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Abstract

A configuration of the N bodies is convex if the convex hull of the
positions of all the bodies in R

3 does not contain in its interior any of
these bodies. And a configuration is strictly convex if the convex hull
of every subset of the N bodies is convex.

Recently some authors have proved the existence of convex but
non–strictly convex central configurations for some N–body problems.
In this paper we prove the existence of a new family of spatial convex
but non–strictly convex central configurations of the (2n + 2)–body
problem.

More precisely, we prove that for n > 4 there are spatial convex
but non–strictly convex central configurations of the (2n + 2)–body
problem consisting of n masses equal to m1 at the vertices of a regu-
lar n–gon, n masses equal to m2 at the vertices of the n–gon whose
vertices are the midpoints of the edges of the initial n–gon, and two
masses equal to m3 on the straight line orthogonal to the plane con-
taining the two n–gons passing through their barycenters. Moreover,
we show that for n = 3 does not exist such spatial convex but non–
strictly convex central configurations. Note that the convex hull of
such central configurations is formed by two equal pyramides with
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the base formed by the big n–gon, glued by their bases. So we call
them spatial convex but non–strictly convex double–pyramidal central
configurations of the 2n + 2–body problem.

1 Introduction and statement of the

main result

The equations of motion of the spatial N–body problem are

mk q̈k = −
N∑

j = 1
j 6= k

Gmk mj
qk − qj

|qk − qj|3
,

for k = 1, . . . , N , where G is the gravitational constant which will be
taken equal to one by choosing conveniently the unit of time, qk ∈ R

3

is the position vector of the punctual massmk in an inertial coordinate
system, and the two dots denote the second derivative with respect to
the time t.

The configuration space of the spatial N–body problem is

E = {(q1, . . . ,qN ) ∈ R
3N : qk 6= qj , for k 6= j}.

Given N positive masses m1, . . . ,mN a configuration (q1, . . . ,qN ) ∈ E
is central if there exists a positive constant λ such that

q̈k = −λ (qk − cm) ,

for k = 1, . . . , N , where

cm =

∑N
k=1mkqk∑N
k=1mk

.

is the center of mass of the system. Consequently a central configura-
tion (q1, . . . ,qN ) ∈ E of theN–body problem with massesm1, . . . ,mN

is a solution of the system of equations

N∑

j = 1
j 6= k

mj
qk − qj

|qk − qj |3
= λ (qk − cm) , (1)

for k = 1, . . . , N and for some λ.
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We do not know the first author which shown that N equal masses
located at the vertices of a regular N–gon is a central configuration of
the N–body problem for all N > 2.

If we put equal masses at the vertices of any regular polyhedron,
then we obtain a spatial central configuration of the N–body problem
with N equal to the number of vertices (see [2]).

Other spatial central configurations of theN–body problem are the
pyramidal central configurations, which consist of N = n + 1 masses,
with n equal masses at the vertices of a regular n–gon and the (n+1)th
mass in the orthogonal straight line to the plane containing the n–gon
and passing through its barycenter (see for instance [5] and [18]).

Another simple spatial central configurations are the double pyra-
midal central configurations, which consist of N = n + 2 masses, n
equal masses at the vertices of a regular n–gon and the other two
equal masses symmetrically localized with respect to the plane con-
taining the n–gon on the orthogonal straight line to this plane and
passing through its barycenter (see [8, 9, 10, 11, 12, 13, 14, 19, 20]).
In [16] the authors study these previous central configurations adding
a new mass on the barycenter of the n–gon. In [4] we studied these
double pyramidal central configurations but when the two masses on
the orthogonal straight line to the plan containing the n–gon through
its barycenter are not equal, we called such central configurations by
bi–pyramidal central configurations.

We recall that a configuration of the N bodies is convex if the
convex hull of the positions of all the bodies in R

3 does not contain in
its interior any of these bodies. And a configuration is strictly convex
if the convex hull of every subset of the N bodies is convex.

As far as we know the first example of a convex but non–strictly
convex central configuration appeared in 2010 in the paper [7] of Gidea
and Llibre for the planar 5–body problem. In 2012 Chen and Hsiao
[3] reproved this previous result of the planar 5–body problem and
provided a spatial convex but not strictly convex central configuration
for the 7–body problem. In these two first examples of convex but
non–strictly convex central configurations three of the bodies are on
a straight line. More recently in 2018 Fernandes, Garcia and Mello
provided convex but non–strictly convex central configuration for the
planar 8–body problem, and for the spatial 10– and 20–body problem.
We think that these are all the know convex but non–strictly convex
central configuration which appear until now in the literature.

Inspired in the convex but non–strictly convex central configura-
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tion for the spatial 10–body problem found by Fernandes, Garcia and
Mello in this paper we shall prove the existence of convex but non–
strictly convex central configuration for the spatial (2n+2)–body prob-
lem for all n > 4. More precisely, we prove that for n > 4 there are
spatial convex but non–strictly convex central configurations of the
(2n + 2)–body problem consisting of n masses equal to m1 = 1 (we
choose the unit of mass equal to m1) at the vertices of a regular n–gon,
n masses equal to m at the vertices of the n–gon whose vertices are
the midpoints of the edges of the initial n–gon, and two masses equal
to µ on the straight line orthogonal to the plane containing the two
n–gons passing through their barycenters. Moreover, we show that
for n = 3 does not exist such spatial convex but non–strictly convex
central configurations. Note that the convex hull of such central con-
figurations is formed by two equal pyramides with the base formed by
the big n–gon, glued by their bases. So we call them spatial convex
but non–strictly convex double–pyramidal central configurations of the
2n+ 2–body problem. Thus our main result is the following one.

Theorem 1 The following statements hold for the central configura-
tions of the (2n + 2)–body problem consisting of n masses equal to 1
at the vertices of a regular n–gon inscribed in a circle of radius 1, n
masses equal to m at the vertices of the n–gon whose vertices are the
midpoints of the edges of the initial n–gon, and two masses equal to µ
on the straight line orthogonal to the plane containing the two n-gons
passing through their barycenters and at a distance a of it.

(a) For n = 3 there does not exist central configurations of this type.

(b) For each n > 4 there exists at least one family of central config-
urations of this type depending on the parameter a.

Statements (b) and (a) of Theorem 1 are proved in sections 3 and
4, respectively.

