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Abstract
The Bendixson–Dulac theorem provides a criterion to find upper bounds for 
the number of limit cycles in analytic differential systems. We extend this 
classical result to some classes of piecewise differential systems. We apply it 
to three different Liénard piecewise differential systems ẍ + f±(x)ẋ + x = 0. 
The first is linear, the second is rational and the last corresponds to a particular 
extension of the cubic van der Pol oscillator. In all cases, the systems present 
regions in the parameter space with no limit cycles and others having at most 
one.
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Bendixson–Dulac theory
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1.  Introduction

The study of the number of isolated periodic orbits, the so called limit cycles, is a very relevant 
problem in the qualitative theory of differential equations. This question, which appears in the 
second part of the 16th Hilbert problem, was proposed by Hilbert in a list of 23 problems in 
the International Congress of Mathematics in 1900. In his opinion the study of them would 
motivate advances in mathematics during the 20th century. In fact, the 16th Hilbert problem 
is one of the few that remain open, see [20]. This problem has been also reformulated as the 
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13th Smale problem, see [35], which asks about the relative positions of ovals originating 
from a real algebraic curve and as limit cycles of a polynomial vector field on the plane. This 
second question asks also about the existence of an uniform upper bound for the number of 
limit cycles in planar polynomial vector fields of degree n besides their relative position. This 
maximum number, depending only on n, is usually known as the Hilbert number H(n). As 
linear systems have no limit cycles, the quadratic family is the first interesting case, which still 
remains open. The highest value is H(2) � 4, see [33]. Smale, in [34], says that the computa-
tion of the Hilbert number can be notably difficult in general, so, he suggests to get it for some 
special class of differential equations where the finiteness, even the upper bounds, could be 
simpler. In particular, for the second order polynomial Liénard equation  ẍ + f (x)ẋ + x = 0. 
It can be written as

{
ẋ = y − F(x),
ẏ = −x,� (1)

where F(x) =
∫ x

0 f (s)ds. These systems are so relevant because many areas, as biology, chem-
istry, engineering,..., use them for modeling real situations. In particular, they were intensely 
studied to model circuits which presents oscillatory motions. Some elegant results concerning 
the existence of limit cycles for Liénard’s equation were obtained by Filippov in [11].

For simplicity, the first models using Liénard systems appear with cubic polynomial non-
linearities, see [38] and the references there in. But the real models present continuous, but 
non smooth, nonlinearities, see [9, 12] and the references there in. Currently, we know such 
systems as piecewise differential systems. The study of piecewise differential systems has 
been extremely effective in helping to understand the behavior of many important physical 
phenomena such as fluid flows, elastic deformation, nonlinear optical and biological sys-
tems, see also [9]. One of the important applications are the impact oscillators that also are to 
describe by second order differential equations. In particular in control theory the existence 
of a unique attracting periodic orbit, that is an stable limit cycle, it is quite relevant to design 
precise clocks. About this uniqueness question, Lum and Chua, asked about the maximum 
number of limit cycles in continuous piecewise linear systems defined in two zones separated 
by a straight line, see [27]. This question was solved in [13] proving that at most one limit 
cycle can appear.

The most common way to prove the uniqueness of limit cycles for smooth differential 
systems is the study of its stability, via Green’s theorem. The usual proofs follow showing 
directly, from the differential systems, that all the periodic orbits (except the equilibrium 
points) have the same stability. This is the classical approach used by many authors. See, for 
example, [21, 28, 32]. Moreover, in [38] the reader can find other classical conditions for F 
assuring that system (1) has at most one limit cycle. Recent works following this ideas are 
[30, 31, 37]. The main advantage of the classical Bendixson–Dulac theory is that it provides 
an unified approach for bounding the number of limit cycles, in addition to providing criteria 
for the non-existence of periodic orbits. Such results can be found in the textbook [10]. But 
we have also added them, for completeness, in section 2.

Analogously to the problem to find Lyapunov functions to check the global stability of 
an equilibrium point, the main difficulty in this theory is how the so called Dulac function is 
obtained for the region where the result applies. Because there are no general criteria to find 
them. Another obstacle is that usually, working with families, when somebody find a Dulac 
function for a point in the parameters space it is not valid changing the point. It is quite intri-
cate to find a Dulac function depending on parameters.
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The question about the uniqueness of limit cycle in the well known van der Pol oscillator, 
taking F(x) = λ(x − x3/3) in (1), was done using the above described classical approach, see 
[38]. But was Cherkas in 1997 which provided the simplest proof using the Bendixson–Dulac 
theory, see [3]. Later we will give more details of this problem. The same question for general 
cubic non linearities F was solved in [24] in a case by case study. Up to our knowledge, there 
is no proof of such general result using Bendixson–Dulac theory. Also in a case by case study, 
the non existence and uniqueness of limit cycle problems for any polynomial F of degree 4, 
was solved recently in [22].

Some recent studies about uniqueness of limit cycles in Liénard families using Bendixson–
Dulac theory can be found in [4–6]. In this line, the work [17] presents an interesting exten-
sion of the Bendixson–Dulac theory to regions with holes, where the problem of knowing 
these Dulac functions is translated to control the sign of a polynomial of one variable in a 
suitable domain. In fact this approach provides a good mechanism to get an upper bound for 
the number of limit cycles in some families of polynomial vector fields.

As we have mentioned above, the Green’s theorem is the basic tool to provide upper 
bounds for the number of limit cycles. In piecewise differential systems this is used to prove 
uniqueness of limit cycles in [25, 29]. The aim of this paper is to present an extension of the 
classical results of Bendixon and Dulac to some classes of piecewise Liénard systems. But, 
as it is not valid in general piecewise vector fields, we will restrict our families in order to use 
it in the proofs. Before presenting the accurate results, we need to introduce some notations 
and definitions.

Let 0 be a regular value of a function h : R2 → R. We denote the discontinuity line by 
Σ = h−1(0) and the two regions by Σ± = {±h(x, y) > 0}. Thus, we consider the Σ-piecewise 
differential system

Z± =

{
ẋ = X±(x, y),
ẏ = Y±(x, y),

if (x, y) ∈ Σ±,� (2)

where X± and Y± are C1 functions in Σ± and the dot means the derivative with respect to 
the time t. Moreover, it is defined on Σ following Filippov’s convention, see [12] and fig-
ure 1. That is, the points on Σ where both vectors fields simultaneously point outward or 
inward from Σ define the escaping or sliding region. The complement in Σ defines the cross-
ing region. In fact, the boundary of the escaping/sliding regions is defined by the tangential 
points of Z± in Σ.

In this paper, we are interested only in the so called crossing limit cycles. They are isolated 
periodic orbit which intersect the discontinuity line in the crossing region. Moreover, we intro-
duce a new class of piecewise differential vector fields in order that Green’s theorem would be 
valid. They have the next special property on the discontinuity line Σ.

Definition 1.1.  We say that (2) is a ΣP-continuous piecewise differential system if it satis-
fies Z+(q) · ∇h(q) = Z−(q) · ∇h(q) for q ∈ Σ. Where ∇h = (∂h/∂x, ∂h/∂y). See figure 2.

