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Abstract. The goal of this work is the study of the probabil-
ity of occurrence of limit cycles for a family of planar differential
systems that are a natural extension of linear ones. To prove our
results we first develop several results of non-existence, existence,
uniqueness and non-uniqueness of limit cycles for this family. They
are obtained by studying some Abelian integrals, via degenerate
Andronov-Hopf bifurcations or by using the Bendixson-Dulac cri-
terion. To the best of our knowledge, this is the first time that the
probability of existence of limit cycles for a non-trivial family of
planar systems is obtained analytically. In particular, we give vec-
tor fields for which the probability of having limit cycles is positive,
but as small as desired.

1. Introduction and main results

Many efforts have been devoted to study the existence, non-existence,
uniqueness or number of limit cycles of planar autonomous systems, see
for instance [8, 19, 22, 27, 28] and their references. Many of these re-
sults involve polynomial differential systems due to the big interest on
the celebrated Hilbert’s XVI-th problem. Nevertheless, as far as the
authors know, the problem of knowing which is the probability of ex-
istence of limit cycles for a given family of such vector fields has been
seldom analytically studied. In this work we propose a quite natural
family of planar vector fields for which we face this problem. Before
stating our results we introduce and formalize this question in more
detail.

Consider the planar linear differential systems

ẋ = ax+ by, ẏ = cx+ dy, (1)

where (a, b, c, d) ∈ R4. To know the probability of occurrence of each of
its possible phase portraits (saddle, node, focus, center, . . . ) there is
a well-established way to mathematize this problem. Take the planar
random linear systems

ẋ = Ax+By, ẏ = Cx+Dy,
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where A,B,C and D are independent and identically distributed (iid)
random variables, with Gaussian distribution N(0, 1). Then, the prob-
ability that system (1) has a given phase portrait, say for instance of
being a saddle, is exactly

P (ω : A(ω)D(ω)−B(ω)C(ω) < 0) ,

that for short we will write as P (AD−BC < 0) and, in this case, it is
1/2. The reason for the suitability of this probability calculation model
is explained for instance in [23, 25] or [10, Thm 2.1]. In a few words,
what happens is that if for some values (a, b, c, d) a linear system (1) has
a given phase portrait, then the system associated with the parameters
λ(a, b, c, d), λ ∈ R+, also has the same phase portrait. Therefore we
want to assign the same probability to each half-straight line of systems
starting at the origin. Under previous hypotheses on A,B,C and D,
this is the case, because the random vector(

A

M
,
B

M
,
C

M
,
D

M

)
, where M =

√
A2 +B2 + C2 +D2,

has uniform distribution on the sphere S3 and each point of this sphere
can be identified with one of these half-straight lines. By using previous
approach it is proved in [26], and also in [9, 10], that the only phase
portraits with positive probability are saddles, nodes or foci and that
their respective probabilities are 1/2, (

√
2 − 1)/2 and 1 −

√
2/2. This

result is extended in different directions: in [10] to higher dimensions,
in [9] to planar homogeneous quadratic and cubic vector fields, and
in [12] to some planar quasi-homogenous vector fields.

The aim of this work is to address the same problem for a non-linear
generalization of system (1) that also admits phase portraits with limit
cycles, and then compute the probability of existence of them. At this
point it is worth to comment that this question has been also addressed
in [3] for planar quadratic vector fields. In that paper, because of the
difficulty of that family, the probability of limit cycles was obtained
by Monte Carlo simulation, together with a numerical study of the
solutions of the differential equation. The authors obtained that the
probability of existence of limit cycles in the quadratic family is around
0.0323.

We will consider the family of random vector fields

ẋ = Af(x) +By, ẏ = C f(x) +Dy, (2)

where f is a fixed smooth function such that f(0) = 0 and, as above,
A,B,C and D are iid random variables with N(0, 1) distribution. For
some f we will compute, using only analytic tools, the probability that
system (2) has limit cycles.

Of course, prior to compute this probability we need to study con-
ditions on (a, b, c, d) ∈ R4 and f that allow us to control the number



PROBABILITY OF EXISTENCE OF LIMIT CYCLES 3

of limit cycles of the corresponding deterministic system

ẋ = af(x) + by, ẏ = cf(x) + dy, (3)

that can be seen as a realization of system (2). It should be noticed
that system (3) is equivalent to a class of generalized Liénard equations,
see Lemma 2.5. Therefore, all the criteria proved about limit cycles
for the generalized Liénard systems can be applied to get properties
about system (3), see for instance [7, 17, 27, 28]. We will also use this
approach in one of our results, see Proposition 2.13.

Section 2 contains the proof of our results on system (3) and on the
natural extension considered in the next theorem. We obtain results
on non-existence, existence or uniqueness of limit cycles, as well as
examples with several limit cycles. Our results are collected in the
following three theorems.

Theorem 1.1. Consider system

ẋ = af(x) + bg(y), ẏ = cf(x) + dg(y), (4)

being a, b, c, d ∈ R, and where f and g are smooth real functions such
that f(0) = g(0) = 0. Then:

(i) If abcd ≤ 0, system (4) has no limit cycles.
(ii) Assume that f and g are analytic, f(x) = x2l−1 + O(x2l) and

g(y) = y2k−1 +O(y2k), for some positive integer numbers k and
l, with k ̸= l. Then, there exist a, b, c, d such that system (4) has
at least one limit cycle surrounding the origin which, whenever
it exists, is hyperbolic.

(iii) There exist f and g such that for some values of a, b, c and
d, system (4) has more than one limit cycle surrounding the
origin. Moreover, the same holds using g(y) ≡ y, that is for
system (3).

We remark that our aim in item (iii) is simply to prove that, in
general, there is no uniqueness of limit cycles for systems (3) or (4).
As we will see, our proof indicates that there is no upper bound for the
number of limit cycles for none of these two families.

Theorem 1.2. Consider system (3),

ẋ = af(x) + by, ẏ = cf(x) + dy,

with ad ̸= 0. Let f(x) be the polynomial f(x) = αxk +
∑

k<i<m fix
i +

βxm, with αβ ̸= 0, k ≤ m odd integers and m > 1. Assume moreover
that x = 0 is the unique real root of f(x) = 0.

(i) If β(ad− bc) ≤ 0, then it has no periodic orbits.
(ii) If β(ad − bc) > 0 and, either k = 1 and βa(aα + d) > 0, or

k > 1 and βad > 0, then it has zero or an even number of limit
cycles.
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(iii) If β(ad − bc) > 0 and, either k = 1 and βa(aα + d) < 0, or
k > 1 and βad < 0, then it has an odd number of limit cycles.

In all the cases, each limit cycle is counted with its multiplicity.