We note that the spatial convex but non–strictly convex central
configuration found by Fernandes, Garcia and Mello for the 10–body
problem is the central configuration of Theorem 1 for n = 4.

In section 2 we provide the explicit equations for the double–
pyramidal central configurations of the 2n+ 2–body problem.
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2 Equations of the central configura-

tions

We consider N = 2n+2 with n ∈ N, n > 3, n equal masses m1 = · · · =
mn at the vertices of a (regular) n–gon, mn+1 = · · · = m2n = m at the
midpoint (regular) n–gon (the n–gon whose vertices are the midpoints
of the edges of the initial n–gon), and 2 masses m2n+1 = m2n+2 = µ
located symmetrically on the straight line orthogonal to the plane
containing the n–gons passing through their center. Without loss of
generality we can choose the unit of mass so that m1 = · · · = mn = 1,
and we can take the unit of length so that the radius of the circle
containing the initial n-gon be one. By using complex coordinates in
the plane that contains the regular n–gons, the positions of the vertices
of the initial n-gon can be written as qj = (eiϕj , 0) ∈ C × R with
ϕj = 2πj/n for j = 1, . . . , n and the vertices of the midpoint n–gon
can be written as qj+n = α(ei(ϕj−π/n), 0) ∈ C × R with α = cos(π/n)
for j = 1, . . . , n. Let the positions of the masses m2n+1 and m2n+2 be
q2n+1 = (0, a) and q2n+2 = (0,−a), respectively, with a > 0.

It is easy to check that the center of mass of the system is at the
origin. The first n equations of (1) become

n∑

j = 1
j 6= k

qk − qj

|qk − qj |3
+m

n∑

j=1

qk − qj+n

|qk − qj+n|3
+ µ

2∑

ℓ=1

qk − q2n+ℓ

|qk − q2n+ℓ|3
= λqk,

(2)
for k = 1, . . . , n, the following n equations become

n∑

j=1

qk+n − qj

|qk+n − qj |3
+m

n∑

j = 1
j 6= k

qk+n − qj+n

|qk+n − qj+n|3
+µ

2∑

ℓ=1

qk+n − q2n+ℓ

|qk+n − q2n+ℓ|3
= λqk+n,

(3)
for k = 1, . . . , n, and the last 2 equations of (1) are

n∑

j=1

q2n+1 − qj

|q2n+1 − qj |3
+m

n∑

j=1

q2n+1 − qj+n

|q2n+1 − qj+n|3
+ µ

q2n+1 − q2n+2

|q2n+1 − q2n+2|3
= λq2n+1,

n∑

j=1

q2n+2 − qj

|q2n+2 − qj |3
+m

n∑

j=1

q2n+2 − qj+n

|q2n+2 − qj+n|3
+ µ

q2n+2 − q2n+1

|q2n+2 − q2n+1|3
= λq2n+2.

(4)
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It is easy to check that for j, k = 1, . . . , n and ℓ = 1, 2

|qk − qj | = |eiϕk − eiϕj | =
√
2

√
1− cos

(
2π(j − k)

n

)
,

|qk − qj+n| = |eiϕk − αei(ϕj−π/n)| =
√

1 + α2 − 2α cos

(
2π(j − k)

n
− π

n

)
,

|qk+n − qj| = |αei(ϕk−π/n) − eiϕj | =
√

1 + α2 − 2α cos

(
2π(j − k)

n
+

π

n

)
,

|qk+n − qj+n| = α|ei(ϕk−π/n) − ei(ϕj−π/n)| = α|eiϕk − eiϕj |,
|qk − q2n+ℓ| =

√
1 + a2,

|qk+n − q2n+ℓ| =
√

α2 + a2,

|q2n+1 − q2n+2| = 2a.

The first two components of the n vectorial equations (2) are

n∑

j = 1
j 6= k

eiϕk − eiϕj

|eiϕk − eiϕj |3+m

n∑

j=1

eiϕk − αei(ϕj−π/n)

|eiϕk − αei(ϕj−π/n)|3
+2µ

eiϕk

(1 + a2)3/2
= λeiϕk ,

(5)
for k = 1, . . . , n. By dividing each equation of (5) by eiϕk we get

n∑

j = 1
j 6= k

1− ei(ϕj−ϕk)

|eiϕk − eiϕj |3 +m

n∑

j=1

1− αei(ϕj−ϕk−π/n)

|eiϕk − αei(ϕj−π/n)|3
+2µ

1

(1 + a2)3/2
= λ,

(6)
for k = 1, . . . , n. The first two components of the n vectorial equations
(3) are

n∑

j=1

αei(ϕk−π/n) − eiϕj

|αei(ϕk−π/n) − eiϕj |3+m
n∑

j = 1
j 6= k

1

α2

ei(ϕk−π/n) − ei(ϕj−π/n)

|eiϕk − eiϕj |3 +2µ
αei(ϕk−π/n)

(α2 + a2)3/2
= λαei(ϕk−π/n),

(7)
for k = 1, . . . , n. By dividing each equation of (7) by ei(ϕk−π/n) we
get

n∑

j=1

α− ei(ϕj−ϕk+π/n)

|αei(ϕk−π/n) − eiϕj |3+m

n∑

j = 1
j 6= k

1

α2

1− ei(ϕj−ϕk)

|eiϕk − eiϕj |3+2µ
α

(α2 + a2)3/2
= λα,

(8)
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for k = 1, . . . , n. The first two components of the two vectorial equa-
tions (4) become

n∑

j=1

−eiϕj

(1 + a2)3/2
+m

n∑

j=1

−αei(ϕj−π/n)

(α2 + a2)3/2
= 0. (9)

Since
∑n

j=1 e
iϕj = 0 and consequently

∑n
j=1 e

i(ϕj−π/n) = 0, equation
(9) is always satisfied.

