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Abstract

We describe the global dynamics of some pointwise periodic piecewise linear maps
in the plane that exhibit interesting dynamic features. For each of these maps we
find a first integral. For these integrals the set of values are discrete, thus quantized.
Furthermore, the level sets are bounded sets whose interior is formed by a finite number
of open tiles of certain regular or uniform tessellations. The action of the maps on each

invariant set of tiles is described geometrically.
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1 Introduction

A pointwise periodic map is a bijective self-map in a topological space such that each point
is periodic. A periodic map is a bijective self-map in a topological space such that some
iterated of the map is the identity. For a periodic map £ : X — X the minimum natural
number p satisfying F'P = Id is called the period of F. Notice that a pointwise periodic map
satisfying that the period of the points has an upper bound is periodic and its period is the
least common multiple of the periods of the elements of the space.

A classical result of Montgomery establishes that any pointwise periodic homeomeor-
phism in an Euclidean space is periodic, [19]. Non-periodic but pointwise periodic bijective
maps do exist when the continuity assumption is relaxed, see [23] for instance. In the series
of papers [7, [§] and [10], the authors introduce three explicit examples of pointwise periodic
maps that are not periodic. The examples given by these authors in the above mentioned

references belong to the family of piecewise affine maps with a line of discontinuity:

+1, ify = 0;

—1, otherwise,

G(z,y) = (y,—x — py +sign(y)), where sign(y) = { (1)
for |p| < 2. In particular they correspond to the cases p € {—1,0,1}. There are other values
of p for which there exist non-periodic points, see [9]. Notice also that maps correspond
to the second order discontinuous difference equations x, 1o = —x, — pxp41 + sign(z,41).

As we will see in next section, each map G is linearly conjugate with the piecewise

Fla,y) = ( cos(a) sin(«) ) ( x — sign(y) ) , @)

—sin(a) cos(a) y

where p = —2cos(a) with a € (0, 7). Observe that the maps G with p = —1,0 and 1
are conjugate with the maps F with a = 7/3,7/2 and 27/3, respectively. As we will

rotation map

see, the normal form F regularizes the shape of the invariant sets and keeps the same
discontinuity line y = 0. These maps are included in the class of symmetric maps studied in
the remarkable paper [14] together with other more general piecewise rotations, see a further
comment below. As noticed in [5], they exhibit complex dynamics and they belong to the
type of piecewise rotations with the same rotation angle that elude the generic dichotomy
that appears in most piecewise rotations of being globally attracting or globally repelling
maps, see [5, Theorem 1].

Piecewise affine maps with a line of discontinuity appear as models in many fields like
in the study of mechanical systems with friction, power electronics, relay control systems
or economics [2 6, 24]. In fact, as is explained in [7, [8, [10], the three maps with

p € {—1,0,1} appear in the study of steady states of certain cellular neural networks.



Despite their apparent simplicity, piecewise affine maps exhibit great dynamic richness and
a variety of phenomena that are characteristic of these systems, see [3|, 5 14} 22, 24] and
references therein. As we will show, the examples considered in this paper are also very
rich from a dynamical viewpoint, even though each orbit is periodic. In fact, one of our
motivations was to highlight the beautiful features of these examples.

Recall that a first integral of a discrete dynamical system associated with a map F
is a non-constant real valuated function V such that V o ' = V, which means that the
level sets {V = ¢}, typically called the energy levels, are invariant under the action of the
map. It is known that periodicity issues are related with integrability since most continuous
periodic maps are completely integrable (there exist as many functionally independent first
integrals as the dimension of the phase space), see [11] and [12]. In this work we consider
the piecewise affine maps F' with a € {7/3,7/2,27/3} under the light of their properties
as integrable systems. For each of these three maps, we obtain a non-trivial first integral
which is defined in an open and dense set of R? and have discrete (or quantized) energy
levels. Then we describe their global features in terms of the dynamics induced by the maps
on the level sets of the first integrals. These level sets are bounded, with positive measure
and their interior is formed by a finite number of some prescribed tiles of certain regular or
uniform tessellations forming necklaces, see Figures and (3 The existence of necklaces
in piecewise isometries is well known. For instance, in [I14, Theorem 1 and Lemma 11] it is
established the existence of some invariant necklaces defined by convex polygons containing
periodic islands for a family of maps that contain the ones studied in this papers. These
necklaces and the set of periods associated with their periodic orbits are characterized both
analytically and geometrically, and its existence is the key to prove the boundedness of
the orbits of the maps considered there. We want to point out that in our maps, all the
integral’s level sets are necklaces. In Remark [2] we comment the relation between both
families of necklaces. In addition, as we will see, the maps F' with « € {r/3,7/2,27/3} have
also a second continuous first integral, see Remark This second first integral, however,
is not useful to control the set of periods.

Planar piecewise isometries appear in the study of polygonal dual billiards ([13}, 17, 20]).
The results in the literature indicate that some polygonal dual billiards should also have
quantized integrals, see Figure 3 in [20], Figure 2 in [13], or Figures 3-5 and the results in
[23]. We believe that the explicitness of the analytic expression of the quantized integrals
with positive measure level sets for the maps is quite novel in the context of discrete
dynamical systems theory. It is interesting to notice the fact that the regular tessellations
that we find in this paper also appear in the study of some polygonal dual billiards like the
one introduced by Moser in [20] or those that appear in [23]. Observe, however, that these



dual billiards are not conjugated to any map considered in our paper, because they exhibit

different sets of periods.

A consequence of our results for F, when «a € {m/3,7/2,27/3}, is the existence of an

open and dense subset & on which the dynamics of the map is strongly stable and simple.

We will see that for any x € U there exists an open neighborhood of x, say U, and n, € N

such that F™= |, = Id. Moreover, varying = € U, the values n, are unbounded.

We will study the three cases separately in three different sections. In a few words, the

main results that we will state in detail in the next section, are:

(a)

(b)

We present first integrals V' for each case. See Section@ for a constructive approach for

obtaining them.

The interior of the level sets of each first integral is described in terms of some prescribed
open tiles of a regular or uniform tessellation of R?, see Figures and |3} In all cases,
each of them is a necklace whose beads (the open tiles) are open sets having one of the
following three shapes: squares (a = m/2), triangles and hexagons (« € {7/3,2m/3}).
In the three figures the beads of a necklace have the same color. In fact, the shape
and the number of beads, say M, only depend on the level set £ and a. Moreover,
the inter-tile dynamics can be described in a very simple way: if we collapse each of
the open tiles in a point, the interior of {(z,y) : V(z,y) = ¢} can be identified with
Zyy, simply following the order given by the necklace in clockwise sense, were, as usual,
given ¢ € Z, we denote by Z, the set of the residue classes induced by the congruence
n = m if and only if n — m is a multiple of ¢ with n,m € Z. Then we will prove that
the dynamical system generated by F| restricted to this set, is conjugated to an affine
discrete dynamical system generated by a map h : Zy; — Zyps, where h(i) =i + u(c, «),
for some u(c, @) € Zps that we also determine explicitly in this paper, see Theorems
and [C|] Notice that, geometrically, F' acts as a rotation among the beads of any necklace.
A similar inter-tile dynamics’ description in the context of dual polygonal billiards can
be found in [I7], and also in the context of piecewise linear maps [I4, Theorem 1 and

Lemma 11].