Next result gives an upper bound for the number of limit cycles for
some families of systems given by (3). We will prove it by using the
Bendixon-Dulac theorem for non simply connected regions, see for in-
stance [15, 16] for more information on this theorem and other applica-
tions. In particular, next theorem provides a criterion on uniqueness of
limit cycles for systems with a unique equilibrium point. For instance,
as we will see, it proves the uniqueness for systems with f(x) = x2n−1,
n > 1, already established in [18] by transforming this particular sys-
tem into a Liénard one.

Theorem 1.3. Consider system (3),

ẋ = af(x) + by, ẏ = cf(x) + dy,

where f is smooth and f(0) = 0. Assume that M(x) = 2af ′(x)F (x)−
a(f(x))2 − dxf(x) + 2dF (x) does not change sign and vanishes at iso-
lated points, where F ′ = f and F (0) = 0. Let K be the number of
bounded intervals (counting also intervals degenerated to a point as in-
tervals) of the closed set

{x ∈ R : ∆(x) = (af(x) + dx)2 − 8(ad− bc)F (x) ≥ 0}.
Then the system has at most K limit cycles, all of them hyperbolic.

We want to highlight the role played by the closed set ∆(x) ≥ 0 in
obtaining an upper bound for the number of limit cycles. From the
proof of the theorem we will see that the periodic orbits of system (3)
are contained in the connected components of R2\{V (x, y) = 0} and
that its number depends on the shape of this set. Here the function
V (x, y), which is quadratic on y and appears also in the proof, is such
that its discriminant with respect to y is precisely ∆(x).Moreover, each
bounded interval of the set ∆(x) ≥ 0 gives rise to an oval or a bounded
component of {V (x, y) = 0}.

Corollary 1.4. Assume that system (3) is under the hypothesis on M
given in Theorem 1.3, and consider that the origin is the only equilib-
rium point. Then, it has at most one limit cycle and, when it exists, it
is hyperbolic.

Section 3 collects our results about the probability of existence of
limit cycles for the family of random vector fields (2). To prove them
we have applied all the previous results, together with some simple
tools of probability theory.

Theorem 1.5. Consider the random system (2),

ẋ = Af(x) +By, ẏ = Cf(x) +Dy,
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where f(x) = αxk +
∑

k<i<m fix
i + βxm, with αβ ̸= 0, k ≤ m odd

integers, m > 1, and A,B,C,D iid N(0, 1) random variables. Assume
also that x = 0 is the unique real root of f(x) = 0. Then:

(i) When k > 1, the probability of having an odd number of limit
cycles is 1/8, and the probability of not having limit cycles or
having an even number of them is 7/8.

(ii) When k = 1 and β > 0, the probability of having an odd number
of limit cycles is P+(α) ≤ 1/2, and the probability of not having
limit cycles or having an even number of them is 1 − P+(α).
Here P+ : R → (0, 1/2) is a decreasing function that satisfies

lim
α→−∞

P+(α) = 1/2, P+(0) = 1/8, lim
α→+∞

P+(α) = 0,

given by

P+(α) =
1

4π2

∫∫∫∫
T (α)

e−
a2+b2+c2+d2

2 da db dc dd,

where T (α) = {(a, b, c, d) : ad− bc > 0, a(aα + d) < 0}.
(iii) When k = 1 and β < 0, the same results as in item (ii) hold

but changing P+ by P−, where P−(α) = P+(−α).
In all the cases, each limit cycle is counted with its multiplicity.

As we have already commented, for the families (2) with an f such
that they have at most one limit cycle, the results of Theorem 1.5 can
be refined by using Corollary 1.4. As a concrete example we give next
consequence of Theorem 1.5 and forthcoming Corollary 2.11.

Corollary 1.6. Consider random system

ẋ = Axk +By, ẏ = Cxk +Dy, (5)

where k > 1 is an odd integer and A,B,C,D are iid random variables
with distribution N(0, 1). Then, the probability of having one limit cycle
is 1/8, and the probability of not having limit cycles is 7/8.

We also prove the following natural result, which we think is interest-
ing. It will be a consequence of a result on a deterministic generalized
Liénard system, given in Proposition 2.13.

Corollary 1.7. For any ε > 0, there exists a polynomial f of the
form given in Theorem 1.5 with k = 1 and degree 3, such that the
corresponding random system (2) has at most one limit cycle and it
exists with a positive probability smaller than ε.

The example given in Proposition 2.13, that will allow us prove the
above corollary, is similar in spirit, but different, to the ones provided
by the family of examples of planar system given in [16, Thm. 3.7].
In that paper the authors prove that for each ε > 0 there is an one-
parametric family of systems for which the limit cycles do exist only
when the parameter is inside an interval of length smaller than ε.
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α -100 -10 -1 0 1 10 100

MC-106 0.4984 0.4814 0.3127 0.1255 0.0624 0.0128 0.0016

MC-108 0.49829 0.48129 0.31247 0.12498 0.06254 0.01303 0.00155

Table 1. Some approximated values of P+(α) obtained
by Monte Carlo (MC) simulation taking 106 and 108 ran-
dom systems. We know that P+(0) = 1/8 = 0.125.

Unfortunately, we have not been able to obtain a simpler analytic
expression for P+(α) than the one given in Theorem 1.5. In fact, the
only explicit value that we have found is P+(0) = P−(0) = 1/8. For
this reason we include in Table 1 some approximations of P+(α) for
several values of α, which we have computed by using Monte Carlo
simulation. In Subsection 3.1 we explain how we have obtained these
values and the reason why the expected errors of these approximations
are, respectively, of order 10−3 or 10−4 in the second and third row
of Table 1. In Figure 3 of that subsection we also plot a numerical
approximation of P+(α).

To end this section, we remark that there are many mathematical
models involving differential systems for which the parameters come
from sources with uncertainty, see for instance [4, 5, 6, 24]. This uncer-
tainty can be approached by assuming them to be random variables,
and it is commonly supposed that these parameters follow a Gaussian
distribution. Hence, apart for their own theoretical interest, our results
also give methods to approach this type of applied problems.

2. Deterministic systems

We split this section into two subsections. In the first we prove our
results about system (4), while in the second we collect our results on
system (3).

For the sake of shortness, when we say that the stability of some
object (point, periodic orbit, infinity) is given by the sign of some
quantity, say ρ, we mean that when ρ > 0 the object is a repellor and
when ρ < 0 it is an attractor.

2.1. Results on system (4) and proof of Theorem 1.1. The proof
of Theorem 1.1 will follow from several previous lemmas and proposi-
tions.

Next lemmas give conditions for the non-existence of limit cycles or
periodic orbits for system (4).

Lemma 2.1. Consider system (4) with f, g ∈ C1(R) and such that
f(0) = g(0) = 0.

(i) If abcd < 0, then it has no periodic orbits.
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(ii) If abcd = 0 and either ac ̸= 0 or db ̸= 0, then it has no periodic
orbits.

(iii) If ac = bd = 0, then it has no limit cycles.
(iv) If ad− bc = 0, then it has no periodic orbits.

