (1) for each k ∈ {0, 2, . . . , 2n}.
We consider next the case d = −1. As before, we have n + 1 nontrivial

induced maps, with f∗k = (1) if k/2 is even and f∗k = (−1) if k/2 is odd.
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For n even, computing the Lefschetz zeta function for f using equation
(1), we get

Zf (t) =
2n∏

k=0
det (Ink

−t f∗k)(−1)k+1 = 1
(1− t)( n

2 +1)
1

(1 + t)
n
2

= 1
(1− t2)

n
2

1
(1− t) ,

and for n odd we have

Zf (t) =
2n∏

k=0
det (Ink

− t f∗k)(−1)k+1 = 1
(1− t)

n+1
2

1
(1 + t)

n+1
2

= 1
(1− t2)

n+1
2
.

It is clear that f satisfies the hypotheses of Theorem 3. Then the re-
sults follow directly applying Theorem 3 to each of the expressions ob-
tained for the Lefschetz zeta function Zf (t). For Zf (t) = 1

(1−t)n+1 and
Zf (t) = 1

(1−t2)
n
2

1
(1−t) we have MPerL(f) = {1}, since any other expression

of the same Lefschetz zeta function as a product of terms the form (1±tp)±1

would provide at least the period 1.
For Zf (t) = 1

(1−t)
n+1

2

1
(1+t)

n+1
2

= 1
(1−t2)

n+1
2

it is clear that MPerL(f) = ∅,

but taking into account the considerations of Remarks 5 and 6, one has
{1, 2} ∩ Per(f) 6= ∅. �

Remark 11. A map f is called Lefschetz periodic point free if L(fm) = 0,
for allm ∈ N. In [8] is claimed that there are no Lefschetz periodic point free
maps on CPn and HPn, that is, all self maps of CPn and HPn have periodic
points. Here we see that in particular Morse–Smale diffeomorphisms in CPn

and HPn always have fixed points, unless when n is odd and d = −1, where
in this case there are always fixed points or periodic points of period 2.
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