Due to the above conjugation, the dynamics on the interior of each level set can be
completely understood, see Theorems [A] [B] and [C] Roughly speaking, for each map
and for each necklace (set of tiles with the same energy level), there exists a certain
number k € {M, M/2} n N, that depends (explicitly) on the energy level, so that each
tile is invariant by F*. Furthermore, on each tile, F* is a rotation of order p around
the center of the tile, where p € {2,4} when a = 7/2, or p € {3,6} when « € {7/3,27/3}

and it is determined explicitly by the energy level. As a consequence, on each tile there



is a k-periodic point (the center) and the rest of points are kp-periodic. The dynamics
in the necklaces is, therefore, a discrete version of an epicyclic motion around a discrete
deferent which is the locus of the centers of the tiles, [21], p. 123].

As we will see, the dynamics on the boundaries of the tiles (edges and vertices) requires

a little bit more elaborated description.

(c) As a consequence of the above results and the study of the dynamics on the boundary of
the level sets, for each map, we easily characterize the period of every point in terms of
the value of its associate first integral and obtain the global dynamics of the map. For
instance in Proposition [I| we present our results in an algorithmic way when o = 7/2.

In particular, the set of periods of the maps are presented.

2 Preliminaries and main results

The families of maps F and G given in and , respectively, are linearly conjugated

because

B ‘ 1 —cos(a)
F(x7y): (Q 1G(Q(xay)t)) y where Q: . .
0 sin(«)
In this paper we will, therefore, work with the above normalized one-parameter family

of maps F. Notice that each map F' is bijective with inverse

B cos(a) —sin(a) x sign(sin () z + cos (a) y)
F1 T,Y) = .
(9) ( sin(o)  cos(«) ) ( y ) " ( 0 )

Notice also that F' is discontinuous in the set LCy = {(z,0) : x € R}. We will consider
the critical lines LC_; = {(z,y) such that F(z,y) € LCy}, and also the critical set F =
Uieny LCO—; formed by all the preimages of the critical line LCj, where we use the notation
introduced by Mira et al. in [I8] (see also [I, 4]). We call the open set U = R?*\F, the
zero-free set because none of the orbits starting at point in U/ touches the discontinuity line
LCy, where the second coordinate of the points is zero.

Regarding the above conjugation, of course it is only defined in the case sin(a) # 0
which corresponds with the cases p # 2. In the case a = 0 (resp. a = 7) the map F' (resp.
F?) has trivial dynamics of translation type, and do not correspond to the initial family G
with p = +2.

For each « € {m/2,27/3,7/3} we introduce some specific notations and also state our
main results: Theorems [A] [B] and [C| respectively. Each one of them will be proved in

a different section. The results in these theorems have the following structure: in (i) we



characterize the geometry of the critical set; in (ii) we state the existence of a first integral
in the non-critical set and we characterize the global dynamics in this set proving that is
conjugated with the composition of two rotations; in (iii) we establish the dynamics in the
critical set; in (iv) we characterize the set of periods of the maps.

While statements (iv) are known in the literature, the geometric description given in

statements (i)—(iii) is, as far as we know, novel.

2.1 The case a = /2

When a = 7/2, the map F is the one in with p = 0 and was studied in [§]. Consider
Fr/2 the grid formed by the straight lines x = k and y = ¢, with k, £ € Z. This grid defines
the square Euclidean regular tiling [I5] [16], also named quadrile, see Figure |1} Each (open)
tile is denoted by

Tie={(x,y); such that k <z <k+1 and { <y < ¢+ 1}.

The centers of each of these tiles are denoted by py o = (k + 1/2,£ + 1/2) . We also introduce
the set

u7r/2 = U Tk,é = RQ\fw/Qa
(k,0)eZ2

and the function
Vaja(@,y) = max (|[E(z) + E(y) + 1| — 1, [E(z) — E(y)|) , (3)

where E(z) = |z| is the floor function of z € R that recall gives as output the greatest
integer less than or equal to 2. We also define Vi = V; 5(pk,¢) and denote No = N u {0}.
We prove:

Theorem A. Consider the discrete dynamical system (DDS) generated by the map F' given
in with a = w/2, F(x,y) = (y, —x + sign(y)). Then:

(i) Its critical set is F = Fr .

(i) The function V =V, is a first integral of F' on the free-zero set U = Uy 5. Each level
set {V(z,y) = ¢} nU, with c € Ny, is a necklace formed by 4c + 2 squares, see Figure
. If we identify each square with a point (for instance the center), the DDS restricted
to this set is conjugated with the DDS generated by the map h : Zycro — Zict2,
h(i) = i+c. As a consequence, when c is odd (resp. even), each square in this level set
is invariant by F4t2 (resp. F2*1) and restricted to this square, F4**? (resp. F?¢*1)
is a rotation of order 2 (resp. 4), around the center of the tile. In particular, all points

but the center in each of these tiles have period 8c + 4.



(iii) All orbits with initial condition on F are (8n + 4)-periodic for some n € Ny, see

Theorem [1(} for more details.

(iv) The map F is pointwise periodic. Furthermore, its set of periods is

Per(F) = {4n +1; 8n +4; and 8n + 6 for all n € No}.

6
(10,217 9,381 | 18,171 | 17,301 | 16,131 | 15,221 | 16,131 | (7. 301 | 8, 171 | 19,387 |(10, 217
19,381 | 18,171 | (7,301 | 16,131 | 15,221 | 1491 | 15,221 | 16,131 | (7,301 | (8,171 | 19, 38]

4
[8,17] | [7,30] | [6,13] | [5,22] | [4,9] | [3,14] | [49] | [5,22] | [6,13] | [7,30] | [8,17]
[7,307 | 6,137 | [5,22] | [4,91 | [3,141 | 12,51 | (3,141 | [4,91 | [5,22] | [6,13] | [7,30]

2
16,131 | 15,221 | 1491 | 3. 141 | 12,51 | r.61 | 1251 | 13,141 | 14,91 | 15,221 | 16, 13
[5,22] [4,9] [3, 14] [2,5] [1, 6] [0, 1] [1, 6] [2,5] [3, 14] [4,9] [5,22]

0
4,91 [ 3,141 251 | 161 | to.17 | .61 | 1251 | 3. 141 | (491 | 15,221 | 16,131
[5,22] | [4,9] | [3,14] | [2,5] | [L,6] | [2,5] | (3,14] | [4,9] | [5.22] | [6,13] | [7,30]

-2
[6,131 | 5,221 | [4,91 | 13,141 | 12,51 | I3,141 | [49] | [5,22]1 ] [6,13] | 7,307 | [8,17]
17,301 | 16,131 | 15,221 | 4,91 | (3,147 | 14,91 | 15,221 | 16,131 | (7,301 | 18,171 | 19, 38]

-4
[8,17]1 | [7,30] | [6, 13] | [5, 22] [4,9] [5,22] | [6,13] | [7,30] | [8,17]1 | [9,38] |[10,21]

-4 -2 0 2 4 6

Figure 1: Level sets of the first integral V' of F' for o = 7/2, given in (3]). In each tile T} g,
the level Vj , and the period of the center py ¢ are indicated, between brackets. The other
points in the tile have period 8V}, o + 4.