Proof. Let us consider the functions F and G such that F ′(x) = f(x)
and G′(y) = g(y). Taking H(x, y) = cF (x)− bG(y), then

d

dt
H(x, y) = Ḣ(x, y) = cf(x)ẋ− bg(y)ẏ = acf 2(x)− bdg2(y).

Under the hypotheses of cases (i) or (ii) we have that Ḣ ̸= 0 and, hence,
H(x, y) does not change sign on any trajectory. This fact implies that
the function t→ H(x(t), y(t)) is a monotonous function on the orbits of
system (4), increasing when ac > 0 and decreasing when ac < 0. Then,
no periodic orbits can exist in any of these two cases. Concerning (iii),
we get that Ḣ vanishes identically and, then, since system (4) is an
integrable system, although periodic orbits are possible, no limit cycles
can exist. In the case (iv), i.e. when ad − bc = 0, we consider the
function W (x, y) = cx− ay. Hence,

d

dt
W (x, y) = Ẇ (x, y) = (bc− ad)g(y) = 0.

Then, as in the third case, system (4) is integrable and neither limit
cycles, nor periodic orbits exist, because of the shape of the level sets
of W. □

This second lemma is simply a consequence of the classical Dulac
criterion, because the divergence of the vector field associated to sys-
tem (4) is af ′(x) + dg′(y).

Lemma 2.2. Consider system (4) with f, g ∈ C1(R) and such that
f(0) = g(0) = 0. If af ′(x) + dg′(y) does not change sign and vanishes
on a set of zero measure, then it has no periodic orbits.

Next, we prove that there exist many functions f and g such that
system (3), for some values of its parameters a, b, c and d, has at least
one limit cycle. In fact, the family considered is a perturbed Hamil-
tonian system such that its associated Abelian integral has at least one
simple zero near the origin and as a consequence, at least one limit cy-
cle bifurcates from the period annulus. See [8, 13] for an introduction
to this subject.

Proposition 2.3. Consider system

ẋ = εαf(x) + g(y), ẏ = −f(x) + εδg(y), (6)

with f and g analytic such that f(x) = x2l−1+O(x2l) and g(y) = y2k−1+
O(y2k), for some positive integer numbers k and l, k ̸= l. Then, for ε
small enough, there exist α and δ, with αδ < 0, such that system (6)
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has at least one limit cycle surrounding the origin, which whenever it
exists, is hyperbolic.

Proof. Let F and G be such that F ′(x) = f(x) and G′(x) = g(x)
and with F (0) = G(0) = 0. Note that when ε = 0, system (6) is a
Hamiltonian system with Hamiltonian function H(x, y) = F (x)+G(y)
where H(0, 0) = 0. We denote by γh = {F (x) +G(x) = h} the oval of
the level curve H(x, y) = h surrounding the origin. Then the Abelian
integral that controls the number of limit cycles bifurcating from the
periodic orbits γh is given by

I(h) = −δ
∫
γh

g(y)dx+ α

∫
γh

f(x)dy

= δ

∫∫
Int(γh)

g′(y)dx dy + α

∫∫
Int(γh)

f ′(x)dx dy,

(7)

where this last equality comes from the Green theorem and Int(γh)
denotes the region surrounded by γh. Let us define

U(h) =

∫∫
Int(γh)

f ′(x)dx dy, V (h) =

∫∫
Int(γh)

g′(y)dx dy. (8)

Let us prove that there exist real constants C1, C2 > 0 such that

U(h) =

∫∫
Int(γh)

f ′(x)dx dy ∼ C1 h
1+(l−k)/(2kl),

V (h) =

∫∫
Int(γh)

g′(y)dx dy ∼ C2 h
1+(k−l)/(2kl),

(9)

in a neighborhood of h = 0 for h > 0.
We prove the above fact for the Abelian integral U and the same steps

apply for V . We introduce the change of variables u = x 2l

√
2lF (x)

x2l =

x 2l
√

1 +O(x) which is regular in a neighborhood of x = 0 and admits
inverse x = ϕ(u) = u+O(u2). Observe that u2l = 2lF (x). Similarly, in

a neighborhood of y = 0, v = y 2k

√
2kG(y)

y2k
= y 2k

√
1 +O(y) with regular

inverse y = ψ(v) = v + O(v2) and it holds that v2k = 2kG(y). It is
straightforward to see that by applying this change of variables the
integral U(h) of (8) becomes

U(h) =

∫∫
Dh

(2l − 1)u2l−2 (1 +O(u, v)) du dv, (10)

where Dh =
{

u2l

2l
+ v2k

2k
≤ h

}
. Let us introduce a second change of

variables given by u = wkX, v = wlY and h = w2kl. Then, if Ũ(w) =
U(h) = U(w2kl), it holds that

Ũ(w) =

∫∫
D

(2l − 1)w2k(l−1)X2l−2
(
1 +O(wkX,wlY )

)
wk+ldX dY,
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where D =
{

X2l

2l
+ Y 2k

2k
≤ 1

}
. Now we compute the following limit

lim
h→0+

U(h)

h1+(l−k)/(2kl)
= lim

w→0

Ũ(w)

w2kl+l−k

=

∫∫
D

(2l − 1)X2l−2dX dY =: C1 > 0.

In a similar way we can approximate V (v) by C2h
1+(k−l)/(2kl), for a

constant C2 > 0. Therefore (9) is proved.
To end the proof, notice that when k ̸= l the Wronskian with respect

to h of the two functions h1+(l−k)/(2kl) and h1+(k−l)/(2kl) does not vanish
in (0,∞). Hence the same holds with the two functions U(h) and V (h)
for h in a small interval of the form (0, h), for some h > 0. Therefore,
these two functions form an extended completed Chebyshev system
(ECT-system) on this interval, see for instance [20]. Then any linear
combination of them has at most one zero in (0, h), taking into account
its multiplicity, and there are combinations having one zero. Since,
from (7),

I(h) = αU(h) + δV (h),

for some suitable α and δ this function has a simple zero h∗ ∈ (0, h).
As a consequence, a hyperbolic limit cycle bifurcates from the oval γh∗

when ε is small enough. □

The following result proves that in systems of type (3) and (4) we
can find subfamilies with more than one limit cycle.

Proposition 2.4. (i) There are systems (3), with f a polynomial of
degree 4, having at least 3 hyperbolic limit cycles surrounding the origin.

(ii) There are systems (4), with f and g polynomials of degree 3,
having at least 3 hyperbolic limit cycles surrounding the origin.