It is easy to check that the equations corresponding to the third
component of the n vectorial equations (2) and (3) are always satisfied.
The third component of the two vectorial equations (4), after dividing
by a, is equivalent to

n

(1 + a2)3/2
+m

n

(α2 + a2)3/2
+

µ

4a3
= λ. (10)

Since for all k = 1, . . . , n the set {ϕj − ϕk}j=1,...,n modulus 2π is
equal to the set {2πj/n}j=1,...,n and the set {ϕj − ϕk ± π/n}j,k=1,...,n

modulus 2π is equal to the set {2πj/n±π/n}j=1,...,n, the equations (6)
(respectively, (8)) are independent of k. So it is not restrictive to take
k = n. On the other hand, since sin(2πj/n) = − sin(2π − 2πj/n),
cos(2πj/n) = cos(2π − 2πj/n) and sin(2πj/n ± π/n) = − sin(2π −
(2πj/n ± π/n)), cos(2πj/n ± π/n) = cos(2π − (2πj/n ± π/n)), the
equations corresponding to the imaginary parts of (6) and (8) are
always satisfied. The equations corresponding to the real parts of (6)
and (8) are equivalent to

n−1∑

j=1

1− cos
(
2πj
n

)

(√
2
(
1− cos

(
2πj
n

)))3+m

n∑

j=1

1− α cos
(
2πj
n − π

n

)

(√
1 + α2 − 2α cos

(
2πj
n − π

n

))3+2µ
1

(1 + a2)3/2
= λ,

(11)
and

n∑

j=1

α− cos
(
2πj
n + π

n

)

(√
1 + α2 − 2α cos

(
2πj
n + π

n

))3+m
n−1∑

j=1

1

α2

1− cos
(
2πj
n

)

(√
2
(
1− cos

(
2πj
n

)))3+2µ
α

(α2 + a2)3/2
= λα,

(12)
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respectively. Notice that

n∑

j=1

1− α cos
(
2πj
n − π

n

)

(√
1 + α2 − 2α cos

(
2πj
n − π

n

))3 =
n∑

j=1

1− α cos
(
2πj
n + π

n

)

(√
1 + α2 − 2α cos

(
2πj
n + π

n

))3 .

(13)
We isolate λ from equation (10) and we substitute it into equations
(11) and (12). Then, taking into account (13), the equations (1) for the
central configurations of our problem are equivalent to the following
system of two equations

(
a11 a12
a21 a22

)(
m
µ

)
=

(
−b1
−b2

)
, (14)

where

a11 =
n∑

j=1

1− α cos
(
2πj
n + π

n

)

(√
1 + α2 − 2α cos

(
2πj
n + π

n

))3 − n

(α2 + a2)3/2
,

a12 =
2

(1 + a2)3/2
− 1

4a3
,

a21 =
n−1∑

j=1

1

α2

1− cos
(
2πj
n

)

(√
2
(
1− cos

(
2πj
n

)))3 − nα

(α2 + a2)3/2
,

a22 =
2α

(α2 + a2)3/2
− α

4a3
,

b1 =
n−1∑

j=1

1− cos
(
2πj
n

)

(√
2
(
1− cos

(
2πj
n

)))3 − n

(1 + a2)3/2
,

b2 =

n∑

j=1

α− cos
(
2πj
n + π

n

)

(√
1 + α2 − 2α cos

(
2πj
n + π

n

))3 − αn

(1 + a2)3/2
.
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3 Proof of statement (b) of Theorem 1

We start with some auxiliary lemmas. We define

βn =
n−1∑

j=1

1− cos
(
2πj
n

)

(√
2
(
1− cos

(
2πj
n

)))3 =
n−1∑

j=1

1

2

√
2
(
1− cos

(
2πj
n

)) =
1

4

n−1∑

j=1

csc

(
πj

n

)
.

Lemma 2 Let

a∗ =

√(
n

βn

)2/3

− 1,

then the following statements hold.

(a) a∗ is not defined for n > 473,

(b) for n < 473, b1 > 0 when a > a∗, b1 = 0 when a = a∗, and
b1 < 0 when a < a∗,

(c) b1 > 0 for n > 473,

(d) a12 > 0 for a > 1/
√
3, a12 = 0 for a = 1/

√
3, and a12 < 0 for

a < 1/
√
3,

(e) a22 > 0 for a > α/
√
3, a12 = 0 for a = α/

√
3, and a12 < 0 for

a < α/
√
3,

(f) a∗ > 1/
√
3 for 3 6 n < 53, 0 < a∗ < 1/

√
3 for 53 6 n 6 472.

Proof. In [17] it is proved that βn/n is increasing with n and that
βn/n > 1 for n > 473. Therefore statement (a) follows directly from
the results in [17]. Moreover for n > 473

b1
n

=
βn
n

− 1

(1 + a2)3/2
> 0,

because βn/n > 1 (see again [17]). This proves statement (c). State-
ments (b), (d) and (e) follow from simple computations. Finally, com-
puting the values of a∗ for n = 3, . . . , 472 we get statement (f).

Lemma 3 The function H(n) = α b1 − b2 is positive for all n > 473.
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Independently of us and almost simultaneously Barrabés and Cors
in [1] have proved that H(n) > 0 for all n > 5. Here we give our proof
for n > 473 which is different from their proof.
Proof. We define

f(x) =
α(1 − cosx)

(2(1 − cos x))3/2
, F (x) =

α− cos x

(1 + α2 − 2α cos x)3/2
.

Then H(n) can be written as

H(n) =

n−1∑

j=1

f
(
2πj
n

)
−

n∑

j=1

F
(
2πj
n + π

n

)
.

Since α = cos(π/n), we have that F (2πn/n± π/n) = 0. Therefore

H(n) =
n−1∑

j=1

[
f
(
2πj
n

)
− F

(
2πj
n + π

n

)]
.

On the other hand, since f(x) = f(2π− x) and F (x) = F (2π− x) we
have that H(n) = 2A+Ao when n is odd and H(n) = 2A+Ae when
n is even, where

A =

[n
2
]−1∑

j=1

[
f
(
2πj
n

)
− F

(
2πj
n + π

n

)]
,

[n2 ] denotes the integer part of n
2 and

Ao = 2f

(
2π[n2 ]

n

)
− F

(
2π[n2 ]

n
+

π

n

)
= 2f

(
π − π

n

)
− F (π),

Ae = f

(
2π[n2 ]

n

)
= f(π).

Next we want to see which terms in the sum A are positive and
which are negative when n > 473. The sum A can be written as

A =

[n
2
]−1∑

j=1

G
(
2πj
n

)
,

where G(x) = f(x) − F (x + π/n). Notice that the first term in the
sum A corresponds to x = 2π/n and the last term corresponds to
x = π − 3π/n when n is odd, and x = π − 2π/n when n is even. Let
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Ix = [2π/n, π− 3π/n] when n is odd, and Ix = [2π/n, π− 2π/n] when
n is even. We claim that the function G has a unique zero for x ∈ Ix
and this zero belongs to the interval (π − 5π/n, π − 4π/n). Next we
prove the claim.