Item (iv) was already proved in [§]. All the geometric description of the dynamics of
F given in the other items is new.
Observe that the statement (ii) in the above result can be formalized in the following

way: the dynamics of F' on each necklace {V = ¢} nU with ¢ € Ny, is conjugate with the



dynamics of the map
Qi Lger2 X Lg —>  Lycya X Lyg
(,7) — (i+c¢j+1)
where ¢ = 2 if ¢ is odd, and ¢ = 4 if ¢ is even. This map can be seen as the product of
two finite order rotations, its first component gives the dynamics on the discrete deferent
formed by the set of centers of tiles, and the second component gives the dynamics on a
epicycle. A similar situation is described in statements (ii) of Theorems [B|and
Also notice that a simple check shows that the function V' is not a first integral of F' on
the whole plane, since the relation V(F) = V is not satisfied for some points in F = R2\U.
As a consequence of the above theorem we can easily give a simple algorithm to know the
period of each orbit in terms of its initial condition. Recall that given a point (x,7) € R?
k = E(z), £ = E(y) and Vi s = V;/2(pr,e). For the forthcoming cases a € {27/3,7/3}, from
our results a more complicated algorithm could be obtained, but for the sake of brevity, we
do not detail it.

Proposition 1. Any point (z,y) € R? is a p-periodic point of F, where:

(a) When = ¢ Z and y ¢ 7 and, moreover, either x — k # 1/2 or y — € # 1/2, then
p=8Vis+2 Whenax—k=1/2 andy—{ =1/2, then p = 2V}, o+ 1 if Vi 4 is even, and
p= 4ijg +2if Vk,g s odd.

(b) When x € Z and y ¢ Z, if k is even, p = 8Vy, o+ 4 and if k is odd, p = 8Vj,_1 ¢ + 4.
(¢) When x ¢ Z and y € Z, if £ is even, p = 8Vy, + 4 and if £ is odd, p = 8V}, o1 + 4.
(d) If x € Z and y € Z, then:

(i) When k is even, p = 8Vj ¢+ 4 if £ is even, and p = 8V}, 1 + 4 if £ is odd.
(i) When k is odd, p = 8Vi_1 ¢ +4 if £ is even, and p = 8Vi_1 ¢—1 + 4 if £ is odd.

The statement (d) in the above result is a consequence of Theorem To obtain the
result we will identify some tiles, that we will call perfect squares, such that their boundaries
(including their edges and all the vertices in F) avoid the discontinuity effects and, therefore,
the points on the boundary of such a tile have the same periodic behavior as the interior
points, except their centers. To study the periodicity in the rest of the edges (without
vertices) we will associate them with an appropriate tile, so that the points in the edge

follow the periodic behavior of the interior points. See Section for more details.



2.2 The case a = 27/3

In this case, the map F' in is conjugate with the map G in with p = 1, which was
studied in [10].

We define F5, /3 as the grid formed by the straight lines y = V3(z — 2k), y = /3¢ and
y = —/3(x —2m — 1), with k,£,m € Z and call Usrjs = R*\For5. Notice that Up, s is
the (open) trihexagonal Euclidean uniform tiling (the tessellation 3.6.3.6 in the notation
of [16]), see Figure . In fact, each tile in Uy, /3 is defined by

Tiom = {(z,y), such that v3(z — 2k —2) <y < /3(z — 2k), V30 <y <3+ 1),
and —V3(z —2m+1) <y < —V3(z—2m—1)},

with me {k+ €, k+ 0+ 1,k + £+ 2}, where k = B(z,y), { = C(y) and m = D(x,y), being
B(z,y) = E ((3:r - \/gy)/6) ,Cly) =E (\/53//3) and D(z,y) = E ((395 + 3y + 3)/6) .
Moreover,

e The tile T} ¢ k+¢+1 is a regular hexagon and its geometric center (simply center, from
now on) is the point py, = (2k + € + 3/2,V/3(€ + 1/2)) ;

e The tiles T}, ¢ j4¢ and T}, ¢ p4o42 are equilateral triangles whose respective centers are
Qre = (2k + 0+ 1/2,4/3(€ +1/6)) and rp e = (2k + £+ 5/2,/3(¢ + 5/6)) ;

and the adherence of the union of the three tiles is a parallelogram whose sides are y =
V30, y =3 +1), y=+3(x—2k) and y = v/3(x — 2k — 2), see Figurelﬂ and Lemma
for more details. Finally, we introduce the function

Vor3(x,y) = max (|B(z,y) — C(y) + D(z,y)|,
|B(x,y) + C(y) + D(x,y) + 1| = 1, |=-B(x,y) + C(y) + D(x,y)[). (4)

Observe that its level sets are discrete and Image(V5, /3) = Np. Clearly, V5, /3 is constant on

each tile Ty ¢ ,,, and we denote its value as
Vigm =max ([k =L+ m|, |[k+L+m+1|—-1,|—k+L+m]). (5)

Theorem B. Consider the discrete dynamical system generated by the map F given in
with o = 2w /3. Then:

(i) Its critical set is F = For3.

(i) The function V. = Vo3 is a first integral of F' on the free-zero set U = Upr3 =
R\ For /3.



(a) Each level set {V(xz,y) = c}, with ¢ € 2Ny even, in U is a necklace formed by
6¢c+ 2 triangles, see Figure @ If we identify each triangle with a point (the center,
for instance), the DDS restricted to this set is conjugated with the DDS generated
by the map h : Zecro — Zecr2, h(i) = i + 2c. As a consequence, each tile in this
level set is invariant by F3¢*1 and restricted to this triangle, F3°*! is a rotation
of order 3 around the center of the tile. In particular, all points but the center in

each of these tiles have period 9c + 3.

(b) Each level set {V(x,y) = ¢}, with ¢ € 2Ng + 1 odd, in U is a necklace formed by
3c+ 1 hexagons, see Figure[d If we identify each hexagon with a point, the DDS
restricted to this set is conjugated with the DDS generated by the map h : Z3c11 —
Z3c+1, h(i) =i+ c. As a consequence, each tile in this level set is invariant by
F3¢tL and restricted to this hexzagon, F3T! is a rotation of order 3 around the
center of the tile. In particular, all points but the center in each of these tiles have

period 9c + 3.
(1ii) All orbits with initial condition on F are periodic with period 9n + 3 for some n € Ny.

(iv) The map F' is pointwise periodic. Furthermore, its set of periods is

Per(F) = {3n+1 and 9n + 3 for all n € Np} .

Similarly to Theorem [A] item (iv) was already known, see [10]. Again, all the geometric
description of the dynamics of F' given in the other items is new.

From statement (ii), on each necklace, F' is conjugate with the product of rotations
© 1 Lgetra X L O given by ¢(i,5) = (i + 2¢,7 + 1) when ¢ is even, and ¢ : Zgcy1 X Z3 O
given by ¢(i,7) = (i + ¢,j + 1) when ¢ is odd.

10
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1

N0, 3 )25 ,25 ,25 ,25 ,25 )25,
[9, 28] [7,22] [7,22] [7,22] [7,22] [7,22] [9, 28]
19, 28] [7,22] (5, 16] [5,16] (5, 16] [5,16] (7,22]
4
(7, 22]><[5 16]><[3 10] 3, 10]><[3 10] (s, 16]><[7 22]
A 22]><[5 16] 13, 10]><[1 4] >< [1,4] ><[3 10] (5, 16]><
0 b :
><[5 16]><[3 101><[1 4] >< [1,4] ><[3 10] [s, 16]><[7 22]
_2_ 5
[7,22] [5,16] [3,10] [3,10] [3,10] [5,16] [7,22]
07, 22]><[5 16]><[5 16] 5, 16]><[5 16]><[7 22]><[9 28]
-6 19, 28]><[7 22]><[7 22] 17, 22]><[7 22]

Figure 2: Level sets of the first integral V' given in . In each tile the level and the period

2

of the center are indicated respectively between brackets.