Notice that, in particular, all continuous piecewise vector fields are ΣP-continuous. 
In section  2 we will use such property but with the respective orthogonal vectors fields, 
(Z+(q))⊥ · (∇h(q))⊥ = (Z−(q))⊥ · (∇h(q))⊥. Because, sometimes is simpler to check the 
ΣP-continuous property with the tangent vector of the discontinuity line. See also figure 2.

The main result of this work, that we will prove in section 2, provides conditions to bound 
the number of limit cycles for some piecewise systems (2). It will be a generalization of the 
classical Bendixon and Dulac results, that we also recall in section 2, to piecewise differential 
systems.
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We say, as in [17], that S ⊂ R2 is an �-connected region if its fundamental group, π1(S), is 

Z ∗
(�)
· · · ∗ Z, or in other words, if S has � holes. Clearly, a 0-connected region is also known as 

a simply connected.

Definition 1.2.  Let S ⊂ R2 be an open set. Consider system (2) defined in the region S, 
B± : S± → R a C1-piecewise function, and Z±

B  the ΣP-continuous piecewise vector field

Z±
B = (B±(x, y)X±(x, y), B±(x, y)Y±(x, y)) if (x, y) ∈ Σ±.� (3)

We say that B± is a C1-Dulac piecewise function for system (2) in the region S if 
div(Z+

B ) · div(Z−
B ) � 0 and (div(Z+

B ))2 + (div(Z−
B ))2 �= 0 in S.

Theorem 1.3.  Let S ⊂ R2 be an �-connected region with a boundary defined by a finite 
number of smooth pieces and S± = S ∩ Σ±. If there exists a C1-Dulac piecewise function, B±, 
for system (2) in region S, then system (2) has at most � limit cycles in S. Moreover, if B± is 
continuous on Σ and sgn B+ = sgn B− in S, then each limit cycle is hyperbolic and its stability 
is given by the sign of B± · div(Z±

B ) over it.

When B± = 1 is considered as a C1-Dulac piecewise function for a given piecewise sys-
tem, then it should be ΣP-continuous. This criterium can be considered as the natural exten-
sion of the Bendixson result which asserts the non existence of periodic orbits for C1 vector 
fields such that the divergence is non vanishing. This theorem is also an extension of some 
results for piecewise linear vector fields stated in [14, proposition 3.1 and remark 3.2].

Σ
Σ

Σ

Σ−

Σ−
Σ−

Σ+
Σ+ Σ+

q q
q

Z−(q) =: Z±(q) Z−(q)

Z−(q)

Z+(q)

Z+(q)

Z+(q)

Z±(q)
Z±(q)

Figure 1.  Definition of the vector field on Σ following Filippov’s convention in the 
crossing, escaping, and sliding regions.

Σ
Z+(q)

Z−(q)

∇h

(Z+)⊥(q)

(Z−)⊥(q) ∇h⊥

q

Figure 2.  The system (2), and its orthogonal. Both are ΣP-continuous piecewise system.
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In the following results, some of the statements are natural consequences of theorem 1.3. 
In particular, as we will see in the proofs, those that provide a C1-Dulac piecewise function to 
prove that at most there is a crossing limit cycle. All the systems studied can be considered in 
the Liénard class and, for simplicity, not all the C1-Dulac piecewise functions and the regions 
are described in the statements.

Proposition 1.4.  Consider, for β > 0, the piecewise differential system

Z± =

{
ẋ = y,
ẏ = β(α± − x)− λ±y,� (4)

defined in Σ± = {(x, y) : ±x > 0}. Then,

	(a)	�when λ+λ− � 0 and (λ+)2 + (λ−)2 �= 0, system (4) has no limit cycles,
	(b)	�when λ+λ− < 0 and (α+)2 + (α−)2 �= 0 then, if α± � 0 and (λ+)2 − 4β < 0 or 

α± � 0 and (λ−)2 − 4β < 0, then system (4) has at most one limit cycle, otherwise it 
has no limit cycles. Moreover, when the limit cycle exists it is hyperbolic and stable (resp. 
unstable) when λ+α+ < 0 or λ+α− < 0 (resp. λ+α+ > 0 or λ+α− > 0).

This problem has been studied also in [14]. Recently, taking β = ε small enough, 
α+ = α− = a, and λ± = k±, is also considered in [23]. The uniqueness of limit cycle fol-
lows from the continuity of the piecewise vector field, see [25]. In section 3, together with 
proof the above result, a classification of all phase portraits is also obtained. We remark that, 
our generalized system (4) is only ΣP-continuous and the original proof does not work.

The next application is a piecewise generalization of the classical van der Pol oscillator, 
which is a dynamical system which includes a nonlinear damping term. Under some condi-
tions on the parameters, the Dulac function discovered by Cherkas (see [3, 7]) can also be used 
here to prove the uniqueness of limit cycle. We provide also a partial result about the bifurca-
tion diagram of the phase portraits in the Poincaré disk among of the proof of proposition 1.4 
in section 4. More details on this theory can be found in [10].

Proposition 1.5.  Consider the piecewise system

Z± =

{
ẋ = y,
ẏ = −x + λ±(1 − x2)y,

� (5)

Figure 3.  Phase portraits in the Poincaré disk for system (5).
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defined in Σ± = {(x, y) : ±x > 0}. Then, when λ+λ− � 0 and (λ+)2 + (λ−)2 �= 0, we have 
that:

	(a)	�System (5) has no limit cycles in D2 = {x2 + y2 � 1}.
	(b)	�In S = R2 \ D2,

B±
2 = (x2 + y2 − 1)

−1/2
� (6)

		 is a C1-Dulac piecewise function for system (5).

Consequently, system (5) has exactly one limit cycle. Moreover, it is hyperbolic and stable 
(resp. unstable) when λ+ + λ− > 0 (resp. λ+ + λ− < 0). Additionally, the phase portraits in 
the Poincaré disk are topologically conjugated to figure 3 (left) when λ+λ− > 0 or to figure 3 
(right) when λ+λ− = 0, but (λ+)2 + (λ−)2 �= 0.

The next differential system is also written in the classical Liénard form but being F in (1) 
a rational function instead of a polynomial, as in the previous results. Here we also provide 
a Dulac function to prove the uniqueness of the limit cycle. This result will be proved in 
section 3.

Proposition 1.6.  Consider the rational piecewise system

Z± =

{
ẋ = y − x(x2+λ±)

(x±1)2+1 ,

ẏ = −x,
� (7)

defined in Σ± = {(x, y) : ±x > 0}. Then, when λ± < 0,

B±
3 =

(
y2 − (x2 + λ±)

(x ± 1)2 + 1
xy + x2

)−1

� (8)

is a C1-Dulac piecewise function for system (7) in a given one-connected region S ⊂ R2. Con-
sequently, the above system has exactly one limit cycle, which is hyperbolic and stable.

We remark that, as we will see in the proof of proposition 1.5, the C1-Dulac piecewise 
function chosen is, in fact, a Dulac function if we consider each system (5) separately but in 
the full plane. This is not the case for propositions 1.4 and 1.6. But both together, each one 
considered in a different semiplane, define a C1-Dulac piecewise function for systems (4) and 
(7), respectively.