To simplify the computations we introduce the change of variables
z = x+ π/n and consider the equation G̃(z) = 0 with

G̃(z) = (f(z−π/n))2−(F (z))2 =
α2

8(1− sin π
n sin z − cos π

n cos z)
− (α − cos z)2

(1 + α2 − 2α cos z)3
.

Let g(z) be the numerator of the factorization of G̃(z), after doing the
substitutions cos π

n = α, sin π
n =

√
1− α2, and sin z =

√
1− cos2 z we

get that equation g(z) = 0 is equivalent to equation

(1− α)(1 + α)
(
α2
(
α4 + 4α2 + 7

)
− 2α

(
3α4 + 9α2 + 8

)
cos z+

4
(
3α4 + 6α2 + 2

)
cos2 z − 8α

(
α2 + 1

)
cos3 z

)

= 8
√

1− α2
√

1− cos2 z (α− cos z)2.

Squaring both sides of this equation to drop off the square roots and
doing the substitution c = cos z we get an equation equivalent to
g(z) = 0 given by

g̃(c) = −(1− α2)
(
64
(
α8 + α6 − α4 − α2 − 1

)
c6 − 64α

(
3α8 + 6α6 − α4 − 6α2 − 6

)
c5 +

16α2
(
15α8 + 45α6 + 22α4 − 42α2 − 60

)
c4 −

16(α − 1)α3(α+ 1)
(
10α6 + 50α4 + 95α2 + 73

)
c3 +

4α2
(
15α10 + 75α8 + 133α6 + 21α4 − 168α2 + 4

)
c2 −

4α3
(
3α10 + 18α8 + 44α6 + 30α4 − 39α2 + 8

)
c+

α4
(
α2 + 3

) (
α8 + 4α6 + 10α4 − 4α2 + 5

) )
= 0.

Note that all solutions of equation G(x) = G(z−π/n) = 0 are solutions
of g̃(c) = 0 with c = cos z.

The interval Ix in the variable c is given by Ic = [cos(3π/n), cos(π−
2π/n)] when n is odd and Ic = [cos(3π/n), cos(π − π/n)] when n is
even. In what follows we will work with α = cos(π/n) instead of n,
so we will not distinguish between n odd and n even and we take
Ic = [cos(3π/n), cos(π−π/n)]. Since n = π/ arccosα, after some sim-
plifications Ic can be written as Iα = [4α3−3α,−α]. We are interested
in solutions of g̃(c) = 0 with c ∈ Iα and α ∈ [cos(π/473), 1) ⊂ D with
D = [999/1000, 1).
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First we prove that the number of solutions of g̃(c) = 0 does
not change for α ∈ D. The number of solutions of g̃(c) = 0 can
change when g̃(c) = 0 and g̃′(c) = 0 simultaneously. We compute
Res[g̃(c), g̃′(c), c] and we get the following polynomial in the variable
α

T (α) = −4398046511104(α2 − 1)31α16
(
α8 + α6 − α4 − α2 − 1

)
(
729α10 − 2187α8 + 459α6 + 33831α4 + 13824α2 − 65536

)
.

Applying Sturm’s algorithm we see that there are no zeroes of T for
α ∈ D. Therefore, using the properties of resultants, we get that the
number of real solutions of g̃(c) = 0 does not change for α ∈ D.

The number of solutions of g̃(c) = 0 with c ∈ Iα can change when
α is such that either c = 4α3 − 3α or c = −α. Applying Sturm’s
algorithm we see that the polynomials g̃(4α3−3α) and g̃(−α) have no
zeroes for α ∈ D. So the number of solutions of g̃(c) = 0 with c ∈ Iα
does not change for α ∈ D. Applying Sturm’s algorithm again we see
that for instance for α = 99999/100000 ∈ [cos(π/473), 1) there is a
unique real root c∗ of g̃(c) = 0 with c∗ ∈ Iα. Next we see that this real
root satisfies that c∗ ∈ (cos(π − 4π/n), cos(π − 3π/n)). After some
simplifications and taking n = π/ arccosα we get cos(π − 3π/n) =
3α− 4α3 and cos(π − 4π/n) = −8α4 + 8α2 − 1. By doing the change
of variables γ = (α− 99/100)/(1 − α) we get

g̃(3α− 4α3) =
(100γ + 99)4(200γ + 199)2

3814697265625 · 1038(γ + 1)28
B1,

where B1 is a polynomial of degree 20 in the variable γ with positive
coefficients that is given by

(
3125000000000000000γ10 + 30078125000000000000γ9 + 130192968750000000000γ8 +

333726022656250000000γ7 + 560991664380859375000γ6 + 646166008553593750000γ5 +

516451807542245312500γ4 + 282813389281368250000γ3 + 101545293194930191250γ2 +

21586058638174381500γ + 2062870261351502751
)(

40625000000000000000γ10 +

401078125000000000000γ9 + 1781852968750000000000γ8 + 4691003022656250000000γ7 +

8104450691880859375000γ6 + 9601063173433593750000γ5 + 7898547219442445312500γ4 +

4455668938082168250000γ3 + 1649462704496130191250γ2 + 361845223038974381500γ +

35719897641551502751
)
.
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Since γ > 0 for all α ∈ D, g̃(3α− 4α3) > 0 for all α ∈ D. In a similar
way, by doing the change of variables γ = α− 9/10 we get

g̃(−8α4 + 8α2 − 1) = − (20γ + 19)6

3814697265625 · 1016(γ + 1)34
B2,

where B2 is a polynomial of degree 26 in the variable γ with positive
coefficients. Since γ > 0 for all α ∈ D, g̃(−8α4 + 8α2 − 1) < 0
for all α ∈ D. Therefore the unique solution of g̃(c) with c∗ ∈ Iα
always satisfies that c∗ ∈ (cos(π−4π/n), cos(π−3π/n)). This solution
provides a solution x∗ of G(x) = 0 with x∗ ∈ (π − 5π/n, π − 4π/n).
This proves the claim.