2.3 The case o = 7/3

In this last case, the map F in is conjugate with the map G in with p = —1, which
was studied in [7].

We consider F/3 the grid formed by the straight lines y = V3(x — 2k —1); y = /3¢
and y = —/3(x — 2m), with k, £, m € Z that, again, form a trihexagonal Euclidean uniform
tiling which is a translation of the one that appeared in the previous case o = 27/3, see
Figure [3l The interior of each tile is defined by

Tiom = {(2,y), such that V3(z — 2k —1) <y <+3(z -2k + 1),V3l <y </3({+ 1),
and —V/3(z —2m) <y < —V3(z —2m — 2)}.

As before, we call U, /3 the complement of this grid. Any point (z,y) € Uy /3 belongs

11



(only) to the tile T} ¢, with k = B(x,y), £ = C(y) and m = D(x,y), where
B(z,y) = B (32— V3y +3)/6) , C(y) = E (V3y/3) and D(z,y) = E (32 + V3y)/6)
and now it can be seen that m=k+£f—1orm=k+ ¢ or m =k + £+ 1. In this case,

e The tile T} ¢ ;1¢ is a regular hexagon and its center is at the point

Phe = <2k +0+1/2,4/30+ \/5/2) .

e The tiles Tj ¢ r1¢—1 and Ty ¢ x4+041 are equilateral triangles whose centers are g, =
(2k + € —1/2,4/30 + v/3/6) and 15,0 = (2k + £ + 3/2,/3 + 5/3/6) , respectively.

We also introduce the following function

Vﬂ'/3(x7y> = max ( ‘B(xay> - C(y) + D(l’,y)’ ) ‘B(I‘,y) + C(y) + D(xvy) + 1’ -1
|=B(@,y) + C(y) + D(w,y) + 1| = 1). (6)

Observe that by construction, it is constant on each tile T}, o ,,,. Hence we can associate to

each point in this tile, the value
Vigm =max ([k—L+m|,|k+l+m+1|—-1,|—k+l+m+1—1).

Our results for this case are collected in the next theorem. We remark that the proof of

item (7i7) will be the more complicated part of the paper.

Theorem C. Consider the discrete dynamical system generated by the map F given in
with o = w/3. Then:

(i) Its critical set is F = Fr/3.
(i) The function V. = V3 is a first integral of F' on the free-zero setU = Uy 3 = Rz\}"ﬂ/g,.

(a) Each level set {V(xz,y) = c}, with ¢ € 2Ny even, in U is a necklace formed by
3c + 2 hexagons, see Figure [ If we identify each one of them with a point,
the DDS restricted to this set is conjugated with the DDS generated by the map
h:Zscra — Zsctr2, h(i) = i+c/2. As a consequence, when ¢ = 4j (resp. ¢ = 4j+2),
each tile in this level set is invariant by F3¢/>*1 (resp. F3*2) and restricted to
this hexagon, F3¢/>*1 (resp. F32) is a rotation of order 6 (resp. 3) around the
center of the tile. In particular, all points but the center in each of these tiles have

period 9c + 6.
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(b) Each level set {V(x,y) = c}, with ¢ € 2Ny + 1 odd, in U is a necklace formed
by 6¢ + 4 triangles, see Figure [1. If we identify each one of them with a point,
the DDS restricted to this set is conjugated with the DDS generated by the map
h: Zeera — Zgeta, h(i) = i + c. As a consequence, each tile in this level set is
invariant by F*% and restricted to this triangle, F5t is a rotation of order 3
around the center of the tile. In particular, all points but the center in each of

these tiles have period 18c + 12.

(iii) All orbits with initial condition on F are periodic with periods 36n+6, 18n+9, 18n+15
or 108n + 72, for some n € Ny, for more details see Theorem [23

(iv) The map F' is pointwise periodic. Furthermore, the set of periods is

Per(F) ={6n + 1; 12n + 8; 12n + 10; 18n + 9; 18n + 15; 36n + 6; 36n + 24; 36n + 30
and 108n + 72 for all n € No} .

Once more, although item (iv) is known, see [7], all the geometric description of the
dynamics of F' given in the other items is new. From the above result, on each necklace,
F' is conjugate with the map ¢ : Zsc42 X Zg O given by ¢(7,7) = (i + ¢/2,j + 1), where
g = 6 when ¢ = 0 mod (4), and ¢ = 3 when ¢ = 2 mod (4); or ¢ : Zgera X Z3 O where
©(i,7) = (i+¢,j + 1), when c is odd.

13
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Figure 3: Level sets of the first integral V' of F' for a = 7/3, given in in @ In each tile the

level and the period of the center are indicated respectively between brackets.

Remark 2. As we have mentioned, in [I4] an infinite number of necklaces of a family of
maps that include the ones studied in this work are characterized. We want to note that
Theorems [AHC| show that for our maps all energy levels are necklaces. In particular, in the
case a = m/2 the necklaces studied in [14] correspond to the energy levels whose centers
have period 4n + 1 (which are those with even energy level). Let us observe that from
Theorem [A| we know that there are other necklaces whose period is 4n + 2 (those with odd
energy level). In the case a = 27/3, the necklaces in [I4] cover all energy levels since all
the necklaces have centers of period 3n + 1. In the case o = 7/3 the necklaces in [14] are
those whose centers have period 6n + 1. Observe that Theorem C guarantees the existence

of much more necklaces.
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2.4 The address of a point

We end this section with the concept of address of a point that will be used in the proof of
Theorems A, B, C.
Recall that every map in the considered one-parameter family F' has discontinuity line

LCy = {y = 0}, so we introduce the sets
H, ={(z,y)eR*:y >0} and H_ = {(z,y) e R* : y < 0},

and we call F, and F_ the map F restricted to Hy and H_ respectively. For any point
(z,y) € R? we define its address A(z,y) as follows:

+, if (‘/L‘ay) € HJr’

—, otherwise.

A(Q?,y) = {

Moreover for every n € N, we call the itinerary of length n of the point (z,y) the sequence

of n symbols
L(z,y) = (A(z,y), A(F(z,y)), ..., A(F" (2, 9)))-
Notice that if I,,(z,y) = (i1,...,4,) then F*(z,y) = F;, o F;
For instance if (z,y) € Hy, F(z,y) € H_ and F?(z,y) € H_, then the length 3 itinerary
of the point is {+, —, —}, and F3(z,y) = F_ o F_ o F (x,y).

o---oFil(x,y).

Lemma 3. Let J,, = (i1,...,in) be a sequence of symbols of length n with i; € {+,—} and
consider the set B(.J,) = {(x,y) € R? such that L, (z,y) = .J,,}. Then B(J,) is convez.

Moreover F™ restricted to B(J,,) is an affine map.