This paper is structured as follows, section 2 is devoted to study the properties such that the 
Green’s theorem applies for piecewise vector fields and how the stability of a period orbit can 
be computed, because the classical divergence theorem does not apply. Consequently, the defi-
nition of ΣP-continuous piecewise differential systems has been necessary to be introduced. 
Furthermore, we also provide the proof of theorem 1.3. In the rest of the paper, we prove the 
uniqueness of limit cycles for the Liénard families described above. In section 3, we prove the 
statements of propositions 1.4 and 1.6. In last section 4, besides proving proposition 1.5, we 
study the bifurcation diagram of the phase portraits of system (5) in the Poincaré disc.
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2.  An extension of the Bendixson–Dulac theory

This section is devoted to the proof of theorem 1.3, a generalization of the classical Bendixson–
Dulac result on the non-existence and uniqueness of periodic orbits for piecewise vector fields. 
We will use the Green’s theorem on domains with smooth and piecewise smooth boundaries.

We start recalling, in theorems 2.1 and 2.3, the original Bendixson and Dulac criteria. See 
for example the textbooks [7, 10].

Theorem 2.1.  Let Z be a C1-planar vector field defined in some open simply connected 
region S ⊂ R2, such that

div(Z)|S � 0 (or � 0)

and vanishing only on a set of zero Lebesgue measure. Then, it has no limit cycles contained 
in S.

Definition 2.2.  Consider an �-connected region S ⊂ R2. Let Z be a C1-planar vector field in 
S and B : S → R a C1-function. We say that B is a Dulac function for Z in S if

div(BZ)|S � 0 (or � 0),

vanishing only on a set of zero Lebesgue measure.

Theorem 2.3.  Let Z be a C1-planar vector field defined in some open simply connected 
region S ⊂ R2. If there exists a C1-Dulac function B for Z in S then Z has no limit cycles con-
tained in the region S.

In the above two results, the cases with null divergence are not considered because the vec-
tors fields are integrable and have no limit cycles. In this special case, the function B is called 
an inverse integrating factor. Later, we will show that this is not the case in the piecewise 
world.

The above two results can be extended to �-connected regions. For a proof of the next result 
see [16, 17].

Theorem 2.4.  Let Z be a C1-planar vector field defined in some S ⊂ R2 �-connected region. 
If there exists a C1-Dulac function B, then Z has at most � limit cycles in S.

It is well-known that, for planar analytical differential systems, the integral of the diver-
gence along a periodic orbit determines its stability, see [10]. But, for planar piecewise 
differential systems, this property cannot be used for crossing limit cycles. This is the main 
difference between these areas of research.

Let γ = γ+ ∪ γ− be a crossing periodic orbit passing through q± ∈ Σ, with γ± two solu-
tions of Z± defined in (2). If τ0, τ1 ⊂ Σ are transversal sections to γ  at q+ and q−, respectively, 
then the derivative of the Poincaré map at q  =  q+ is given by

Π′(q) = Γ(Z±, h) exp
(∫

γ+

divZ+dt +
∫

γ−
divZ−dt

)
,� (9)

where

Γ(Z±, h) =
Z+(q+) · ∇h(q+)

Z−(q+) · ∇h(q+)

Z−(q−) · ∇h(q−)
Z+(q−) · ∇h(q−)

,� (10)

L P C da Cruz and J Torregrosa﻿Nonlinearity 33 (2020) 2455
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see [29].
As a simple application of the above stability formula, we can check that the system

Z+ : (ẋ, ẏ) =(−3y2 + 8y − 4,−1),

Z− : (ẋ, ẏ) =(y − a,−x),
� (11)

defined in Σ± = {(x, y) ∈ R2 : ±x � 0}, and studied in [2], has a unique stable crossing 
limit cycle when 2/3  <  a  <  1. Straightforward computations shows that the limit cycle passes 
though the points q± = (0,µ±) with µ± = a ±

√
3a2 + 8a − 4 and it can be explicitly writ-

ten as
{

x2 + y2 − 2ay + 4(a − 1)2 = 0 for x < 0,
y3 − 4y2 − x + 4y + 8(a − 2)(a − 1)2 = 0 for x > 0.

Moreover, system (11) has null divergence, but it exhibits an stable limit cycle because, by (9),

Π′(q) = Π′(q+) = Γ(Z±, h) =
3a2 − 8a + 6 + (3a − 4)

√
3a2 + 8a − 4

2(a − 1)(3a − 5)
< 1.

In this work, we are interested in ΣP-continuous piecewise differential systems. They sat-
isfy, by definition 1.1, that the derivative of the Poincaré map only depends on the integral of 
the divergence along a crossing periodic orbit. That is, Γ(Z±, h) = 1, see (10).

Proof of theorem 1.3.  We will only prove the non-existence case and when system (2) has 
at most one limit cycle. The other cases follow similarly.

First, consider B± a C1-Dulac piecewise function defined in S, a 0-connected region, see 
figure 4 left. We will do a proof by contradiction. Assume that γ± is a crossing periodic orbit 
passing through the points q± ∈ Σ. We denote by L the segment between them and by A± the 
interior of γ±. So, applying the Green’s theorem to (Z±

B )⊥ (orthogonal to system (3)), we have
∫

L±
(−(BY)±dx + (BX)±dy) =

∫

A±

(
∂(BX)±

∂x
+

∂(BY)±

∂y

)
dxdy.� (12)

Σ

γ− γ+

L

Σ

A− A+

L− L+

Figure 4.  The regions and oriented paths chosen to apply Green’s theorem for one 
crossing periodic orbit.
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Where the line integral on γ± vanishes, because it is a solution of the vector field Z±
B . We have 

denoted by L± the segment L such that the boundary path of A± is clock-wise oriented, see 
figure 4 right. As Z±

B  is ΣP-continuous, the integrands of the left hand side of equalities (12) 
coincide, but L± have opposite orientation. Hence, adding both equalities, we get

0 =

∫

A+

div(Z+
B ) dxdy +

∫

A−
div(Z−

B ) dxdy.

Therefore, by hypotheses on the divergence of Z±
B  we have a contradiction.

Second, we consider the system (3) with a C1-Dulac piecewise function B± defined in the 
one-connected region S. The proof follows by contradiction assuming that there are two cross-
ing periodic orbits, γ±

i  for i = 1, 2, arguing similarly as the previous case, see figure 5 left. 
The key point is, as above, the selection of a good oriented path defined in the boundary of the 
annular region A±. See figure 5 right. Here, the ΣP-continuity is also necessary in order that 
the integral over L+

i  is compensated by the integral over L−
i , for i = 1, 2. We notice that the 

integral over the other pieces of the boundary vanishes because the curves γ±
i  are defined by 

solutions of the corresponding differential systems.