Now we prove that G(x) > 0 when x ∈ Ix and x < x∗, and G(x) <
0 when x ∈ Ix and x > x∗. Since f(x) > 0 and F (x+π/n) > 0 for x ∈
Ix it is sufficient to analyze the sign of G̃(x) = (f(x))2−(F (x+π/n))2.
After some simplifications and using that α = cos(π/n) we get

G̃

(
2π

n

)
=

α2g1(α)

16 (1− α2) (8α2 + 1)3
,

G̃

(
π − 4π

n

)
= − α2

(
1− α2

)
g2(α)

16 (2α2 − 1)2 (8α4 − 5α2 + 1)3
,

where

g1(α) = 512α6 + 192α4 + 24α2 − 255,

g2(α) = 512α10 − 448α8 − 680α6 + 1003α4 − 434α2 + 63.

After doing the change of variables γ = α−99/100 in the functions g1
and g2 respectively we get that g1(γ+99/100) and g2(γ+99/100) are
polynomials in the variable γ of degrees 6 and 10 respectively having
positive coefficients, so g1(γ+99/100) > 0 and g2(γ+99/100) > 0 inD
because γ > 0 in D. Moreover 8α4 − 5α2 + 1 > 0 for all α. Therefore
G̃(2π/n) > 0 and G̃(π − 4π/n) < 0 for all α ∈ [cos(π/473), 1). In
short, G(x) > 0 when x ∈ Ix and x < x∗, and G(x) < 0 when x ∈ Ix
and x > x∗

We have just seen that A can be written as A = Ap + Am with

13



Ap > 0 and Am < 0 where

Ap = Apo =

[n
2
]−2∑

j=1

[
f

(
2πj

n

)
− F

(
2πj

n
+

π

n

)]
,

Am = Amo = f

(
2π([n2 ]− 1)

n

)
− F

(
2π([n2 ]− 1)

n
+

π

n

)

= f

(
π − 3π

n

)
− F

(
π − 2π

n

)
,

when n is odd, and

Ap = Ape =

[n
2
]−3∑

j=1

[
f

(
2πj

n

)
− F

(
2πj

n
+

π

n

)]

Am = Ame = f

(
2π([n2 ]− 1)

n

)
− F

(
2π([n2 ]− 1)

n
+

π

n

)
+

f

(
2π([n2 ]− 2)

n

)
− F

(
2π([n2 ]− 2)

n
+

π

n

)

= f

(
π − 2π

n

)
− F

(
π − π

n

)
+ f

(
π − 4π

n

)
− F

(
π − 3π

n

)
,

when m is even.
In short, H(n) = 2Apo + 2Amo + Ao when n is odd and H(n) =

2Ape + 2Ame +Ae when m is even, where the terms Apo and Ape are
positive. Next we see that the terms 2Amo + Ao and 2Ame + Ae are
also positive. We start with the case n odd. Since α+1 > 4α2−3α+1,
after some simplifications we see that for all α ∈ [cos(π/473), 1)

2Amo +Ao = 2f
(
π − 3π

n

)
− 2F

(
π − 2π

n

)
+ 2f

(
π − π

n

)
− F (π)

=
1√

α+ 1

( √
2α2

2α− 1
− 2(2α − 1)

(4α2 − 3α + 1)3/2
− 1

(α+ 1)3/2

)

>
1√

α+ 1

( √
2α2

2α− 1
− 4α− 1

(4α2 − 3α + 1)3/2

)
.

After doing the change of variables γ = α− 9/10

( √
2α2

2α− 1

)2

−
(

4α− 1

(4α2 − 3α + 1)3/2

)2

=
B3

800(5γ + 2)2 (200γ2 + 210γ + 77)3
,
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where B3 is a polynomial of degree 10 in the variable γ with positive
coefficients, so it is positive because γ > 0 for α ∈ [cos(π/473), 1). In
short 2Amo +Ao > 0 for all α ∈ [cos(π/473), 1) and consequently if n
is odd, then H(n) > 0 for all n > 473.

In the case n even

2Ame +Ae = 2f
(
π − 2π

n

)
− 2F

(
π − π

n

)
+ 2f

(
π − 4π

n

)
− 2F

(
π − 3π

n

)
+ f(π).

It is easy to check that f(x), F (x) > 0 for all x ∈ (2π/n, π). After
doing the change of variables γ = (α− 9/10)/(1 − α) we have

(
2f
(
π − 4π

n

))2 −
(
2F (π − π

n)
)2

=
α2

4 (2α2 − 1)2
− 16α2

(3α2 + 1)3

=
25(γ + 1)2(10γ + 9)2(20γ + 19)

4 (50γ2 + 80γ + 31)2 (400γ2 + 740γ + 343)3(
1120000γ4 + 4184000γ3 + 5836000γ2 + 3601080γ + 829053

)
.

and

(
2f
(
π − 2π

n

)
+ f(π)

)2 −
(
2F (π − 3π

n )
)2

=
1

16
(α+ 2)2 − 16α2

(
2α2 − 1

)2

(8α4 − 5α2 + 1)3

=
B4

1600(γ + 1)2 (10000γ4 + 34500γ3 + 44575γ2 + 25570γ + 5497)3
,

where B4 is a polynomial of degree 14 in γ with positive coefficients,
so they are positive for α ∈ [cos(π/473), 1) because γ is positive in
[cos(π/473), 1). In short if n is even, H(n) > 0 for all n > 473. This
completes the proof.

Lemma 4 Let Nm(a, n) = a12 b2 − a22 b1, then the following state-
ments hold

(a) Nm(1/
√
3, n) > 0 for 3 6 n < 53 and Nm(1/

√
3, n) < 0 for

n > 53,

(b) Nm(a∗, n) > 0 for n = 3, 4, Nm(a∗, n) < 0 for 5 6 n < 53 and
Nm(a∗, n) > 0 for 53 6 n < 473,

(c) lima→0+ Nm(a, n) = +∞ for n > 473.

Proof.

If a = 1/
√
3, then from Lemma 2 (d) a12 = 0, and consequently

Nm(1/
√
3, n) = −a22 b1. Since α ∈ [1/2, 1) (recall that α = cos(π/n)),
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we get 1/
√
3 > α/

√
3; then from Lemma 2 (e) a22 > 0. Moreover from

Lemma 2 (b) and (f) b1 < 0 for n < 53 and b1 > 0 for 53 6 n 6 473
and from Lemma 2 (c) b1 > 0 for n > 473. This proves statement (a).