Proof. The key point of our proof will be the computation of the Lya-
punov constants of the system. Although this approach is rather stan-
dard we face it from a slightly different point of view, as it was suggested
to us by our colleague Joan Torregrosa. We first recall the classical one
due to Lyapunov and afterward this small variation.
Given a weak focus of an analytic planar vector field, it is not re-

strictive, with an affine change of variables and a scaling of the time,
to write its associated differential system as

ẋ = y + P (x, y), ẏ = −x+Q(x, y), (11)

where P and Q have neither constant nor linear terms. Consider
H(x, y) =

∑
k≥2Hk(x, y), where H2(x, y) = x2 + y2 and Hk are ho-

mogeneous polynomials of degree k. Then Lyapunov’s idea is to prove
that there exist Hk, k ≥ 3 (not unique), such that

Ḣ = (y + P )
∂H

∂x
+ (−x+Q)

∂H

∂y
=

∑
m≥1

Lm(x
2 + y2)m+1. (12)
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Independently of the choice of the polynomials Hm, the values Lm,m ≥
1, are called Lyapunov constants. Indeed, for general vector fields with
a focus at the origin, L0 is by definition the real part of the eigenvalues
associated to the equilibrium point, and it is a positive multiple of
the divergence of the vector field at the origin. The sign of the first
not null Lm,m ≥ 0, gives the stability of the origin and if all them
vanish the system is integrable and the origin is a center. Moreover,
if we consider a parametric family of vector fields, with parameters
λ ∈ Λ ⊂ Rj, these constants are analytic1 functions of the parameters
λ of the family. Moreover, if these functions satisfy:

(c1) for some m = M ≥ 1 and some λ = λ∗, LM(λ∗) ̸= 0 and
Lj(λ

∗) = 0 for all j < M,
(c2) the map defined on a neighborhood of λ = λ∗,

λ→ (L0(λ), L1(λ), . . . , LM−1(λ))

fills a complete neighborhood of the origin,

then there is a degenerate Andronov-Hopf bifurcation for λ = λ∗ at
the origin for this family. In particular, there are differential systems
in the family having at leastM hyperbolic limit cycles in a small neigh-
borhood of the origin and surrounding it, see for instance [11] and the
references therein. In fact, to simplify the computations, the functions
Lm(λ) are usually reduced, giving expressions of them when all the
previous ones Lj(λ), j < m, vanish, because only in this situation they
have a dynamical meaning.

As it can be easily seen, for our system the first step of this classical
procedure, namely the application of the affine change of variables to
write the differential system as in (11) entails some computational dif-
ficulties. The proposed small modification for a general system with a
weak focus at the origin

ẋ = P1(x, y)+P (x, y), ẏ = Q1(x, y)+Q(x, y), div(P1, Q1)(0, 0) = 0,

where ẋ = P1(x, y), ẏ = Q1(x, y), has a center at the origin, consists
simply on changing the function H2(x, y) = x2 + y2 used above by the
first integral of this linear system, which always exists, and is a positive
definite quadratic form. Then the other terms Hk, k ≥ 3, also exist and
a similar formula to (12),

Ḣ =
∑
m≥1

L̂m(x
2 + y2)m+1,

also holds, where the only difference with (12) is the expression of H2.

The new values L̂m, that by abuse of notation are also called Lyapunov
constants, and again denoted as Lm, have exactly the same properties

1Indeed polynomial functions when L0 = 0.
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that the above ones. We will apply this modified computation of the
Lyapunov constant to systems of the form

ẋ = y + rx+ P (x, y), ẏ = −x− ry +Q(x, y), |r| < 1,

for which H2(x, y) = x2 + y2 + 2rxy.
More specifically, to prove item (i) we consider f(x) = f4x

4+ f3x
3+

x2 + x, a = 1/2, b = 1, c = −1 and d = −1/2+ e. Then L0 = e. Hence
we take e = 0 and compute the next Lyapunov constants by using the
above approach with r = 1/2. Then

L1 =
3f3 − 2

12
, L2 = − 37

704
f3

2 − 19

176
f3 −

13

44
f4 +

271

1584
,

L3 =− 22151

639232
f3

3 +
634259

719136
f3

2 − 26467

119856
f3f4 −

21

227
f4

2

− 3343861

4314816
f3 +

27607

44946
f4 +

23539

3236112
.

By simplifying each Lm when Lj = 0, for j < m we obtain

L0 = e, L1 =
3f3 − 2

12
, L2 =

10− 39f4
132

, L3 = − 1610

115089
.

Hence, we are under the hypotheses (c1) and (c2) to have a degenerate
Andronov-Hopf bifurcation with M = 3 and, as a consequence, in this
family we can generate three limit cycles bifurcating from the origin.

To prove item (ii), in this case we take f(x) = f3x
3 + f2x

2 + x,
g(y) = g3y

3 + y2 + y, a = 1/2, b = 1, c = −1 and d = −1/2 + e. Then
L0 = e and when e = 0 we can apply again the above procedure to
get the Lyapunov constants with H2(x, y) = x2 + y2 + xy. For the sake
of shortness we only give the simplified expressions of the Lm when all
the previous Lj vanish. We get that

L1 =
1

12

(
2− 3g3 + 3f3 − 2f2

2
)
,

L2 =− (f 2
2 − 1)

264

(
18f2

2 − 8f2 − 57f3 − 20
)
,

L3 =
2 (f 2

2 − 1)

245841

(
440f2

4 + 599f2
3 − 828f2

2 + 599f2 + 440
)
,

L4 =− 7 (f 2
2 − 1)

735606432000

(
570000621f2

3 − 607497532f2
2

+ 286980301f2 + 210803560
)
,

and L5 = L6 = L7 = 0. In particular, it is easy to see that our vector
field has a center at the origin if and only if e = 0, f2 = ±1 and
g3 = f3, implying in particular that Lj = 0 for all j ≥ 0. This is so
because in these cases it has a symmetry with respect to an straight
line through the origin, and as a consequence, the origin is a reversible
center. Moreover, take any of the two real roots of L3 = 0 different
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from f2 = ±1, for instance,

f ∗
2 =

−599− 19
√
9321 +

√
626082 + 22762

√
9321

1760
≈ −0.4278353

and the values of f3 and g3, say f ∗
3 and g∗3, obtained from the two

conditions L1 = 0 and L2 = 0. In this case, the corresponding L4

is non zero and it is not difficult to see that we are again under the
hypotheses of the degenerated Andronov-Hopf bifurcation withM = 3.
As a consequence, for values of fj near f

∗
j , the corresponding system (4)

has at least three hyperbolic limit cycles surrounding the origin. □

It is clear from the proof of the above proposition that the number of
limit cycles surrounding the origin for systems (3) and (4) will increase
with the degrees of f and g. We have presented examples with 3 limit
cycles simply to show that, in general, there is no uniqueness of limit
cycles for these families of systems.

Proof of Theorem 1.1. The proof of item (i) is a simple consequence of
Lemma 2.1. Item (ii) follows from Proposition 2.3, while the proof of
item (iii) is given in Proposition 2.4. □

2.2. Results on system (3) and proof of Theorems 1.2 and 1.3.
Next lemma shows that system (3) can be transformed into a general-
ized Liénard systems.

