# Periods of Morse-Smale diffeomorphisms on $\mathbb{S}^{n}, \mathbb{S}^{m} \times \mathbb{S}^{n}, \mathbb{C} \mathbf{P}^{n}$ and $\mathbb{H} \mathbf{P}^{n}$ 

Clara Cufí-Cabré© and Jaume Llibre


#### Abstract

We study the set of periods of the Morse-Smale diffeomorphisms on the $n$-dimensional sphere $\mathbb{S}^{n}$, on products of two spheres of arbitrary dimension $\mathbb{S}^{m} \times \mathbb{S}^{n}$ with $m \neq n$, on the $n$-dimensional complex projective space $\mathbb{C} \mathbf{P}^{n}$ and on the $n$-dimensional quaternion projective space $\mathbb{H} \mathbf{P}^{n}$. We classify the minimal sets of Lefschetz periods for such Morse-Smale diffeomorphisms. This characterization is done using the induced maps on the homology. The main tool used is the Lefschetz zeta function.


Mathematics Subject Classification. 37C05, 37C25, 58B05.
Keywords. Morse-Smale diffeomorphisms, periodic orbit, Lefschetz zeta function, minimal Lefschetz period.

## 1. Introduction

Understanding the periodic orbits and the set of periods of a map is a very important problem in dynamical systems. The Lefschetz numbers are one of the most useful tools to study the existence of fixed points and periodic orbits of self-maps on compact manifolds. In this paper, we obtain information on the set of periods of certain diffeomorphisms on compact manifolds using the Lefschetz zeta function, which is a generating function of the Lefschetz numbers of the iterates of a map.

Let $M$ be a compact manifold, let $f: M \rightarrow M$ be a continuous map, and denote by $f^{m}$ the $m$ th iterate of $f$. A point $x \in M$ such that $f(x)=x$ is called a fixed point, or a periodic point of period 1 of $f$. A point $x \in M$ is called periodic of period $k>1$ if $f^{k}(x)=x$ and $f^{m}(x) \neq x$ for all $m=1, \ldots, k-1$, and the set formed by the iterates of $x$, i.e., $\left\{x, f(x), \ldots, f^{k-1}(x)\right\}$, is called the periodic orbit of the periodic point $x$.

As usual $\mathbb{N}$ denotes the set of all positive integers. Then $\operatorname{Per}(f)$ is the set $\{k \in \mathbb{N}: f$ has a periodic orbit of period $k\}$.

Birkhäuser