Statement (b) can be proved by computing the values of Nm(a∗, n)
for n = 3, . . . , 472.

Now we prove statement (c). If follows easily that

lim
a→0+

Nm(a, n) = lim
a→0+

1

4a3
(α b1 − b2),

Then the proof follows from the fact that α b1− b2 > 0 for all n > 473
(see Lemma 3).

3.1 Proof of Theorem 1 for n = 4

We are interested in the solutions of system (14) with m,µ > 0. When
n = 4 we claim that we can find a solution of system (14) with µ = 0
and m > 0 that can be continued to a family of solutions of (14) with
µ > 0 small and m > 0.

Now we prove the claim. When n = 4 the coefficients of system
(14) are

a11 = − 8
√
2

(2a2 + 1)3/2
+ 2

√
2 +

6
√
2

5
√
5
,

a12 =
2

(a2 + 1)3/2
− 1

4a3
,

a21 = − 8

(2a2 + 1)3/2
+

√
2 +

1

2
,

a22 =
4

(2a2 + 1)3/2
− 1

4
√
2a3

,

b1 = − 4

(a2 + 1)3/2
+

1√
2
+

1

4
,

b2 =
8

5
√
5
− 2

√
2

(a2 + 1)3/2
.

We assume that a11 6= 0 and we look for solutions of (14) with
µ = 0. Under these assumptions, from (14) we get m = −b1/a11.
Straightforward computations show that a11 > 0 for a > a⋆,1 =√

5
58

3
√

3886 − 870
√
5− 1

2 ≈ 0.7584732493, a11 < 0 for a < a⋆,1, and
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a11 = 0 for a = a⋆,1; and b1 > 0 for a > a⋆,2 =

√
4
(
2
7

)2/3 3
√

9− 4
√
2− 1 ≈

1.262765225, is b1 < 0 for a < a⋆,2, and b1 = 0 for a = a⋆,2. Therefore
m > 0 when a ∈ (a⋆,1, a⋆,2). On the other hand, from (14) again,
µ = 0 when Nµ(a) = a21b1 − a11b2 = 0. We see that Nµ(a

⋆,1) > 0
and Nµ(a

⋆,2) < 0. Therefore, since Nµ is defined for all a ∈ R
+, there

exists at least a zero a = aµ of Nµ with aµ ∈ (a⋆,1, a⋆,2). If this zero
does not satisfy condition D(aµ) = a11a22 − a21a12 = 0, then this
solution can be continued to a family of solutions of (14) with m > 0
and µ > 0 small, which is given by

m = m(a) =
Nm(a)

D(a)
=

a12 b2 − a22 b1
a11 a22 − a12 a21

, µ = µ(a) =
Nµ(a)

D(a)
=

a21 b1 − a11 b2
a11 a22 − a12 a21

.

(15)
If the value aµ is such that D(aµ) = 0, then either system (14) has
no solutions when Nm(aµ) = a12b2 − a22b1 6= 0, or it has infinitely
many solutions when Nm(aµ) = 0. We note that the first case is
not possible because, since a11 6= 0, from condition D(aµ) = 0 we
get a22 = a21a12/a11 and from condition Nµ(aµ) = 0 we get b2 =
b1a21/a11, then Nm(aµ) = 0. The infinitely many solutions that we
can have when Nµ(aµ) = 0, D(aµ) = 0 and Nm(aµ) = 0 are

m =
−b1 − a12µ

a11
, µ ∈ R.

In this last case, since −b1/a11 > 0 there exists infinitely many families
of solutions of (14) with m > 0 and µ > 0 small.

Notice that if a11 = 0, that is a = a⋆,1, then the solution is
m = m(a⋆,1) ≈ 28614318, 2.4304510854826634604 and µ = µ(a⋆,1) ≈
2.4304510854 6= 0 (see (15)). This completes the proof of the claim,
so Theorem 1 is proved for n = 4.

Remark: We can eliminate the square roots of equation Nµ(a) = 0
by squaring conveniently as many times as we need, then dropping
off the denominators we get a polynomial equation of degree 24 in
the variable a whose set of solutions contains at least all solutions
of equation Nµ(a) = 0. This polynomial equation has two positive
real solutions that can be computed numerically but only a = aµ ≈
1.1778268479 is a solution of Nµ(a) = 0. Proceeding in the same way
with the equation D(a) = 0 we arrive to a polynomial equation of
degree 36 in the variable a that has also two positive real solutions
but only a = ad ≈ 0.7111336024 is a solution of D(a) = 0. Therefore
Nµ and D are not zero simultaneously, so for all positive a with a 6= ad
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system (14) has a unique solution m = m(a), µ = µ(a) which is given
by (15), and for a = ad system (14) has no solution. The solution
m = m(a), µ = µ(a) provides a central configurations when m(a) > 0
and µ(a) > 0. Now we find the set where these conditions are satisfied.

As above we eliminate the square roots of equation Nm(a) = 0,
we drop off the denominators we get a polynomial equation of degree
36 in the variable a that has 6 real solutions but only the solutions
a = am,1 ≈ 0.1092983002, a = am,2 ≈ 1.3587461717 and a = am,3 =
3.7016660737 are solutions of Nm(a) = 0. Analyzing the signs of Nµ,
D and Nm we get that Nµ(a) > 0 for a ∈ (0, aµ) and Nµ(a) < 0
for a ∈ (aµ,+∞); D(a) > 0 for a ∈ (ad,+∞) and D(a) < 0 for
a ∈ (0, ad); and Nm(a) > 0 for a ∈ (am,1, am,2) ∪ (am,3,+∞) and
Nm(a) < 0 for a ∈ (0, am,1) ∪ (am,2, am,3). So m(a) > 0 and µ(a) > 0
for a ∈ (ad, aµ) = (0.7111336024, 1.1778268479) and the configuration
is central.

3.2 Proof of Theorem 1 for n > 5

Proceeding in a similar way than in the case n = 4, we claim that
for all n > 5 we can find at least a value of a for which there exist
a solution of (14) with m = 0 and µ > 0 that can be continued to
a family of solutions of (14) with m > 0 and µ > 0. This family of
solutions will provide a family of central configuration of our problem,
this proves Theorem 1 for n > 5. Next we prove the claim.