Finally, we prove the hyperbolicity and stability properties of each limit cycle, γ±, from 
expression (9), showing that the integral of the divergence over it is non zero. This follows 
from the equality

div(Z±) =
div(Z±

B±)

B± −
∂B±

∂x X± + ∂B±

∂y Y±

B±

and the fact that the second summand, as in [17], writes d
dt (log |B

±(x(t), y(t))|). It is important 
to remark that we have used that the functions B± are continuous on Σ.� □ 

γ+
1

γ−
1

γ+
2

γ−
2

ΣΣ

Z+
B

Z−
B

L+
1

L−
1

L+
2L−

2

A+A−

S

Figure 5.  The regions and oriented paths chosen to apply Green’s theorem for two 
crossing periodic orbits.
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3. The linear and rational families

This section is devoted to prove propositions 1.4 and 1.6. These results study two different 
piecewise differential systems in the Liénard class. The first, which is a linear, is a general-
ization of the continuous family introduced in [23]. We provide conditions on the parameter 
space such that the system has no limit cycles or it has at most one. For the second, which the 
nonlinearities are defined by rational functions, we can proof the existence of a unique limit 
cycle in a region of the parameter space.

The following technical lemma shows the condition about ΣP-continuity on piecewise vec-
tor fields when the separation line is the x-axis. The proof is straightforward.

Lemma 3.1.  When h(x, y) = x, the piecewise system (2) is ΣP-continuous if the first comp
onent of the associated vector field coincides on both sides, i.e. X+(0, y) = X−(0, y).

Next proof is a direct application of theorem 1.3. Only for the second statement we need to 
find a C1-Dulac piecewise function.

Proof of proposition 1.4. 

	(a)	�System (4) is defined in R2, that is a simple connected region, and, by lemma 3.1, it 
is ΣP-continuous. The statement follows, applying theorem 1.3, because the sign of 
the divergence, div(Z±) = −λ±, coincides in both regions Σ±. Clearly, we have taken 
B±

1 = 1 as the C1-Dulac piecewise function.
	(b)	�This statement will be proved in three steps. In the first, we prove that a periodic orbit of 

(4) can not cross the pieces of the algebraic curves {Λ±(x, y) = 0} ∩ Σ±, where

Λ±(x, y) = (y2 + β(x2 − 2α±x) + λ±xy)−1.� (13)

		 Because, these curves are without contact with the vector field associated to system (4). 
Then, the regions where the limit cycles can exist are completely determined. In the second, 
we discuss the different kind of regions defined by the zero level curves {Λ±(x, y) = 0}. 
More concretely, we obtain only zero-connected or one-connected regions. Finally, the 
proof finishes applying theorem 1.3, considering the C1-Dulac piecewise function

B±
1 = (Λ±)−1,� (14)

Σ

div Z+

div Z−

Σ

ψ+
1ψ−

1

Figure 6.  Plots of the sign of the divergence of system (4) (left) and the function ψ±
1 (x) 

(right) which appear in div(Z±
B1
).
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		 defined in Σ±.

It is not restrictive to assume λ+ > 0, λ− < 0, α+ �, 0 and α− > 0. Because, the other cases 
can be moved to it, doing in system (4) the next changes of variables: (i) (x, y, t) → (−x, y,−t) 
when λ+ > 0, λ− < 0, α+ � 0 (ii) (x, y, t) → (x,−y,−t), when λ+ < 0, λ− > 0, α+ � 0, or 
(iii) (x, y, t) → (−x,−y, t) when λ+ < 0, λ− > 0, α+ � 0.

We notice that, with these sign assumptions, the divergence has different sign in regions 
Σ±, see figure 6 left.

In the first step, using the notation (2) for system (4) and considering ψ±
1 (x) = λ±βα± x, 

we have that
(
∂Λ±

∂x
X± +

∂Λ±

∂y
Y±

)∣∣∣∣
Λ±=0

=

(
∂Λ±

∂x
X± +

∂Λ±

∂y
Y± + λ±Λ±

)∣∣∣∣
Λ±=0

=
(
−λ±βα± x

)∣∣
Λ±=0 � 0.

� (15)

Because, clearly, ψ±
1  is a nonnegative function, see figure 6 right. Then, the zero level curve 

{Λ±(x, y) = 0} is without contact for the vector field associated to system (4), when α+ �= 0, 
or it contains solutions, when α+ = 0. In this last situation we refer the reader to the work 
[19].

In the second step, we study the draws of the pieces of the conics {Λ±(x, y) = 0}, for Λ± 
in (13), when they remain on Σ±.

When α+ > 0, the zero level curve of Λ+, is a nondegenerate conic: a hyperbola 
((λ+)2 − 4β > 0), a parabola ((λ+)2 − 4β = 0) or an ellipse ((λ+)2 − 4β > 0). Moreover, it 
has a branch passing through the origin as 2α+βx − y2 + O(y3) = 0 and another at the point 
(2α+, 0). When α+ = 0, the conic degenerates to two straight lines ((λ+)2 − 4β > 0), to a 
double straight line ((λ+)2 − 4β = 0) or to a point ((λ+)2 − 4β > 0). Additionally, the origin 
is the unique intersection point with the coordinates axis. Finally, when (λ+)2 − 4β � 0, as 
−λ+ ±

√
(λ+)2 − 4β < 0, because λ+ > 0, the branches of the conic arrive to infinity in the 

second or fourth quadrant. Consequently, all the possible the zero level curves are depicted 
in figure 7 (right). The zero level curves of Λ−, can be drawn, doing a symmetry with respect 
to the x-axis, from the previous study, because λ− < 0, instead of λ+ > 0. See figure 7 (left).

So, we can see, doing a case by case study, that  R2 \ (({Λ− = 0} ∩ Σ−) ∪ ({Λ+ = 0} ∩ Σ+)) 
is formed only by zero-connected or one-connected regions. In fact, only when (λ+)2 − 4β < 0 
we have one-connected regions.

The last step follows directly computing, using (15), div(Z±
B1
) = ψ±

1 (x)B±
1 (x, y)2 and us-

ing the without contact property together with theorem 1.3.

We only illustrate two different situations:

	 –	�When λ− = −1, λ+ = 2, α+ = 2, α− = 1, and β = 1/2, the zero level curve {Λ− = 0} 
is an ellipse (totally contained in Σ+) and {Λ+ = 0} is a hyperbola. Hence the set 
{Λ− = 0} ∩ Σ− is empty and the set {Λ+ = 0} ∩ Σ+ is a branch of the hyperbola. See the 
drawing in figure 8 (left). Clearly, the region R2 \ (({Λ− = 0} ∩ Σ−) ∪ ({Λ+ = 0} ∩ Σ+)) 
is defined by only two zero-connected regions. Hence we have no limit cycles.
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	 –	�When λ− = −2, λ+ = 1/8, α± = 1, and β = 1/10, the zero level curve {Λ− = 0} is 
a hyperbola and {Λ+ = 0} is an ellipse. See the drawing in figure  8 (right). So, the 
region R2 \ (({Λ− = 0} ∩ Σ−) ∪ ({Λ+ = 0} ∩ Σ+)) is defined by three regions, two 
zero-connected and one one-connected. Hence, we have at most one limit cycle. The 
existence, for these values of the parameters, is proved in [23].

Finally, as the function B±
1  is continuous over Σ, with the sign assumptions for α± and λ±, 

theorem 1.3 proves the hyperbolicity and unstability properties.� □ 

Before the proof of proposition 1.6, we show the unstability of the origin and infinity of 
system (7).