Proof. The proof of the convexity follows easily by induction. If n = 1, B(J,,) is either H,
or H_ both convex sets. Assume that the result holds for sequences of length n — 1 and set

Jp_1 = (i1,...,in—1). Therefore we have

B(Jn) = {(xvy) € B(lnfl) : anl(l,?y) € H'Ln}

Moreover, F"~! restricted to B(J,,_;) is the affine map G = F;,_, o...0 F;,. So we have

B(J,,) = B(J,1) n G~ (Hi,)-

This fact proves that B(J,,) is convex because it is the intersection of two convex sets. This

ends the inductive proof of convexity. Furthermore, F"(x,y) = F;, o o---0Fy(x,y),

in—1

for all (z,y) € B(J,,), showing that F"™ restricted to B(J,,) is an affine map. [}
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3 Proof of Theorem [Al

3.1 Preliminaries

We start by determining the set of tile centers, py ¢, such that V(pys) = ¢ for ¢ € Np.
First, we observe that there are two tiles corresponding to the level set ¢ = 0. These two
tiles contain the two fixed points of F' which are: poo = (1/2,1/2) that belongs to the tile
To,0 = (0,1) x (0,1) and p—1,—1 = (—1/2,—1/2) that belongs to T_; _; = (—1,0) x (—1,0).
It is easy to see that these two tiles are invariant. To describe the rest of level sets,
we denote Q1 = {(z,y) € R? : 2 < 0,y > 0}, Q2 = {(z,y) € R? : = > 0,y > 0},
Qs ={(z,y)eR?:2 >0,y <0}, and Q4 = {(z,y) e R : 2 < 0,y < 0}.

Lemma 4. For each level set {V = ¢} with c € Ny there are 4c+2 centers py ¢. Furthermore,

for each natural number ¢ = 1 we have:

(a) {pre:Vipg=c}n Q1 ={(k+1/2,0+1/2):l =k+ck=—c,—c+1,...,—1}. We
denote by X1, Xo, ..., X, these ¢ centers for k = —c,—c+1,...,—1 respectively. Fvery

one of them lies on the straight line y = x + c.

(0) {pky:Vipg=ctnQo={(k+1/2,0+1/2):l=—k+c,k=0,1,...,c}. We denote by
Xet1, Xeq2, .oy Xocr1 these ¢ + 1 centers for k =0,1,...,c respectively. Every one of
them lies on the straight line y = —xz +c+ 1.

(¢) {pky:Vie=ctnQs={(k+1/2,0+1/2):1l=k—c,k=0,1,...,c—1}. We denote
by Xocto, Xocys, ..., X3cr1 these ¢ centers fork =c—1,c—2,...,0 respectively. Fvery

one of them lies on the straight line y = x — c.

(d) {pre:Vip=ctnQu={(k+1/20+1/2):1l=-k—c—2,k=-1,-2,...,—c—1}.
We denote by Xs3ci2, X3c43,. .., Xacro these ¢ + 1 centers for k = —1,-2,...,—c—1
respectively. Every one of them lies on the straight line y = —x — ¢ — 1.

Proof. In order to prove (a) we begin by considering the points (k + 1/2,k + ¢ + 1/2) with
—c < k < —1. Then Vj 4. = max (|2k + ¢ + 1| — 1, ¢) . The inequality —c < k < —1 implies
—c+1<2k+c+1<c—1,ie |2k+c+ 1] <c—1. Therefore 2k +c+ 1| -1 <c—2
and consequently Vj 4. = c. Clearly, k+1/2 < 0 and k+ ¢+ 1/2 > 0, and hence the points
belong to Q;.

To see the other inclusion take (k + 1/2,¢ + 1/2) € Q1 with Vj ¢, = ¢. We have to prove
that £ = k 4+ cand —c < k < —1. We know that k£ < 0, £ > 0 which easily implies that
¢>k.Hence [l —k|=0—Fk,and { + k <l < {—k. Then

Vig=max([k+L+1]—1,|k—¥¢|) =max(|[k+ ¢+ 1| -1, —Fk).
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Consider the following two cases:

(i) Assume £+k+1>0. Then Vi y = max({ +k,l—k) = £ —k because L+ k < { < {—E.
It implies that ¢ — k = ¢, that is £ = k + ¢. Furthermore, since £ = k + c and ¢ = 0 we
get k = —c.

(ii) Assume {+k+1 < 0. Then Vs = max(—¢—k—2,0—k). Since ({—k)—(—(—k—2) =
20+2=2((+1)and £+ 1> 0 also £ = k + ¢ and the result follows as above.

The proof of statements (b), (¢) and (d) follows using the same easy arguments. |

In Figure E| we show the points py ¢ in the levels ¢ = 2 and ¢ = 3, respectively.

3 4
%
2 X
b} . 5
3
b, X, 2 5
1 4
1 A
X X,
1 5 1
0 0
X,
XlO X6 -1 Y 8
14
,1 X
X13 ’
X9 X7 )
-9 10
3 Xlz
X X
_34 8 4 11
-2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 4

Figure 4: The centers in the levels ¢ = 2 and ¢ = 3.

3.2 Proof of items (i) and (ii) of Theorem |[A; dynamics on the zero-free

set

Recall that in this case, F(x,y) = (y, —z +sign(y)), Fi(z,y) = (y,—x + 1) and F_(z,y) =
(y,—x — 1). We will split our proof of items (i) and (i) of Theorem |A|in several lemmas
and propositions.

We start facing the dynamics of the center points of the tiles, or in other words, the
dynamics among the beads of each necklace, that as we will prove will be invariant under

the map F.

Lemma 5. Fized c € N, consider the centers X1, Xa,..., Xqcro which belong to the level
set {V =c}. Then
F(X;) = X; with j =i+ ¢ mod (4c + 2). (7)
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Proof. Consider 7 = 1,2,...,¢, then X; € Q;. From Lemma [4) we know that every one of
these centers is (k + 1/2,k + ¢ + 1/2) with k = —¢,—c+ 1, ..., —1. Since they belong to H
we have

FXi)=Fy(k+1/2k+c+1/2)=(k+c+1/2,-k+1/2).

Denoting k = k + ¢ we see that (k+c+1/2,—k+1/2) = (k+1/2,—k + ¢ + 1/2) which
satisfies the condition (b) of the Lemma {4, When & runs from —c to —1 (corresponding
with the points X1, X, ..., X.), then k runs from 0 to ¢ — 1 (corresponding with the points
Xet1, Xeto, ..., Xoc). Hence we have proved fori=1,2,...,c

If i =c+1then X.y1 = (1/2,¢+1/2), hence F(Xc41) = F1(Xey1) = (c+1/2,1/2) =

Xocy1.

The proof for i = c+2,c¢+3,...,2c+ 1 is done in a similar way, and also for the rest of
values of i = 2¢+2,...,4c+ 2, but taking into account that in these cases F(X;) = F_(Xj;).
| |

As a consequence of Lemma, [b| the center points of a level set form an invariant set and
we can prove that the function V;; defined in is a first integral of F.

Proof of the first part of item (ii) of Theorem . We start proving that the function V =
V2 defined in is a first integral of F' on the set U = Uy 5.

Consider a point (z,y) € U, then (x,y) € Tj, ¢ for a certain k, ¢ and by definition we know
that V(z,y) = V(pre). From Lemmawe know that F'(pge) = pg g with V(pre) = V(pg o)
On the other hand, since each tile is entirely contained in H\{y = 0} or in H_, F(T} ) =
F (T ) or F(T ) = F_(T,). Since F; and F_ are rotations (thus isometries) we get that
F sends tiles to tiles. In particular F(Ty ) = T, ; and hence V(x,y) = V(pre) = V(pz) =

V(F(z,y)). |

Now we are able to describe the dynamics of the center points and, in particular, to

prove that they are periodic.