Let

Nm(a, n) = a12b2−a22b1, Nµ(a, n) = a21b1−a11b2, D(a, n) = a11a22−a21a12.

We assume that a12 6= 0 and we look for solutions of (14) with m = 0.
If m = 0 and a12 6= 0, then from (14) we get µ = −b1/a12. We
analyze the sign of −b1/a12. From Lemma 2, if 5 6 n < 53, then
−b1/a12 > 0 for a ∈ (1/

√
3, a∗), if 53 6 n 6 472, then −b1/a12 >

0 for a ∈ (a∗, 1/
√
3); and if n > 473, then −b1/a12 > 0 for a ∈

(0, 1/
√
3). Now we prove that there exists at least a value of a such

that m = 0 in the region where µ > 0. If m = 0, then Nm(a, n)
must be zero. From Lemma 4 we have that if 5 6 n 6 472, then
Nm(1/

√
3, n) and Nm(a∗, n) have different signs, and if n > 473 then

lima→0+ Nm(a, n) = +∞ and Nm(1/
√
3, n) < 0. Since Nm(a, n) is

well defined for all a ∈ R
+ we get that for all n > 5 there exist at least

a value of a, a = am, such that Nm(am, n) = 0 and µ > 0. Notice that
if a12 = 0 (i.e. a = 1/

√
3, see Lemma 2) then Nm(1/

√
3, n) is not zero,
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so the assumption a12 6= 0 is not restrictive. If D(am, n) 6= 0, then
the solution of (14) wit a = am is unique and it can be continued to a
family of solutions of (14) in a with m > 0 and µ > 0. As in (15), this
family is given by m = Nm(a, n)/D(a, n) and µ = Nµ(a, n)/D(a, n).
If the value am is such that D(am, n) = 0, then either system (14) has
no solutions when Nµ(am, n) 6= 0, or it has infinitely many solutions
when Nµ(am, n) = 0. We note that the first case is not possible. This
is proved following the same arguments than in the case n = 4.

The infinitely many solutions that we have when Nm(am, n) = 0,
D(am, n) = 0 and Nµ(am, n) = 0 are

m ∈ R, µ =
−b1 − a11m

a12
.

In this last case since −b1/a12 > 0, for all n > 5 there exists infinitely
many families of solutions of (14) with m > 0 and µ > 0. This proves
the claim, so Theorem 1 is proved for n > 5.

Remark: We have computed numerically the values of a for which
Nm(a, n) = 0 and the values of a for whichD(a, n) = 0 for 5 6 n 6 600
and they never coincide. Moreover for 5 6 n 6 600 we have found
that both functions, Nm(a, n) and D(a, n), have a unique positive
zero. Therefore we have strong numerical evidences that for each
n > 5 system (14) cannot have infinitely many solutions and that
there exists a unique value of a such that the solution of system (14)
satisfies that m = 0 and µ > 0.

Proceeding as in the case n = 4 we have computed for 5 6 n 6 600
the set where the solution of system (14) provides a central configu-
ration; that is, m > 0 and µ > 0. Let S denote this set. We see that
for all 5 6 n 6 600 the set S is an interval whose endpoints are the
solutions of Nm(a, n) = 0 and D(a, n) = 0, respectively. In particular,
if a = am(n) is the solution of Nm(a, n) = 0 and a = ad(n) is the
solution of D(a, n) = 0, then S = (ad(n), am(n)) when n 6 128 and
S = (am(n), ad(n)) when n > 128. The functions am(n) and ad(n)
for 5 6 n 6 600 are plotted in Figure 1 (a). In Figure 1 (b) we plot
the length of the interval S for 5 6 n 6 600. In Table 1 we give the
numerical value of S form some values of n.
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100 200 300 400 500 600

0.5768

0.5770

0.5772

0.5774

0.5776

(a)

100 200 300 400 500 600

0.00002

0.00004

0.00006

0.00008

(b)

Figure 1: (a) The plot of the solution of Nm(a, n) = 0, am(n), (the function
having a minimum) and the plot of the solution of D(a, n) = 0, ad(n), (the
increasing function). (b) The plot of the length of the interval S.

n D

5 (0.6054508601, 1.047660644)
6 (0.5735628097, 0.8966193846)
7 (0.5649527372, 0.7993129461)
8 (0.5631917539, 0.7341595533)
9 (0.5635643266, 0.6904238044)
10 (0.5645832304, 0.6608539922)
11 (0.5657382437, 0.6405062783)
12 (0.5668499893, 0.6261710814)
13 (0.5678603234, 0.6158181455)

n D

20 (0.5722706230, 0.5876432515)
30 (0.5746983627, 0.5798882468)
40 (0.5757077735, 0.5780266218)
50 (0.5762252724, 0.5774202950)
60 (0.5765274024, 0.5771954491)
70 (0.5767199392, 0.5771108814)
80 (0.5768506065, 0.5770839197)
90 (0.5769435911, 0.5770820288)
100 (0.5770122548, 0.5770911638)

n D

128 (0.5771316623, 0.5771323567)
129 (0.5771338677, 0.5771346567)
200 (0.5772516235, 0.5772167740)
300 (0.5773027503, 0.5772730689)
400 (0.5772997096, 0.5773220724)
500 (0.5773143684, 0.5773314948)
600 (0.5773233276, 0.5773368180)

Table 1: The interval S providing central configurations for some n > 5.
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4 Proof of statement (a) of Theorem 1

When n = 3 the coefficients of system (14) are

a11 = − 3
(
a2 + 1

4

)3/2 +
4√
3
+

4

9
,

a12 =
2

(a2 + 1)3/2
− 1

4a3
,

a21 =
4√
3
− 3

2
(
a2 + 1

4

)3/2 ,

a22 =
1

(
a2 + 1

4

)3/2 − 1

8a3
,

b1 =
1√
3
− 3

(a2 + 1)3/2
,

b2 =
4

9
− 3

2 (a2 + 1)3/2
.

Recall that

Nm(a) = a12b2−a22b1, Nµ(a) = a21b1−a11b2, D(a) = a11a22−a12a21.

Assuming that D(a) 6= 0, the solutions of system (14) arem = m(a) =
Nm(a)/D(a) and µ = µ(a) = Nµ(a)/D(a).