Proposition 3.2.  Let system (7). If λ± < 0, then the origin is the unique singular point 
which is unstable. Moreover, also the infinity is unstable. So system (7) has at least a limit 
cycle.

Proof.  The origin is the unique equilibrium point of systems (7) when they are considered 
in the full R2. In fact, for both, it is unstable because the eigenvalues of the differential matri-
ces at the origin, (−λ±

√
λ2 − 16)/4 for λ = λ±, have positive real parts. See more details 

on the stability of equilibrium points in piecewise differential systems in [26].

The stability of infinity can be studied with the change of variables defined in a neighborhood 
of the infinity but not on it: (x, y) = (R−1 cos θ, R−1 sin θ). Then, the derivatives Ṙ and θ̇ are 
trigonometric rational functions having the same denominator (cos θ + R)2 + R2. Which is al-
ways positive in our domain, R  >  0. Then, the linear part of system (7) becomes dR/dθ = h(θ)R 
with h(θ) = cos2 θ/(cos θ sin θ − 1). Notice that it is the same in both sides Σ±, and does not 
depend on the parameters. As R(θ) is a decreasing function, because −4/3 � h(θ) � 0, for 
any the initial condition R(π/2) = ρ we have R(−3π/2) > ρ > R(−π/2). Consequently, for 
both equations and also for the system considered in Σ±, the origin is an attracting focus. 

α+ > 0 α+ = 0α− > 0 α− = 0

(λ−)2 − 4β > 0

(λ−)2 − 4β = 0

(λ−)2 − 4β < 0

(λ+)2 − 4β > 0

(λ+)2 − 4β = 0

(λ+)2 − 4β < 0

Figure 7.  The sets, for λ− < 0 and λ+ > 0, where the piecewise Dulac function 
(14) is not well defined. The branches are depicted in continuous (visible) and dashed 
(invisible) lines in the respective Σ± zones.
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Hence, recovering the original variables, the infinity is unstable.� □ 

Proof of proposition 1.6.  Under the conditions of the statement, proposition 3.2 guaranti
es the existence of a limit cycle. Only remains to prove that this limit cycle is unique. This is 
proved checking the hypotheses of theorem 1.3 for system (7) when λ± < 0, following the 
same procedure as the proof of proposition 1.4(b). Hence, as the periodic orbits of (7) can not 
cross the pieces of the curves {Λ±(x, y) = 0} ∩ Σ±, we only check that this set defines a one-

connected region and div(Z±
B3
) have the same sign in Σ±. Here

Λ±(x, y) = (B±
3 (x, y))−1 = y2 − (x2 + λ±)

(x ± 1)2 + 1
xy + x2,� (16)

is defined from (8).

Straightforward computations show that the divergence

div(Z±) =
−x4 ∓ 4x3 + (λ± − 6)x2 − 2λ±

((x ± 1)2 + 1)2

is a rational function on x that changes sign. Because the numerators, using the Descartes rule, 
have exactly one positive and one negative zeros.

In the first step, we compute

div(Z±
B3
) = ψ±

3 (x)B±
3 (x, y)2,

with ψ±
3 (x) = 2x3ϕ±(x)/((x ± 1)2 + 1)2 and ϕ±(x) = ∓x2 + (λ± − 2)x ± λ±. Clear-

ly, xϕ+(x) < 0 for x  >  0 because the leading coefficient of ϕ+ and the values ϕ+(0) and 

(ϕ+)′(0) are negative. Similarly, xϕ−(x) < 0 for x  <  0. Hence, div(Z±
B3
) < 0 in Σ± and it 

vanishes only on x  =  0. As the functions B±
3

In the second step, we study the piecewise curves {Λ±(x, y) = 0} ∩ Σ±. We only depict 
the zero level curve of Λ+, in (16), the other can be obtained with the symmetric change 
(x, y) → (−x,−y), because Λ−(x, y) = Λ+(−x,−y). We remark that this curve passes through 

Figure 8.  Two different situations for system (4) with only zero-connected regions 
(left) or having a one-connected one (right).

L P C da Cruz and J Torregrosa﻿Nonlinearity 33 (2020) 2455



2468

the origin. We draw it from the plots of the two functions, obtained solving it as a quadratic 
polynomial in y,

η±(λ
+) =

x(x2 + λ+ ±
√
∆(x,λ+))

2((x + 1)2 + 1)
,

with

∆(x,λ+) = −(3x2 + 4x + λ+ + 4)((x + 2)2 − λ+).

As λ+ < 0, the function ∆(x,λ+) is always negative when −8/3 < λ+ < 0 and it is positive 
for x ∈ ((−2 −

√
−8 − 3λ+)/3, (−2 +

√
−8 − 3λ+)/3) when λ+ < −8/3. The graphics of 

η± remain in Σ+ only when −2 +
√
−8 − 3λ+  is positive, that is, when λ+ < −4. Conse-

quently, the level curve {Λ+(x, y) = 0} intersects Σ+ only at the origin when λ+ ∈ [−4, 0) 
and at a curve topologically equivalent to a circle when λ+ < −4. The different draws of such 
situations can be seen in figure 9 varying the value of λ+.

Finally, a case by case study, using the symmetry of the functions Λ± and the pictures in 
figure 9, proves that all possible draws for the piecewise curves {Λ±(x, y) = 0} ∩ Σ± define 
one-connected regions. See figure 10.� □ 

4.  A piecewise version of the classical van der Pol oscillator

The main result of this section, proposition 1.5, only provides a partial bifurcation diagram of 
the phase portrait of system (5). A complete study depends on the proof of the existence of a 
bifurcation curve, Υ, where the phase portrait exhibits a connection between two equilibrium 
points at infinity. This connection defines a heteroclinic cycle having two semihyperbolic 
saddles together with a degenerated equilibrium point. These degeneracies make the problem 
very difficult to be studied. All the results and numerical simulations done in this section are 
summarized in figure 11. The phase portraits are done in the Poincaré disk for each vector 
fied, see [10].

For simplicity, all the results of this section  are written for values (λ+,λ−) satisfying 
λ+ � 0 and −λ+ � λ− � λ+. With the symmetries given in lemma 4.1 we can cover the full 
space of parameters. The local phase portrait of the equilibrium points at infinity is done in 

Figure 9.  The zero level curve of Λ+ in (16). The points in Σ+ (Σ−) are depicted in 
continuous (dashed) line.
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lemma 4.2. System (5) has only one finite equilibrium point and its stability is given in lemma 
4.3. From all these technical results we can present the proof of the uniqueness of the limit 
cycle together with the global phase portraits provided by proposition 1.5. This proves the 
bifurcation diagram depicted in figure 11 in the region λ+λ− � 0. By a continuity argument 
this limit cycle remains near the positive λ+-axis. This is done in corollary 4.4. Proposition 
4.5 proves the bifurcation diagram when system (5) has a center, that is, over the straight line 
λ+ + λ− = 0.

The difficulties described above to complete the bifurcation diagram (for λ− < 0) are illus-
trated in proposition 4.6. This result together with corollary 4.4 prove, by continuity, corollary 
4.7, which states the existence of at least one point (λ+,λ−) where the connection exists. 
Finally, we do some numerical simulations to present what we think that will be the complete 
bifurcation diagram of system (5) in this zone of the parameters. See also figure 11.