Lemma 2.5. System (3) can be transformed into the Liénard equation
ẍ − (d + af ′(x))ẋ − (bc − ad)f(x) = 0, which is equivalent to each of
the systems

ẋ = y, ẏ = (bc− ad)f(x) + (d+ af ′(x))y, (13)

or

ẋ = y + dx+ af(x), ẏ = (bc− ad)f(x). (14)

Proof. From ẋ = af(x) + by we get ẍ = af ′(x)ẋ + bẏ. By using now
that ẏ = cf(x) + dy we obtain that

ẍ =af ′(x)ẋ+ b
(
cf(x) + dy

)
= af ′(x)ẋ+ bcf(x) + d

(
ẋ− af(x)

)
=
(
d+ af ′(x)

)
ẋ+ (bc− ad)f(x).

Then, system (13) appears simply taking ẋ = y in this second order
differential equation, where this new variable has the same name as
the old y, although it is not the same. To get the second system we
consider a new y as y = ẋ− d x− af(x). □

Next lemma characterizes the number of equilibrium points of sys-
tem (3).

Lemma 2.6. The equilibrium points of system (3) are given by the
following conditions:
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(i) If ad− bc = 0, then af(x)+ by = 0 or cf(x)+dy = 0 is a curve
of equilibrium points.

(ii) If ad− bc ̸= 0, then the equilibrium points are the points (x∗, 0),
where f(x∗) = 0.

In the next lemma we study, in the generic cases, the behaviour of
the orbits of system (3) around the origin when f(0) = 0 and f is
analytic. The non-generic ones could be also analysed without major
difficulties, so we will only give some comments in Remark 2.8. We
omit their detailed analysis because these systems will correspond to
situations of zero probability of occurrence when we deal with their
associated random systems in the next section.

Lemma 2.7. Consider system (3) with bd(ad− bc) ̸= 0. Assume that
f(x) is analytic at the origin, f(x) = αxk(1 +O(x)), where α ̸= 0 and
k ≥ 1. Then

(i) Assume that k = 1. If α(ad − bc) < 0, then the origin is a
saddle. When α(ad − bc) > 0, the origin is a node or a focus,
and when aα+ d ̸= 0 its stability is given by the sign of aα+ d.

(ii) If k ≥ 3 is odd and α(ad − bc) > 0, then the origin is a node.
The node will be stable in the case d < 0 and unstable when
d > 0.

(iii) If k ≥ 3 is odd and α(ad− bc) < 0, then the origin is a saddle.
(iv) If k is even, then the origin is a saddle-node.

Proof. (i) When k = 1 the origin is a non degenerated singularity. Its
associated differential matrix is aα b

cα d

 ,

hence the result is a consequence of the well-known classification of this
type of equilibrium points. When aα+d = 0 the origin is a weak focus
and its stability could be found by computing its Lyapunov constants,
by following, for instance, the same procedure that in the proof of
Proposition 2.4.

(ii) − (iv) When k > 1 and d ̸= 0 the origin is a semi-elementary
singularity, namely the eigenvalues associated to its linear part are 0
and d. Since b ̸= 0 we can take the new coordinates z = −dx + by,
y = y and the new time s = dt; then, system (3) writes as

z′ =
bc− ad

d
f
(by − z

d

)
, y′ = y +

c

d
f
(by − z

d

)
,

where the prime denotes derivative with respect to s. In these new
coordinates the system is in the usual normal form

ż = X(z, y), ẏ = y + Y (z, y),
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where X and Y have expansions at the origin that begin at least with
second order terms in z and y. In order to prove this fact, it is straight-
forward to know which type of equilibrium point is the origin. The
method goes as follows, see [2, 13]. The first step is obtaining y = h(z),
the solution of y+ Y (z, y) = 0 that satisfies h(0) = 0. Then one has to
compute X(z, h(z)) = uzm + O(zm+1), where u ̸= 0. One gets that if
m is odd and u > 0, then the point is a node, whereas if m is odd and
u < 0, then it is a saddle. Finally, when m is even, it is a saddle-node.
For our system h(z) = O(zk),

X(z, h(z)) = X(z,O(zk)) = vzk +O(zk+1), v =
(bc− ad)(−1)kα

dk+1
,

and as a consequence m = k, u = v, and the lemma follows. □

Remark 2.8. For completeness of previous lemma we include some
comments about the case d = 0 and αbc ̸= 0. By Lemma 2.5, after a
change of variables, the system writes as the Liénard system

ẋ = y, ẏ = bcf(x) + af ′(x)y.

Hence the origin is a nilpotent singularity and the above expression is
already in the normal form to apply the theorem of classification of
Andreev, see for instance [1, 13]. Skipping all the details we obtain that
when k is odd and αbc > 0 the origin is a saddle, when k is odd and
αbc < 0 it is a focus when a ̸= 0 and a center when a = 0. Finally,
when k is even the point is the union of two hyperbolic sectors.

In what follows we study the behaviour of the trajectories of sys-
tem (3) near infinity to characterize whether infinity is repulsive or
attractive provided that f(x) is a polynomial.

Lemma 2.9. Consider system (3) with ab ̸= 0, f polynomial, f(x) =
αxk +

∑
k<i<m fix

i + βxm with αβ ̸= 0, k ≤ m positive integers and
m > 1. Then the following statements hold.

(i) The infinity is a repellor if and only if m is odd, (ad− bc)β > 0
and aβ < 0.

(ii) The infinity is an attractor if and only ifm is odd, (ad−bc)β > 0
and aβ > 0.

Proof. By Lemma 2.5 the system can be transformed into the gener-
alized polynomial Liénard system (13). All these Liénard systems are
studied in [14] by using the so called Poincaré-Lyapunov compactifica-
tion. See for instance [13] for more details about this compactification.
In particular, all the possible phase portraits in a neighborhood of in-
finity are classified and listed in [14]. By using their results the lemma
follows. □

After studying the behaviour of the phase portrait close to infinity
and close to the origin of system (3), we are in a position to study the
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existence of limit cycles for some families of system (3) having a unique
finite equilibrium point and to prove Theorem 1.2.

Proof of Theorem 1.2. Let us prove (i).When β(ad−bc) = 0 the result
is a consequence of item (iv) of Lemma 2.1.

Next, we note that, by item (ii) of Lemma 2.6, when ad − bc ̸= 0,
the hypothesis that the origin is the unique singularity, implies that f
has no positive zeros and αβ > 0. Therefore, when β(ad − bc) < 0,
since αβ > 0, it also holds that α(ad − bc) < 0. Hence, the origin,
which is the unique equilibrium point of the system, is of saddle type
by items (i), (iii) of Lemma 2.7. As a consequence, no periodic orbit
can appear in this case due to the fact that a saddle can never be the
only equilibrium point surrounded by a periodic orbit.
(ii) − (iii) In all these situations β(ad − bc) > 0 and αβ > 0. The

proof is based on the following facts:

• By Lemma 2.9, the stability of infinity is given by the sign of
aβ.