Proposition 6. Every center py ¢ is a periodic point of F. Furthermore, setting Vi o = ¢ we

have that when c is even (resp. odd), then py, has period 2c + 1 (resp. 4c +2).

Proof. Fix a level {V = ¢} with ¢ € N. From Lemma {4 we know that on {V = ¢} there are
4c + 2 different centers. From Lemma [5, we know that F' sends centers to centers, that is,
the set {X1, Xo,..., Xyc+1} is invariant by F. Hence, given a center X;, of the previous set
we can study the sequence X;, SN X, £, Xy L, ... Since the orbit of every center has
a finite number of elements and, since F' is a bijective map and therefore the orbit of Xj,
can not be preperiodic, we get that X;, = X;, for a certain p, and therefore it is periodic.

Clearly the period must be less or equal to 4c + 2.
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From Lemma |5, the map F restricted to {Xi, Xo,..., X4c41} is conjugate to the map
h : Zycra —> Zycro defined by h(i) = i + ¢. Then

FP(X;))=X,eh(i)=i<i+cp=i mod (4c+ 2) < Ine Ns.t. cp =n(dc + 2).

Assume that ¢ = 2k is an even number. Then 2kp = n(8k + 2) < kp = n(dk + 1). It
implies that p is a multiple of 4k + 1 = 2¢ + 1. Since p < 4¢ + 2 we get that p = 2¢+ 1 or
p = 4c+ 2. But we observe that the orbit of X; only contains some points X; with j having
the same parity of i. Hence, we get two different periodic orbits, each one of them of period
2c¢ + 1.

Assume that ¢ = 2k + 1 is an odd number. Then (2k + 1)p = n(8k + 6). It implies that p
is a multiple of 8k + 6 = 4¢ + 2. Hence p = 4c¢ + 2.

We introduce now the concept of itinerary map associated with a center.

Definition 7. Fiz ¢ € N and consider one of the centers of the tiles X; for some j =

1,2,...,4c+2, with V(X;) = c. Since X is p-periodic with p = 2c+1 or p = 4c+2 depending

on whether c is even or it is odd, if we consider its itinerary of length p: I, = (i1, 12, ... ,ip)
we have that Fp(Xj) = Fj,0F, o 0F,(X;) = X;. We denote this composition by
Ij=F, ok, , <o Iy, and we call it the itinerary map associated with X;.

For instance, if ¢ = 2 then the center X; is 5-periodic and its orbit is
F. F F F_ F_
X; =5 X3 —5 X5 —5 X7 — X9 — X3

This can be easily obtained using the formula in Lemma [5| (see also Figure . Hence
I;(X1) = (+,+,+,—,—) and its itinerary map is I = F2 o F3.
When ¢ = 3, then using again formula @ in Lemma 5| (see again Figure [4)) we get:

X125 X 5 X7 5 X0 5 Xag 5 Xy 5 X 5 Xy
F_ F_ F_
xS xus x5 x5 x5 x5S X,
and hence the itinerary map of Xy is I; = F2 o FJQr oF3o Ff oF2%o Fi

Lemma 8. Fized c € N, consider the centers X1, Xo, ..., X4cr2 lying in the level set {V =
cy. Then for all j = 1,2,...,4c + 2, the itinerary map I; is a rotation centered at X; of
order 4 if ¢ is even (angle 7w/2), and of order 2 if ¢ is odd (angle 7). In particular X; is an
isolated fized point of I;.

19



Proof. We already know that I;(X;) = X;. We write

— si 0 1
F(z,y)=A- © — sign(y) where A = R,_)p = .
Y / -1 0

If ¢ = 2k, then by using Proposition |§| we have that X is (2c+ 1)-periodic, hence, using
also that A% = Id we obtain

Ij(z,y) = A2+ (‘”) + vy = AL (‘”) tuj=A ("”) +vj
Yy Y Y

for a certain v; € R2. Hence I ;j is a rotation of order 4 centered at X;. Since it has a unique
fixed point (as Rank(A —Id) = 2) then the center of this rotation is Xj.
If ¢ = 2k + 1, then X has period 4c + 2, hence using that A? = R, = —Id, we have:

Ij(x,y) = A4c+2 <Zj> +w; = A8k+6 (z) +w; = A2 (;) + wj,

for a certain w; € R2. By using the same argument as before, I; is a rotation of order 2

centered at X;. [ |

To end the technical results we establish the next lemma which ensures the all the points

in a tile have the same itinerary of arbitrary length:

Lemma 9. All the points in a given tile T}y have the same itinerary of length n € N for

every n € N.

Proof. Fix n € N, and suppose that there exist two points p and ¢ in T}, with different
itinerary of length n and let j < n—1 the first time that A(F7(p)) # A(F’(q)). That is p and
q have the same itinerary of length j but F7(p) and F7(q) have different addresses. From
Lemma [3| we have that all the points in the segment pg have the same itinerary of length
j and therefore F restricted to pq is continuous. Since F7(p) and F’(q) have different
addresses it follows that there exists a point r € pg such that F7(r) € LCy. A contradiction

because since T}, ¢ is also convex, r € T} , and must be zero-free. [ |

We can now prove item (i), that is, the zero-free points are exactly the points U = Uy s,
which belong to the tiles.

Proof of item (i) of Theorem . We have already noticed that the zero-free set is included
in Uy /5. Now we are going to see that the boundaries of the tiles are formed by points which
are not zero-free. Consider a point p = (k,y) where ¢ < y < ¢ + 1 for a certain k,? € Z.

Then p belongs to the right-boundary of T},_; o and to the left boundary of T}, . Consider
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also the segment 7s where r = (k—1/2,y) and s = (k+1/2,y). From Lemmal9] the itinerary
of any length of 7 coincides with the itinerary of the same length of pj_1; and the itinerary
of any length of s coincides with the corresponding itinerary of py ;. Since py_1,; and py; have
different infinite itineraries, there exists j such that I,(r) = L;(s) but A(F’(r)) # A(F/(s).
Now from Lemma [3]it follows that there exists ¢ € 7s such that F7(t) € LCpy. Clearly this
point must be p.

If we consider a point which belongs to a horizontal boundary of two consecutive tiles,
then its iterate belongs to a vertical boundary of two consecutive tiles and then we can

apply the above result. |

Continuation of the proof of item (ii) of Theorem . Consider the tile T} . Let X; be its
center. By Proposition [f] it is a p-periodic point, and by Lemma [J] all the points in the tile
have the same itinerary of length p, hence FP ’Tk,z = I;. Moreover, by Lemma |8, on each
tile I; is a rotation centered at X; of the order established in the statement.

Assume that Vj, , = ¢ with ¢ an even number. We have already proved that each center
X in this level set has period 2c + 1 (see Proposition @ The points in the orbit of X; are
points X; with ¢ having the same parity of j (see Lemma [5)). Hence we have two orbits,
the first one formed by X1, X3, ..., X4c+1 and the second one formed by Xo, X4, ..., X4cto,
and therefore we know the period of the centers of the tiles.