Lemma 4.1.  System (5) is invariant by the following changes of variables:

	 (i)	�(x, y, t,λ−,λ+) → (−x,−y, t,λ+,λ−).
	(ii)	�(x, y, t,λ−,λ+) → (−x, y,−t,−λ+,−λ−).
	(iii)	�(x, y, t,λ−,λ+) → (x,−y,−t,−λ−,−λ+).

Consequently, we can restrict our analysis to λ+ > 0 and −λ+ � λ− � λ+.

Proof.  The statement follows because, in the parameter space (λ−,λ+) ∈ R2, the points in 
the second and third quadrant move with the change (ii) to the fourth and first, respectively. 
Moreover, changes (i) and (iii) provides an extra symmetry with respect to the bisectors of the 
first and fourth quadrants, respectively.� □ 

Lemma 4.2.  Let λ+ > 0. Then, for λ− ∈ [−λ+,λ+], there are only three topologically 
conjugated local phase portraits of system (5) in a neighborhood of infinity. They are depicted 
in figure 12.

Proof. 

	 (i)	�We start with the local study in the charts U1 and V1. We study both systems, for λ+ and 
λ−, simultaneously denoting the parameter by λ, when they are non vanishing. With the 
change (x, y, t) = (1/v, u/v, v2τ), system (5), considered in full space, is transformed to

Figure 10.  The one-connected regions defined by the zero level curve of Λ± in (16).
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{
u′ = −λu + A(u, v),
v′ = B(u, v),� (17)

		 where A(u, v) = λuv2 − u2v2 − v2, B(u, v) = −v3u, and prime denotes the derivative 
respect to τ . This system has a unique equilibrium point at the origin which is a semihyper-
bolic saddle. Because, by theorem 2.19 in [10], the solution u(v) = −v2/λ− v4/λ+ O(v6) 
of −λu + A(u, v) = 0 gets B(u(v), v) = −v5/λ+ O(v7). The local phase portraits depend 
on the sign of λ, see figure 13.

Figure 11.  Portrait bifurcation of system (5).

Figure 12.  Local phase portraits of system (5) near the infinity when λ+ > 0 and 
λ− < 0 (left), λ− = 0 (middle), and λ− > 0 (right).
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		 Then, in the chart U1, as λ+ is postive, we have always the local phase portrait as in 
figure 13 (right). The local phase portraits, in the chart V1, depend on the sign of λ−. 
Being as in figure 13 (left) or (right) for λ− < 0 or λ− > 0.

		 For the remaining case, λ− = 0, the system (5) has a global linear center at the origin. 
Then, the change to chart V1 is not necessary to be done.

		 With all the above properties, we obtain the local phase portraits depicted in figure 12.
	(ii)	�As above, we study both systems simultaneously using λ instead of λ+ or λ−.

By using the transformation (x, y, t) = (u/v, 1/v, v2τ) system (5) is transformed into the sys-
tem

{
u′ = λ(u3 − uv2) + v2 + u2v2,
v′ = v(λ(u2 − v2) + uv2),

� (18)

where the prime denotes the derivative respect to τ . It is easy to check that this system has a 
unique degenerated equilibrium point at the origin. As it is a nonelementary singularity, we 
will need some directional blow-ups to prove that it is an attracting (λ < 0) or a repelling 
(λ > 0) node, see figure 14. This is necessary because the differential matrix of (18) at the 
origin vanishes identically. More details about how the local phase portraits of such degener-
ated equilibrium points can be also found in [10]. As system (18) is invariant by the change 
(u, v, t,λ) → (−u, v,−t,−λ), we can restrict our study to λ > 0.

With the weighted blow-up (u, v) → (u, pu2) and rescaling time (dividing by u2), system 
(18) becomes

Figure 13.  The local phase portrait of the origin of system (17) for λ < 0 (left) and 
λ > 0 (right).

Figure 14.  The local phase portrait of the origin of system (18) for λ < 0 (left) or 
λ > 0 (right).
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{
u′ = λu + u2p2(1 − λu + u2),
p′ = −λp + up3(−2 + λu − u2).

� (19)

This system has a unique equilibrium point, which is a saddle. The local phase portrait is given 
in figure 15 (left).

With the blow-up (u, v) → (qv, v) and rescaling time (dividing by v) the system (18) be-
comes

{
q′ = 1,
v′ = v2(−λ+ qv + λq2).� (20)

Which has no singular points. The local phase portrait is given in figure 15 (right). Finally, 
combining both local figures and using that v = 0 is also a solution and it is the unique that 
leaves the origin, we can conclude that the origin of system (18) is a repelling node. The con-
clusion for λ < 0 follows from the above commented symmetry. The solutions are depicted in 
figure 14.� □ 

Lemma 4.3.  The bifurcation diagram of the topologically different local phase portraits 
near the origin of system (5), when λ+ � 0 and −λ+ � λ− � λ+, is depicted in figure 16. 
Moreover, when λ+ > 0 and max(−2,−λ+) � λ− � λ+ the origin is unstable.

Proof.  We do a case by case study depending on the eigenvalues of the Jacobian matrices of 
each system Z± in (5) at the origin. They are

λ±
√
λ2 − 4
2

,

for λ = λ+ and λ = λ−. All cases finish gluing both local pictures in Z±.

	 (a)	�When λ± = 0 we have the same global linear center at the origin.
	(b)	�When 0 < λ+ < 2 and −λ+ < λ− � λ+ we have foci in Z±. Then, as the singularities 

are of monodromic type we need to compute the first coefficient of the return map. That 
is, the first Lyapunov constant. From [8], it is

L1 = exp

(
(λ+ + λ−)π√

4 − (λ+)2
√

4 − (λ−)2

)
− 1.

Figure 15.  The local phase portrait of the origin of systems (19) and (20) for λ > 0, 
respectively.
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		 Then, when λ+ + λ− > 0 the origin is a unstable focus.
	 (c)	�When 0 < λ+ < 2 and λ+ + λ− = 0, as in the previous case, the origin is a monodromic 

point. Then, it is center because the system is symmetric with respect to x  =  0. That is, is 
reversible, or it remains unchanged with respect to the change (x, y, t) → (−x, y,−t).

	(d)	�When 2 � λ+ and −2 < λ− < 2, system Z− has a focus at the origin and system Z+ has a 
repelling node with both eigenvectors having positive slopes (1, (λ+ ±

√
(λ+)2 − 4)/2). 

Then, the origin is an unstable node.
	 (e)	�When 2 � λ+ and 2 � λ− � λ+, both systems Z± have repelling nodes at the 

origin with eigenvectors having positive slopes (1, (λ+ ±
√
(λ+)2 − 4)/2) and 

(1, (λ− ±
√
(λ−)2 − 4)/2). Then, the origin is also unstable.

	 (f)	�When 2 � λ+ and −λ+ � λ− � −2, system Z+ (resp. Z−) has a repelling (resp. 
attracting) node at the origin with eigenvectors having positive (resp. negative) slopes 
(1, (λ+ ±

√
(λ+)2 − 4)/2) (resp. (1, (λ− ±

√
(λ−)2 − 4)/2)). Then, we have a point 

having one hyperbolic and one elliptic sectors.� □ 

The above two technical lemmas together with the main result of generalization of the 
Bendixson–Dulac theorem allow us to proof the main result of this section.