• By Lemma 2.7, when k = 1 the stability of the origin is given
by the sign of aα+ d. When this value is 0, the origin is a weak
focus with purely imaginary eigenvalues and it is either a focus
or a center. By the analyticity of the vector field and the first
fact, i.e. since infinity is either repellor or attractor, when a ̸= 0
the origin can not be a center. See also Remark 2.8.

• Again by Lemma 2.7, when k > 1 the stability of the origin is
given by the sign of d.

• The above three items imply that there is no accumulation of
limit cycles neither to the origin nor to the infinity.

• By the Poincaré-Bendixson theorem, since the origin is the only
equilibrium point of the system and because the vector field
is analytic, there is no accumulation of limit cycles to a non
isolated periodic orbit. Moreover all limit cycles have finite
multiplicity.

By joining all the above facts we have that the parity of the total
number of limit cycles, counting each one of them with its correspond-
ing multiplicity, depends only on the stabilities of the origin and of
infinity. More concretely, if both stabilities coincide, then an odd num-
ber of limit cycles appears; while, in the opposite case, either none or
an even number of them appear. Hence the result is proved. □

Remark 2.10. When, for a given f , system (3) has at most one limit
cycle, taking into account its multiplicity, Theorem 1.2 distinguishes
between the cases of existence (and then uniqueness) or non-existence
of limit cycles.

To set up a family to which we can apply the previous remark we have
stated Corollary 1.4 on existence of at most of one limit cycle. This
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corollary is a consequence of Theorem 1.3. In turn, Theorem 1.3 will be
a consequence of the Bendixon-Dulac theorem for multiply connected
regions, see [15, 16] and their references for more details about this
classical theorem and other applications. Let us prove both results.

Proof of Theorem 1.3. If b = 0 the first equation of system (3) is simply
ẋ = af(x) and hence it has no periodic orbits. Hence, from now one
we assume that b ̸= 0.

We follow the ideas developed in [15, 16] looking for a suitable Dulac
function, 1/V, to apply Bendixson-Dulac theorem to our system in a
suitable region. We start with the well known formula

div
(P
V
,
Q

V

)
=
V div(P,Q)− VxP − VyQ

V 2
=:

R

V 2
, (15)

where we have omitted the explicit dependence on (x, y) in all the
functions. The first key idea is to search for a function

V (x, y) = y2 + v(x)y + w(x),

for some v and w differentiable, such that when we compute R with
(P,Q) = (af(x) + by, cf(x) + dy), the vector field associated to sys-
tem (3), we obtain that the above R depends only on x. Some compu-
tations give that

R(x, y) =
(
af ′(x)− bv′(x)− d

)
y2

+
(
af ′(x)v(x)− af(x)v′(x)− bw′(x)− 2cf(x)

)
y

+ af ′(x)w(x)− af(x)w′(x)− cf(x)v(x) + dw(x).

Hence, to achieve our goal, we can choose v and w as any solution of
the differential equations obtained by equating the coefficients of R of
y and y2 to zero. More concretely, we take

v(x) =
a

b
f(x)− d

b
x, w(x) =

2(ad− bc)

b2
F (x)− ad

b2
xf(x).

Then,

R(x, y) =
(ad− bc)

b2
M(x),

where we recall that

M(x) = 2af ′(x)F (x)− a(f(x))2 − dxf(x) + 2dF (x),

and that, by hypothesis, M does not change sign and vanishes only at
isolated points. Moreover, by item (iv) of Lemma 2.1 when ad−bc = 0
the system has no periodic orbits, so we can assume that ad− bc ̸= 0.
Then we have that R does not change sign and vanishes only at isolated
points.

Notice that, precisely

M |V=0 = −(VxP + VyQ). (16)
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Hence the hypothesis on the sign of M implies that the periodic orbits
of system (3) cannot cut the set {V (x, y) = 0}. Therefore, all the
periodic orbits are contained in one of the connected components of
R2 \ {V (x, y) = 0}. Moreover notice that on each of these connected
components

div
(P
V
,
Q

V

)
=

R

V 2
,

does not change sign and vanishes at isolated points. Hence we can
apply the Bendixson-Dulac theorem, with Dulac function 1/V, and
we get that the maximum number of periodic solutions of system (3)
in each of these connected components depends only on the topology
of each one of them. More specifically, applying the result given in
[15, 16], if the connected component region where R does not change
its sign is simply connected then it contains no periodic orbits; if this
connected component region has k ≥ 1 holes, then it has at most k
periodic orbits, all of them hyperbolic.

In our case, because V is quadratic on y we have that the set
{V (x, y) = 0} is precisely

y =
−v(x)±

√
v2(x)− 4w(x)

2
=
dx− af(x)±

√
∆(x)

2b
.

To illustrate the shape of {V (x, y) = 0}, independently of whetherM
changes sign or not, in Figure 1 we plot it in red when (a, b, c, d) =
(−1,−1,−1, 1) and f(x) = T11(x), the 11-th Chebyshev polynomial.

In that figure, in blue we also plot the curve C = {(x, y) : y = dx−af(x)
2b

}.
From this special shape, notice that the set {V (x, y) = 0} is symmetric

Figure 1. An example of set {V (x, y) = 0}, in red,
together with its symmetry curve C, in blue. It has 6
bubbles, with two colliding ones.
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with respect the curve C and it is formed by several centered bubbles
having C as a curve of symmetry in the following sense: the bubbles
cut C at precisely two points whose x-coordinates are the extremes of
each of the intervals defined by ∆(x) ≥ 0. These bubbles exist only
in the zones where ∆(x) ≥ 0, they can collide between them, sharing
one of their intersections with C, or degenerate to a single point, also
on C. Finally, the set {V (x, y) = 0} can contain one or two pieces,
diffeomorphic to lines, each one of them associated to an unbounded
interval where ∆ is positive. These two pieces can eventually intersect
with a bubble in a point of C.

Notice that in this case, {V (x, y) = 0} has 6 bubbles and two of
them share a point. Hence the set ∆(x) ≥ 0 has 5 bounded closed
intervals (plus 2 unbounded ones) and, consequently, K = 5.
In short, from all the given description, the set R2 \ {V (x, y) = 0}

has all its connected components simply connected but one, that has
exactly K holes. Therefore only one of the components can contain
limit cycles and it can contain at most K. Therefore, the Bendixson-
Dulac theorem implies the existence of at most K limit cycles for our
system. Let us prove that each existing limit cycle γ is hyperbolic. To
do so it suffices to prove that its characteristic exponent

h(γ) =

∫ T

0

div(P,Q)(x(t), y(t)) dt ̸= 0,

where (x(t), t(t)) is the time parameterization of γ and T its period, see
[13]. The above condition holds because since γ ∩ {V (x, y) = 0} = ∅,
equality (15) can be written on γ as

div(P,Q) =
R

V
+
VxP + VyQ

V
,

and hence

h(γ) =

∫ T

0

R(x(t), y(t))

V (x(t), y(t))
dt+ ln

(
|V (x(t), y(t))|

)∣∣∣t=T

t=0

=

∫ T

0

R(x(t), y(t))

V (x(t), y(t))
dt ̸= 0.