Next we see that there are no solutions with m(a) > 0 and µ(a) >
0, therefore there are not central configurations for our problem when
n = 3.

Let a = am denote a solution of Nm(a) = 0, a = aµ a solution of
Nµ(a) = 0 and a = ad a solution of D(a) = 0. The set of a’s where
m(a) > 0 and µ(a) > 0 is formed by an interval or a union of intervals
whose endpoints are zeroes of either Nm, Nµ or D. In particular, we
have the following possibilities for the endpoints of each interval: two
zeroes of Nm; two zeroes of Nµ; a zero of Nm and a zero of D; a zero
of Nµ and a zero of D; and two zeroes of D.

First we prove that there is no a such that m = 0 and µ > 0. If
m = 0 then

µ = − b1
a12

= − b2
a22

.

Straightforward computations show that b1 > 0 for a >
√
2, b1 = 0

for a =
√
2, and b1 < 0 for 0 < a <

√
2; a12 > 0 for a > 1/

√
3,
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a12 = 0 for a = 1/
√
3, and a12 < 0 for a < 1/

√
3; b2 > 0 for a >√

5/2, b2 = 0 for a =
√
5/2, and b2 < 0 for a <

√
5/2; and finally

a22 > 0 for a > 1/(2
√
3), a22 = 0 for a = 1/(2

√
3), and a22 < 0 for

a < 1/(2
√
3). Therefore µ > 0 (that is, −b1/a12 > 0 and −b2/a22 > 0

simultaneously) when 1/
√
3 < a <

√
5/2. Now we prove that equation

Nm(a) = 0 has no solutions with a ∈ (1/
√
3,
√
5/2). We eliminate

the square roots of equation Nm(a) = 0 by squaring conveniently
as many times as we need, then dropping off the denominators we
get a polynomial equation Pm(a) = 0 of degree 36 in the variable a.
We do the change of variables γ = −(5(2a − 1))/(2(5a − 6)) in the
polynomial Pm(a) (notice that γ > 0 for all a ∈ (1/

√
3,
√
5/2)) and

we get a rational function in the variable γ having all the coefficients
positive, therefore there is no solution of system (14) with m = 0 and
µ > 0.

In a similar way, if µ = 0 then

m = − b1
a11

= − b2
a21

.

Straightforward computations show that a11 < 0 for a < a with

a =
1

2

√

9

(
2

1 + 3
√
3

)2/3

− 1 ≈ 0.8992976476,

a11 = 0 for a = a, and a11 < 0 for a < a; b2 > 0 for a >
√
5/2,

b2 = 0 for a =
√
5/2, and b2 < 0 for a <

√
5/2; and finally a21 > 0 for

a > 1/
√
2, a22 = 0 for a = 1/

√
2, and a22 < 0 for a < 1/

√
2. Therefore

m > 0 (that is, −b1/a11 > 0 and −b2/a21 > 0 simultaneously) when
a < a <

√
5/2. By eliminating the square roots of equation Nµ(a) =

0 and dropping off the denominators we get a polynomial equation
Pµ(a) = 0 of degree 24 in the variable a. Doing the change of variables
γ = (4 − 5a)/(5a − 6) in the polynomial Pµ(a) (notice that γ > 0 in
a < a <

√
5/2) as above we see that this polynomial equation has no

solutions in the interval a < a <
√
5/2. Therefore there is no solution

of system(14) with µ = 0 and m > 0.
Now we prove that D and Nµ (respectively, Nm) are not zero

simultaneously. We eliminate the square roots of equation Nµ(a) = 0
(respectively, Nm(a) = 0) by squaring conveniently as many times
as we need, then dropping off the denominators we get a polynomial
equation Pµ(a) = 0 of degree 24 (respectively, Pm(a) = 0 of degree 36).
Doing the same with equation D(a) = 0 we get a polynomial equation
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PD(a) = 0 of degree 36. We do the resultant of the polynomials PD

and Pµ, and of PD and Pm with respect to a, and we get two numbers
different from zero. Then by the properties of the resultants these two
pairs of polynomials cannot have a common zero.

Finally we prove that the set of a’s where m(a) > 0 and µ(a) > 0
cannot be formed by an interval whose endpoints are both zeroes D.
Since D(1/(2

√
3)) is different from zero we can assume that a22 6= 0,

then from D(a) = 0 we obtain a11 = a12a21/a22. Substituting this
value of a11 into the expressions of Nm(a) and Nµ(a) we get

Nm(a) = −a22b1 + a12b2, Nµ(a) =
a21
a22

(a22b1 − a12b2).

If a21/a22 > 0 then Nm and Nµ have different signs, so in this case the
zeroes of D cannot be the endpoints of an interval providing central
configurations. Straightforward computations show that a21/a22 > 0
when either 0 < a < 1/(2

√
3) or a > 1/

√
2. On the other hand, by

doing the change of variables γ = we see that the polynomial PD has
no zeroes in the interval a ∈ [1/(2

√
3), 1/

√
2], and since this interval

is the unique set where Nm and Nµ have the same sign, it follows that
two zeroes of D never can be the endpoints of an interval providing
central configurations.

Remark. Computing numerically the positive real solutions of
Nm(a) = 0, Nµ(a) = 0 and D(a) = 0 as we have done for n = 4
we see that Nm(a) = 0 has a unique real solution with a > 0,
a = am ≈ 0.13809757; Nµ(a) = 0 has two real solutions with a > 0,
a = aµ,1 ≈ 0.3019817428 and a = aµ,2 ≈ 2.5508746364; and D(a) = 0
has a unique real solution with a > 0 a = ad ≈ 0.1235465602. Then
Analyzing the signs of Nm, Bµ and D we get that Nm(a) < 0 for
a ∈ (0, am) and Nm(a) > 0 for a ∈ (am,+∞); Nµ(a) < 0 for
a ∈ (aµ,1, aµ,2) and Nµ(a) > 0 for a ∈ (0, aµ,1) ∪ (aµ,2,+∞); and
D(a) < 0 for a ∈ (ad,+∞) and D(a) > 0 for a ∈ (0, ad). Therefore
m > 0 for a ∈ (ad, am), and µ > 0 for a ∈ (0, ad) ∪ (aµ,1, aµ,2). In
short, there is no positive a such that µ > 0 and m > 0.
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