Proof of proposition 1.5.  Firstly, as we have commented in the introduction of this sec-
tion  and using lemma 4.1, we can restrict our proof to values satisfying λ+ > 0, λ− � 0. 
Under these assumptions, the existence of at least one limit cycle follows from the stability 
of infinity and origin, because both are unstable. See lemmas 4.2 and 4.3. This follows by the 
generalization of the Poincaré–Bendixson’s theorem to piecewise vector fields in R2. See [1].

Secondly, we prove the uniqueness of such periodic orbit. As divZ± is positive in the region 
S = {−1 < x < 1}, from theorem 1.3, the limit cycles can not be completely contained in S. 
In fact, they should contain the 1-connected region defined by the unit circle. Because, as in 

Figure 16.  The different kinds of equilibrium points in the origin for the system (5).
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the proofs of propositions 1.4 or 1.6, the periodic orbit of (4) can not cross the pieces of the 
curves {Λ(x, y) = 0} ∩ Σ±, where

Λ±(x, y) = (B±
2 (x, y))−2 = x2 + y2 − 1

is defined from (6). We point out that they are without contact with the vector field associated 

to system (5). Moreover, div(Z±
B2
) is negative when x2 + y2 > 1. Then, using also theorem 1.3, 

the limit cycle is unique. Moreover, as B±
2  is continuous, it is hyperbolic and stable.

All the global phase portraits in the Poincaré disk given in the statement, follow studying 
all the possible α and ω  limit sets using the generalization of the Poincaré–Bendixson’s theo-
rem. This is done combining the local phase portrait of the infinity and origin in lemmas 4.2 
and 4.3, and, finally, the uniqueness of the periodic orbit proved above.� □ 

Next result provides the existence of a limit cycle near the λ+-axis.

Corollary 4.4.  For each λ+ > 0, there exists ε > 0 small enough such that system (5), for 
max(−λ+,−ε) < λ− < 0, has at least one limit cycle, which is stable. Moreover, the phase 
portraits in the Poincaré disk is shown in figure 17, when the limit cycle is unique.

Proof.  For the conditions given in the statement, lemma 4.3 provides the unstability of the 
origin. For λ− = 0, from proposition 1.5, the ω  limit set of the separatrix of the saddle at in-
finity for Z+ is the stable limit cycle. Using the behavior of infinity, for λ− < 0 small enough, 
given in lemma 4.2, a continuity argument guaranties the existence of at least a periodic orbit.
� □ 

The values of (λ+,λ−) where system (5) exhibits a center is done in the following result.

Proposition 4.5.  When λ+ � 0 and λ+ + λ− = 0 system (5) has a time-reversible center 
with respect to the y -axis. More concretely, when λ+ = 0 it has a global linear center, when 
0 < λ+ < 2 the inner boundary is the origin which is monodromic, and when 2 � λ+ the in-
ner boundary is a degenerated equilibrium point having one hyperbolic and one elliptic sec-
tors. Moreover, when λ+ �= 0 there is a finite solution connecting two saddles at infinity that 
defines the finite part of the outer boundary. See the respective phase portraits in figure 18.

Proof.  The time-reversibility property follows from the condition λ+ + λ− = 0 applying 
the change (x, y, t) → (−x, y,−t). Lemma 4.3 provides the local phase portraits of the ori-

Figure 17.  Phase portrait of system (5) for λ+ > 0 and small enough λ− < 0 if the 
limit cycle is unique.
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gin. When λ+ = 0 the local center at the origin is global because in both sides we have the 
same system. When 0 < λ+ < 2 the origin is also a local center, see figure 16(c) but when 
2 � λ+ the origin is a degenerate singularity with one hyperbolic and one elliptic sectors, see 
figure 16(f). Adding the local phase portrait at infinity, see figure 12 (left), the global picture 
follows, using the reversibility property, showing that the unstable separatrix of the saddle 
at infinity of Z+ crosses the negative y -axis. See figure 18. In both cases, using Poincaré–
Bendixson theorem in the Poincaré disk for piecewise vector fields, see [1], from the sign of 
the components of the vector field associated to system (5) and looking at infinity, any solution 
starting at a point on the positive y -axis should arrive to the negative y -axis crossing the posi-
tive x-axis. Then, also the unstable separatrix should do the same. From the pictures is clear 
that this separatrix defines a piece of the outer boundary.� □ 

Proposition 4.6.  Consider system (5) with λ+ = 6 and λ− = −4. Let Γ± be the piec-
es of curves defined by the solutions corresponding to the unstable (resp. stable) sepa-
ratrix of the origin of chart U1 (resp. V1) up to the first intersection with the x-axis. Then 
Γ− ∩ {x � 0} ⊂ {y − Φ−(x) > 0} and Γ+ ∩ {x � 0} ⊂ {y − Φ+(x) < 0}, see figure  19. 
Where

Φ−(x) =

{
Φ−

1 (x) for − 11
10 � x � 0,

Φ−
2 (x) for x � − 11

10 ,
Φ+(x) =

{
Φ+

1 (x) for 0 � x � 6
5 ,

Φ+
2 (x) for 6

5 � x < ∞,

with

Φ−
1 (x) =− 173 007 133 315

285 311 670 611
− 67 406 738 275

69 202 853 326

(
x +

11
10

)

− 702 087 707 035 846 036 257 168 105 708 375
331 414 880 343 242 169 114 421 852 929 976

(
x +

11
10

)2

,

Φ−
2 (x) =

1
4x

+
1

4x3 +
15

64x5 +
11

64x7 +
19

512x9 − 85
512x11 ,

Φ+
2 (x) =− 1

6x
− 1

6x3 − 35
216x5 − 31

216x7 − 133
1296x9 − 5

144x11

+
15 545

279 936x13 +
41 381

279 936x15 +
1020 679

5038 848x17 +
838 775

5038 848x19 ,

λ+ = 0 0 < λ+ < 2 2 ≤ λ+

Figure 18.  Phase portrait of system (5) λ+ + λ− = 0.
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and Φ+
1 (x) the polynomial with minimal degree such that yi = Φ+

1 (xi) with

(xi, yi) ∈
{(

0,−66 329
14 331

)
,
(

6
35

,−57 983
16 009

)
,
(

12
35

,−37 061
13 765

)
,
(

18
35

,−28 155
14 903

)
,

(
24
35

,−17 830
14 261

)
,
(

6
7

,−33 068
41 763

)
,
(

36
35

,−12 900
26 023

)
,
(

6
5

,−1031 522 014 772 972 842 265
3070 471 107 232 407 748 608

)}
.

Proof.  We prove that the curve y − Φ+(x) = 0 (resp. y − Φ−(x) = 0) is piecewise con-
tinuous and without contact with respect to the vector fields Z+ (resp. Z−) when x � 0 (resp. 
x � 0). Then, checking some other properties of the functions Φ±, the geometrical situations 
of the points on the curves Γ± with respect to the graph of Φ±(x) satisfy the conditions given 
in the statement. That is, as we have depicted in figure 19.