□

Proof of Corollary 1.4. To prove the uniqueness of limit cycles we will
use Theorem 1.3. We need to prove that, since the origin is the only
equilibrium point of the system, we get that the value K in the state-
ment of that theorem is at most one. This fact is a straightforward
consequence of the following claim: each of the bubbles that consti-
tute the set {V (x, y) = 0} surrounds at least one critical point. Then
the proof follows, because by assuming that this fact holds then only
one bubble or two bubbles sharing a point can exist and so K ≤ 1,
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see the proof of Theorem 1.3 for more details about the shape of the
{V (x, y) = 0} set.

To prove the claim we use expression (16). This equality shows
that the region surrounded by any bubble is either a positive or nega-
tive invariant region and, as a consequence, by the Poincaré-Bendixson
theorem, it contains an equilibrium point of the system, either in this
bounded open region or on its boundary. From this fact the result
follows. □

To prove next corollary we apply Theorem 1.3 to a very particular
family of systems (3). Next corollary gives a different proof of the result
given in [18, Thm. 1.1 & Cor. 1].

Corollary 2.11. Consider system

ẋ = ax2n−1 + by, ẏ = cx2n−1 + dy,

where n > 1 is an integer number. This system has at most one limit
cycle and, when it exists, it is hyperbolic. Moreover, the limit cycle
exists if and only if ad − bc > 0 and ad < 0, and its stability is given
by the sign of −d.

Proof. When a = d = 0 the system is integrable and it has no limit
cycles. Hence, from now on we assume that a2 + d2 ̸= 0.

By Theorem 1.2 the number of limit cycles of this system is: zero
when ad − bc ≤ 0; an even number or zero when ad > 0; and an odd
number when ad < 0.
Let us prove first that when ad ≥ 0 it has no periodic orbits. The

divergence of the vector field is (2n − 1)ax2(n−1) + d and it does not
change sign, and vanishes at most at the origin when d = 0. Hence,
the non-existence of periodic orbits follows from the classical Dulac
criterion.

Let us consider the case ad − bc > 0 and ad < 0. By applying
Theorem 1.3 when f(x) = x2n−1, we have that

M(x) =
(n− 1)

n
x2n(ax2(n−1) − d),

and hence this function does not change sign. Finally to prove the
corollary we need to compute the numberK of bounded intervals where
∆(x) ≥ 0. In this case

∆(x) = x2
(a2
b2
x8(n−1) +

(4n− 6)ad+ 4bc

(2n− 1)b2
x4(n−1) +

d2

b2

)
,

and it is not difficult to prove that K = 1 and, hence, the uniqueness
of the limit cycle follows.

The shape of the set {V (x, y) = 0} is depicted in Figure 2 when
(a, b, c, d) = (1,−1,−1.05,−1). In all cases the proof of uniqueness of
the limit cycle is similar. Notice that if the set {V (x, y) = 0} has two
bubbles sharing a point, thenK = 1. For some values of the parameters,
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these two bubbles can degenerate to be the single isolated point (0, 0),
that always belongs to {V (x, y) = 0}.

Figure 2. An example of set {V (x, y) = 0} with two
bubbles and sharing a common point.

As a consequence, using Theorem 1.2.(iii), the system in the state-
ment of Corollary 2.11, when ad− bc > 0 and ad < 0, exactly has one
limit cycle. Moreover, from Theorem 1.3, it is hyperbolic.

The stability of the origin is given by the sign of d and, since the
limit cycle is hyperbolic, its stability is precisely the opposite of that
of the origin. Using Lemmas 2.7 and 2.9, the proof of the corollary
follows. □

We remark that to get the uniqueness of the limit cycle in Corol-
lary 2.11, instead of studying ∆(x), we also could have used Corol-
lary 1.4 because the origin is the only equilibrium point of the system.

Next, we will use the following general result about Liénard systems,
given in [28, Thm 4.1], to prove Proposition 2.13 and Corollary 2.14.
This corollary characterizes the existence and uniqueness of limit cycles
for a particular family of systems (3). It has also been used in [18,
Lem. 2.5] to prove the uniqueness of the limit cycle of the system
studied in Corollary 2.11.

Proposition 2.12 ([28, Thm 4.1]). Consider the Liénard system

ẋ = −y − F (x), ẏ = g(x). (17)

Assume that the next conditions hold:

(a) g is an odd function, and xg(x) > 0 for x ̸= 0;
(b) F is an odd derivable function, and there exists x0 > 0 such

that F (x) < 0 for 0 < x < x0, and F (x) ≥ 0 is monotonically
increasing for x ≥ x0;
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(c)
∫∞
0
F ′(x) dx =

∫∞
0
g(x) dx = +∞;

(d) F ′ and g satisfy the Lipschitz condition on any bounded interval.

Then, the system has a unique limit cycle which is stable.

A direct consequence of the above result is the next proposition.

Proposition 2.13. The cubic generalized Liénard systems

ẋ = y + px+ qx3, ẏ = rx+ sx3, (18)

with rs ≥ 0, have at most one limit cycle. Moreover, it exists if and
only if r ≤ 0, r2 + s2 ̸= 0 and pq < 0, and its stability is given by the
sign of −p.

Proof. Since the divergence of the vector field is p+3qx2, by the classical
Dulac theorem, the system has no limit cycles when pq ≥ 0. Moreover
since the origin is the unique equilibrium point and it is a saddle when
r > 0, in this situation we know that it has no periodic orbits. Hence,
for the rest of the proof we can assume r ≤ 0 and pq < 0. By changing
the sign of the time, the generalized Liénard system (18) writes as

ẋ = −y − (px+ qx3), ẏ = −(rx+ sx3), (19)

that is of the form (17) with F (x) = px + qx3 and g(x) = −rx − sx3.
Changing (x, y, t) by (−x, y,−t), if necessary, we get that it is not
restrictive to consider p < 0. Hence system (19) is under the hypotheses
of Proposition 2.12 and it has a unique limit cycle which is stable.

Due to the uniqueness and stability of the limit cycle we get that
under these last conditions the stability of the limit cycle of the sys-
tem (18) is given by the sign of −p because it is the opposite of that
of the stability of the origin. □

A corollary of this proposition is the next result.