The period of all the points of the tiles T}, , but the centers is a consequence that we

have proved that FP?|;, =1, ,, where I,

. 18 the itinerary map of py ¢, which is a rotation

of order 4, see again Lemma

When V}, o = ¢ with ¢ an odd number the proof is similar. |

3.3 Proof of item (iii) of Theorem [Al dynamics on the non zero-free set

Following the notation introduced in Lemma [ for any fixed energy level ¢ of V, there are
4c + 2 tiles with centers X1, Xo,..., X4c42. Let us denote T; to the tile with center Xj;.
Also, for a fixed energy level ¢, we denote by @); the closed square formed by the tile T
and its boundary, that is Q; = T} U JT}.

For each energy level ¢ even, we will call the squares Q1,Qs,...,Q4c+1 perfect squares
because, as we will see, these closed squares evolve avoiding the discontinuity effects of F.

Clearly every edge of a square is also an edge of the consecutive square. The perfect
squares are positioned as Figure [5] displays, the perfect squares being the red ones.

From the above figure we see that it is enough to prove the periodicity of the points on
the boundary of the perfect squares and the periodicity of the points on the boundary on

the squares of odd levels which are not in the boundary of the perfect squares.
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Figure 5: Position of the perfect squares in red. The green tiles correspond to odd energy
levels and the blue ones correspond to the even energy levels such that their corresponding
squares are not perfect. The borders and the vertices are highlighted with the color of the

tile having the same itinerary map. The level set {V = ¢} is indicated in each square.

Our result also will ensure that the points of the border (including the vertices) of any
perfect square are periodic with the same period as the points of the tile corresponding
to the perfect square (excluding the center). Observe that any vertex point in F belongs
uniquely to a perfect square. Hence the result will characterize the dynamics of all the
vertices. The rest of the non-zero points are periodic with the same period as the points of
the adjacent tile (excluding the center) with odd energy levels. See again Figure

Item (i7i) of Theorem El is a straightforward consequence of the next theorem.
Theorem 10. Consider the level set V = c.

(a) If cis an even number, then every point on the boundary of the squares Q1,Qs3, . . ., Q4ct+1

is a (8¢ + 4)-periodic point.

(b) If ¢ is an odd number, then when j is odd (resp. even) the two horizontal (resp. vertical)
edges of Qj, without the vertices, are formed by (8c + 4)-periodic points.
Prior to proving the result we stress the following fact:

Remark 11. On every point in H; the map F = F,. Hence, for all j = 1,2,...,2¢ + 1,
we have that F(Q;) = Fi(Q;) = Q; with i = j + ¢ mod 4¢ + 2 (see Lemmas [5] and [9).
Analogously, for i = 2c +3,...,4c+ 1 we have F(Q;) = F_(Q;) = Q; with i = j + ¢ mod
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4c + 2, since these squares are contained in H_. Observe, however, that the situation for
the squares Qocro and Qacrq is quite different because on the top edge of these two squares
F = Fy while in the rest of the square F = F_. In Figure [0} we display the position of
the tiles corresponding with the centers X1, Xoct1, Xocyro and Xycio with respect to the

discontinuity line LCj.

XZc—I—l

<
I
(e}

4c+2 2¢+2

Figure 6: Position of the squares Q1, Q2ct1, Q2c+2 and Q4ct2, together with its centers, for

any level set V = c.

Proof of Theorem[I1(} Consider the squares Q1, @3, ..., Quc+1 for c even, that is, the perfect
squares on this level. The only squares in this particular collection ); with j odd which
intersect y = 0 are @1 and Q2.+1. But from Remark [11| we know that F(Q;) = Qj with
k = j+ ¢ mod 4c + 2 for all j odd, including the cases with j = 1 and j = 2¢+ 1. In
particular this implies that this set of squares is invariant. In consequence, by continuity,
the points in the boundary of (); inherit the dynamics of the points in 7\ X; and, therefore,
they are periodic with period 4(2¢ + 1). Furthermore, F' 26“‘ Q is a rotation of order 4.

Now assume that ¢ is odd. We notice that the squares Q1,Qs3, ..., Qict+1 (resp. Q2, Q4,

..y Quact2) share every vertical (resp. horizontal) edge with an edge of a perfect square,

which we already know is periodic. Hence we need to follow the dynamics of their horizontal
(resp. vertical) edges or, in other words, the dynamics of éj = Q;\{ its vertical edges,
including the vertices} (resp. @j = @Q;\{its horizontal edges, including the vertices}).

Since now X1, Xo,..., X4c12 belong to the same periodic orbit, the set of corresponding
squares contains @gc+2 and @4C+2. The result will be proved if we can ensure the invariance
of the set of squares @j. In order to do this, we must ensure that the edges we are studying
are not pre-images of the top edges of the squares Q9.2 and Q4c2. So, first, we study for
which values of p, FP(X;) = Xocq2 or FP(X;) = Xycto.

e From Lemma |5 we have FP(X;) = Xocqo if and only if j + pc = 2¢ + 2 mod 4c + 2,
that is if there exists n € N such that j + pc = 2¢ + 2 + n(4c + 2). Hence j + pc is an

even number and since ¢ is odd we get that p and j have the same parity.
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e Analogously, FP(X;) = X4c42 if and only if j + pc = 0 mod 4c + 2, which means that
there exists n € N such that j + pc = n(4c + 2). As before p and j have the same
parity.

Assume that j is odd, and let the p-iterate of @); be the first one that reaches Q.42 (or
Quc+2). Since it is the first time that the images of @); intersect {y = 0}, we can still apply
the arguments in the proof of Lemma and therefore F?|q; is an even-order rotation. Thus,
since p is also odd, the horizontal edges of ); are mapped via F? to the vertical edges of
Q2c+2 (or Q4cr2). Therefore Fp(@j) = @26% (or @4C+2). It implies that for all j odd,
F(Q)) = Qje-

The same arguments work when j is even: p is even too and F? sends the vertical edges
of Q; to the vertical edges of Qacr2 (0r Qact2). So also F(Cj]) = @j+c for every j even.

The condition F (@]) = @j+c implies that, by continuity, the points in the edges under
study of @; inherit the dynamics of the points in 7;\X;, which are periodic with period
2(4c+1). [}

Consider the square Q¢ = T ¢ U 0T}, and set ¢ = Vi ; then, we will say that the
square has odd label (resp. even label) if Q¢ = @Q; for an odd value j (resp. even) in the
order introduced in Lemma[d] Observe that, in particular, with the proof of Theorem [10] we

also have proved the following result that gives the dynamics of F' on all the points in F.
Corollary 12. Consider the square Qi ¢ = Ty ¢ U 0T} ¢, and set ¢ = Vi, then:

(a) If c is even, and the square has odd label then Qy ¢ is invariant under the action of the
map F?*1 and FQC“’QM is a rotation of order 4 centered at pye; as a consequence

the edges of these Q¢ are formed by 4(2c + 1)—periodic points.

(b) If c is odd, and the square has odd label (resp. even label) then the horizontal (resp.
vertical) edges (excluding the vertices) are invariant under the action of the map F4<+2
which is also a rotation of order 2 centered at py ¢ on that edges (excluding the vertices);
as a consequence the edges of these squares which are not edges of a perfect square are

formed by 2(4c + 2)—periodic points.

Remember that if the square has even energy level and even label we treat their bound-

aries as being part of the boundary of the adjacent odd-energy level tile.

3.4 Proof of item (iv) of Theorem

The proof simply follows by collecting the results of the previous items.
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4 Proof of Theorem Bl

4.1 Preliminaries

For each tile T}, ¢ ,,,, we start determining m in terms of £ and /.