The piecewise continuity property follows checking only that Φ±
1  are polynomials, Φ±

2  
are rational functions well defined in the interval of definition, and Φ+

1 (6/5) = Φ+
2 (6/5) and 

Φ−
1 (−11/10) = Φ−

2 (−11/10). Straightforward computations show that the function Φ+(x) 
(resp. Φ−(x)) is monotonous increasing (resp. decreasing). Moreover, for x � 0,

〈
∇(y − Φ+(x)), Z+

〉
|y=Φ+(x) < 0

and, for x � 0,
〈
∇(y − Φ−(x)), Z−〉 |y=Φ−(x) < 0.

These properties follow because all the involved functions, in each considered intervals 
{(−∞,−11/10], [−11/10, 0], [0, 6/5], [6/5,∞)}, write as p (x)/xk, being p  polynomials with 
rational coefficients and k � 0 integers. Because, Φ±

i (x), for i = 1, 2 are also functions of this 
type. Moreover, these polynomials p(x) have no zeros in the above intervals.

The proof finishes checking that, when x goes to +∞ (resp. −∞), 
Γ+ ∩ {x � 0} ⊂ {y − Φ+(x) < 0} (resp. Γ− ∩ {x � 0} ⊂ {y − Φ−(x) > 0}). This property 
holds because, when x ↗ +∞, we have

〈
∇(y − Φ̂+

2 (x)), Z+
〉
|y=Φ̂+

2 (x) > 0 and Φ̂+
2 (x) < Φ+

2 (x).

Φ−

Γ−

Φ+

Γ+

Figure 19.  Behavior of infinite for λ+ = 6, λ− = −4 and the blue curves Φ±.
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Equivalently, when x ↘ −∞, we get
〈
∇(y − Φ̂−

2 (x)), Z−〉|y=Φ̂−
2 (x) > 0 and Φ̂−

2 (x) > Φ−
2 (x).

Where

Φ̂−
2 (x) = Φ−

2 (x)− 5985
16 384x13 − 6381

16 384x15 − 879
131 072x17 ,

Φ̂+
2 (x) = Φ+

2 (x)−
838 775

5038 848x19 .

Hence, the graph of the curve Γ+ (resp. Γ−) is between the graphs of the functions Φ+
2  and Φ̂+

2  
(resp. Φ−

2  and Φ̂−
2 ) when x ↗ +∞ (resp. x ↘ −∞). See figure 20.� □ 

Next, we prove the existence of a point, in the parameter space, exhibiting the connection 
at infinity.

Corollary 4.7.  There exists −4 < λ∗ < 0 such that system (5) for (λ+,λ−) = (6,λ∗) ex-
hibits a connection between the semihyperbolic saddles at infinity.

Proof.  The proof follows by continuity taking λ+ = 6 in corollary 4.4 and proposition 4.6. 
Following the notation introduced in proposition 4.6, the intersection points with the x-axis 
of the separatrices Γ± satisfy Φ+(0)− Φ−(0) > 0 for λ− � 0 and Φ+(0)− Φ−(0) < 0 for 
λ− = −4. See also figures 17 and 19.� □ 

Φ+
2

Φ̂+
2

Φ−
2

Φ̂−
2

Figure 20.  The vector field Z± on the without contact curves y − Φ±
2 (x) = 0 and 

y − Φ̂±
2 (x) = 0.

Figure 21.  The functions η± that define the intersection points of Γ± with Σ.
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Next we explain the procedure to provide the functions Φ± appearing in the previous 
results. Other previous works where this kind of mechanism is used are [15, 18]. The func-
tion Φ+ is a piecewise continuous function defined by Φ+

1  and Φ+
2  in two intervals, [0, x+1 ] and 

[x+1 ,∞), respectively. Clearly, Φ+
1 (x

+
1 ) = Φ+

2 (x
+
1 ). The function Φ+

2  is obtained computing 
the approximation up to some order k of the unstable separatrix of the saddle located at the 
origin of system (18), that is, system (5) in the chart U1. Although Φ+

2  define a curve without 
contact, it does not cross the y -axis. This is why we have considered the two pieces. It is neces-
sary that the function Φ+

1  maintain the without contact property and such that the graphs arrive 
to the y -axis. For simplicity, we have chosen it as a polynomial of some degree �. The function 
Φ− satisfies equivalent conditions. In proposition 4.6 we have proposed two different ways to 
determine such polynomials. In both, the initial value problem defined by the original differ
ential system (5) satisfying y±1 = Φ±

1 (x±1 ) is considered. The difference is the mechanism to 
solve them. One is the power series method at x±1 . The other is the interpolation polynomial 
defined by the points obtained with the classical Euler method with some step h, see [36]. 
Finally, we need to find adequate values for k±, �±, x±1 , h±, such that the relative positions of 
the graphs of the functions Φ± allow us to proof a result like proposition 4.6.

An improvement of the above results is hard to be done because the described mechanism 
depend on too many parameters and small variations on them have a big effect on all the 
involved functions. Moreover, the analytic control of the curves Γ± is very difficult.

Although, the last result provides the existence of a point on the connection curve Υ, from 
the above comments it is clear that the proof of the existence of such bifurcation curve, where 
the limit cycles disappear, is far to be done. We finish doing some numerical simulations to 
reinforce the idea that, fixed λ+, there exists only one value λ− such that the connection holds. 
Consequently, the connection curve Υ should be the graph of a function, see figure 11.

Following the notation introduced in proposition 4.6, we can define the intersection points 
(0, η±) of the curves Γ± with the discontinuity line Σ, which is in this system the y -axis. 
These points define two functions of one variable, η±(λ±). By the symmetries of system (5), 
studied in lemma 4.1, we have that η−(−λ) = η+(λ). Consequently, we compute numerically 
only η+. The computations has been made by numerical continuation of the analytic approx
imations of high order of the invariant manifold Γ+, denoted by Φ+

2  in proposition 4.6). The 
graphs of η+ are depicted in figure 21. The value λ+ = λ̂ denotes where the function η+ has 
its maximum. Notice that η+ is monotonous increasing in (0, λ̂) and monotonous decreasing 
in (λ̂,∞).

The bifurcation curve Υ is defined by the connection of the separatrices Γ+ and Γ− on the 
separation curve Σ. The symmetric value λ̂, where the functions η± have a maximum, defines 
the intersection points of Υ with the bisector, λ+ + λ− = 0, of the fourth quadrant. Using the 
symmetries indicated in lemma 4.1 and the plot of η± in figure 21, the curve Υ is obtained 
from the pairs (λ+

∗ ,λ−
∗ ) for every negative value less or equal than η+(λ̂) = η−(−λ̂). We have 

numerical evidences that there is only one pair for λ+
∗ � λ̂ and −λ̂ � λ−

∗ < 0. This relation 
can be seen also in figure 21 where the pairs associated to points on Υ in figure 11 are depicted 
as a continuous line and the symmetric part as a dashed line. All the simulations done here 
indicates that the limit cycle disappears for the values on such bifurcation curve. Finally, we 
remark that the curve Υ separates the fourth quadrant in two regions having the infinity and 
the origin with opposite stability.
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