Corollary 2.14. System

ẋ = a(αx+ x3) + by, ẏ = c(αx+ x3) + dy, (20)

with α ≥ 0 has at most one limit cycle. Moreover, the limit cycle exists
if and only if ad− bc > 0 and a(aα + d) < 0, and its stability is given
by the sign of −(aα + d).

Proof. By Lemma 2.5, system (20) can be written as the generalized
Liénard system

ẋ = y + (aα + d)x+ ax3, ẏ = (bc− ad)(αx+ x3).

Hence, by applying Proposition 2.13 the result follows. □

Notice that the above result, when α = 0, coincides with Corol-
lary 2.11 when n = 2. Clearly, Corollary 2.14 could be extended to
f(x) = αx+ x2n−1, with n > 1.
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3. Random systems

In this section we will study the probability of existence of limit cy-
cles for the families of systems considered in the previous section. More
concretely, we give a general result for the random system (4), Proposi-
tion 3.1, and as a consequence we prove Theorem 1.5 and Corollaries 1.6
and 1.7. Finally, in Theorem 1.5, we make some comments about how
we have used Monte Carlo simulation to approach the function P+(α).

Proposition 3.1. Consider the following random system

ẋ = Af(x) +Bg(y), ẏ = Cf(x) +Dg(y),

where A,B,C,D are iid random variables with N(0, 1) Gaussian dis-
tributions and where g and f are smooth functions such that f(0) =
g(0) = 0. Then, the probability that it does not have periodic orbits
is greater than or equal to 1/2. Equivalently, the probability of having
some limit cycles is smaller than or equal to 1/2.

Proof. By using Lemma 2.1, the probability that this system does not
have periodic orbits is greater or equal to P (ABCD < 0). Notice that
the two random variables ABCD and −ABCD have the same distri-
bution because, for instance, this happens with A and −A. Therefore

P (ABCD < 0) = P (−ABCD < 0) = P (ABCD > 0).

Since P (ABCD = 0) = 0, we get that P (ABCD > 0) = P (ABCD <
0) = 1/2. Thus, the probability for this system of having at least one
limit cycle is ≤ 1/2. □

Proof of Theorem 1.5. Let us prove (i). We define the new iid random
variables X = AD and Y = BC. Note that the density function of the
new variables X and Y is an even function. Then, the joint density
function of (X, Y ), h(x, y), is symmetric respect to the origin, that is
h(x, y) = h(−x,−y).

From Theorem 1.2, to compute the probability of having an odd
number of limit cycles we have to compute the p = P (β(X − Y ) >
0, βX < 0). Notice that X−Y and Y −X have the same distribution,
and the same happens with X and −X. Thus, independently of the
sign of β, p = P (X − Y > 0, X < 0) = P (X − Y < 0, X > 0). Finally,

P (X − Y > 0, X < 0) =

∫∫
{(x,y)∈R2 :x−y>0,x<0}

h(x, y) dx dy =
1

8
.

Again by Theorem 1.2, the probability of having none or an even num-
ber of limit cycles is the probability of the complementary set, modulus
a set of zero measure, that is 7/8.

(ii) By items (ii) and (iii) of Theorem 1.2 to compute P+(α) we
simply have to compute P+(α) = P (AD − BC > 0, A(Aα +D) < 0)
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which is given by

P+(α) =
1

4π2

∫∫∫∫
T (α)

e−
a2+b2+c2+d2

2 da db dc dd,

where we recall that

T (α) = {(a, b, c, d) : ad− bc > 0, a(aα + d) < 0},
which is precisely the integral expression given in the statement. The
fact that P+(0) = 1/8 is simply because, when α = 0, the set T (0)
coincides with the one considered in item (i) above. Moreover, the
properties of the function α → P+(α) are a consequence of the shape
of the set T (α). It shrinks when α increases and, in fact,

lim
α→−∞

T (α) = {ad− bc > 0} and lim
α→+∞

T (α) = ∅.

Finally, to prove item (iii) we have to compute P−(α) that is the
probability of the event β(AD − BC) > 0 and βA(Aα + D) < 0.
Therefore it is equivalent to prove that AD − BC < 0 and A(−αA −
D) < 0. Since AD − BC has the same distribution as BC − AD and
−D the same distribution as D, we obtain that P−(α) can also be
computed as the probability of occurrence of the event AD − BC > 0
and A(−αA + D) < 0. This probability is precisely P+(−α), as we
wanted to show.

□

Proof of Corollary 1.6. By Corollary 2.11 we know that each realiza-
tion of the random system (5) has at most one limit cycle. Then the
result is a straightforward consequence of Theorem 1.5 when k > 1. □

Next we state a result that implies Corollary 1.7.

Proposition 3.2. Consider the random system

ẋ = A(αx+ x3) +By, ẏ = C(αx+ x3) +Dy,

with α > 0 and A,B,C,D iid random variables with N(0, 1) distribu-
tion. Then, for each ε > 0 there exists α big enough such that it has
limit cycles with a positive probability, smaller than ε. Moreover, when
the limit cycle exists it is unique.

Its proof is a straightforward consequence of Corollary 2.14 and of
the property limα→∞ P+(α) = 0 proved in Theorem 1.5.

3.1. Some comments about Monte Carlo simulation. To get our
results in Table 1 we use Monte Carlo simulation. We take N = 106

or N = 108 samples of the random vector (A,B,C,D) where the four
variables are iid, with distribution N(0, 1), and check how many of
them, say J, satisfy AD − BC > 0 and A(αA +D) < 0. Then simply
P+(α) ≈ J/N. Due to the law of large numbers and the law of iterated
logarithm it is known that this approach gives an absolute error of
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order O(((log logN)/N)1/2), which is essentially O(N−1/2), see [21, 25].
Hence, for N = 106 (resp. 108) this absolute error is expected to be
of order 10−3 (resp. 10−4). For this reason in Table 1 we only show 4
(resp. 5) digits of the Monte Carlo results.

To illustrate the above facts we have plotted in Figure 3, P+(α)
obtained with samples of either 104 or 106 points for 101 equidistributed
values of α in [−10, 10]. Observe how increasing N, more regular the
approximation is. Notice that from its expression it is clear that the
actual P+(α) is smooth. It is also apparent from the figure that 104

samples do not suffice to have a good approximation.

Figure 3. Numerical approximation of P+(α) obtained
with Monte Carlo simulation with samples of 104 (left
panel) and 106 (right panel) points for 101 equidis-
tributed values of α in [−10, 10].

For some more comments concerning what can really be said about
how small is |P (α)− J/N | see for instance [10, Sec. 3.2].
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†∗Dept. de Matemàtiques i Informàtica, IAC3 Institute of Applied
Computing & Community Code, Universitat de les Illes Balears, 07122
Palma de Mallorca, Illes Balears, Spain

Email address: †tomeu.coll@uib.cat, ∗rafel.prohens@uib.cat
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