Lemma 13. Any point (z,y) € U = Usy 3 belongs to a tile Ty, g,y where either, m =k + £
orm=k+0+1orm=k+{+2.

Proof. From the inequalities k < z/2 — v/3y/6 < k+ 1 and £ < v/3y/3 < £ + 1 it follows
that 1/2 +k+ ¢ < x/2 +/3y/6 + 1/2 < k + £ + 5/2. Hence m = E(z/2 + /3y/6 + 1/2) is
eitherm=k+4{, m=k+l+1orm=%k+{+2. ]

In fact, the set of points satisfying k < /2 —+/3y/6 < k+ 1 and £ < v/3y/6 < £ + 1
form a parallelogram whose sides are y = 30,y = V3({ + 1),y = /3(z — 2k) and
y = v/3(z — 2k — 2). From the proof of the above lemma we see that

() m=k+leok+l+1/2<2/2+3y/6+1/2<k+l+1e\V3(—2+2k+20) <y<
V3(—x 42k + 20+ 1)

b)) m=k+l+lesk+l+1<z/2+3y/6+12<k+l+2<V3(—x+2k+20+1) <
Y < V3(—x + 2k + 20+ 3)

() m=k+{+2sk+0+2<z/2+3y/6+1/2<k+l+3 < /3(—x+2k+20+3)<
Y < V3(—x 4 2k + 20 + 4)

Denoting by L1 = {y = V3(—x + 2k +20)}, Lo = {y = V3(—x + 2k + 20 + 1)}, L3 = {y =
V3(—z + 2k +20+3)} and Ly = {y = V/3(—x + 2k + 2¢ + 4)}, we can draw its graphics in
Figure [7}

Figure 7: The tiles T ¢ k¢ U Tho k041 Y T kte+2 When a = 27/3.
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In Figure|7| we can see that the parallelogram has been partitioned into three sets: two
triangles and one hexagon. Thus, we have proved the following lemma, where we use the
notation introduced in Section

Lemma 14. Let T ¢ m be one tile of Upr/z = U.

(a) If m =k + L€ orm =k +{+2, then Ty o is a triangle whose center is either gy or

Tk, respectively.

(b) If m = k+ €+ 1 then Ty ¢, is a hexagon whose center is py .

4.2 Proof of items (i) and (ii): dynamics on the zero-free set

As in the case @ = 7/2 we split the proof of these two items into several lemmas and
propositions. Here there is an added difficulty, there are tiles with hexagonal shape and

others with triangular shape. We study them separately.

4.2.1 Dynamics on the hexagonal tiles. The case m =k + ¢+ 1

From Lemma the tile T} ¢ p4e4+1 is a regular hexagon. Set Vj, for the value of V' on
Thopyo+1- Then Vi g = Vi ppyoi1 = max (|2k + 1[,2|k + £+ 1| — 1,|2¢ + 1|) . The next two
results characterize the set of centroids of the hexagons, that is their number and geometric

locus, for this case.
Lemma 15. Let m =k +(+1 and py = (2k + £ + 3/2,v/3 (L + 1/2)) . Then
(a) V(pre) = c is an odd number.

(b) The set {pxy : Vig = ¢} has 3c + 1 points. In particular there are 3c + 1 hexagons

T 0 k+o+1 @0 this energy level.

(¢) The points py ¢ with Vi, ¢ = c lie in the irregular hexagon determined by the intersection
of the straight lines y = v/3(z + ¢), y = £4/3¢c/2 and y = /3(—x + (1 + ¢)), see Figure
3
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Figure 8: The centers points py ¢ in the level ¢ = 3.

Proof. Since Vi, depends on the signs of 2k + 1, 2/ 4+ 1 and k + ¢ 4 1, we are going to

consider the different cases.

(1)

(4)

Assume that ¥ < 0, I > 0 and Kk + ¢+ 1 < 0. From we have that Vj,, =
max (—2k — 1,20 + 1, —2k — 2¢ — 3) , and from the inequalities (20 +1) — (—2k—1) <0
and (—2k — 20 —3) — (—2k — 1) < 0 we get that V3o = =2k — 1 = c. Hence c is odd,
E=—-1+¢)/2, 0<¢<—-k—-1=(c—1)/2, and the points py; can be written as
pry = (—c+ 0+ 1/2,4/3 (0 +1/2)) with 0 < £ < (¢ — 1)/2. Hence, every py; lies on the
straight line y = v/3(x + ¢) and that there are (c + 1)/2 such points.

Assume that £k < 0,1 > 0 and k+/£+1 > 0. Then, proceeding analogously to the previous
case we get Vo =20+ 1 = c. Hence cis odd, ¢ = (¢ —1)/2 and —(c+1)/2 < k < 0. We
get the points py; = (2k + (¢ + 2)/2,v/3¢/2) with (1 — ¢)/2 < k < —1. These points lie
on the straight line y = v/3¢/2 and there are (c — 1)/2 such points.

Assume that k > 0 and ¢ > 0. Then Vi o = 2k +2( 4+ 1 = ¢ > 0. Hence c is odd, k =
(c—1-20)/2and 0 < £ < (c — 1)/2. We get the points py; = (¢ — £ + 1/2,+/3 (£ + 1/2))
with 0 < £ < (¢ — 1)/2. These points lie on y = v/3(—x + 1 4 ¢) and there are (c + 1)/2

such points.

Assume that £ < 0,k > 0and k+£+1 > 0. Then V;,, = 2k +1 = c. Hence cis odd, k =
(c—1)/2and —(c + 1)/2 < £ < 0. We obtain the points pr; = (¢ + €+ 1/2,4/3 (€ + 1/2))
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with —(c 4+ 1)/2 < ¢ < —1, which lie on y = v/3(z — ¢) and there are (¢ + 1)/2 such

points.

(5) Assume that £ <0,k >0and k+¢+1 < 0. Then V;,y = —2(—1 = c. Hence cis odd, ¢ =
—(c+1)/2 and 0 < k < (c—1)/2. We get the points py; = (2k + (2 — ¢)/2, —/3¢/2)
with 0 < k < (¢ — 3)/2, which lie on y = —/3¢/2 and there are (¢ — 1)/2 such points.

(6) Assume £k < 0 and ¢ < 0. Then k+ ¢+ 1 < 0 and Vo = —2k — 2¢ — 3 = c. Hence
cis odd, k = —¢ — (c+3)/2 with —(¢+3)/2 < ¢ < 0. We get the points py; =
(—c—€—3/2,v/3(0+1/2)) with —(c+1)/2 < £ < —1, which lieon y = —v/3(z+c+1)
and there are (¢ + 1)/2 such points.

The Lemma follows from the above case-by-case study. [ |

Consider an odd energy level Vi, = c; we will label the center points py ¢ analogously
as in the case a = 7/2: we denote by X; the point on the corresponding irregular hexagon
defined by the lines in the above lemma, which belongs to H; and its first component is
the smallest one; that is, X1 = (—c + 1/2,4/3/2). After we denote by Xo, X3,... X3.41 the
consecutive points on the hexagon turning clockwise (see Figure |8 for instance). The set of
center points in such a level set is invariant under the action of F' and its dynamics is given

in the next result:

Proposition 16. Assume m = k+{+1. Fized Vi = c an odd number, consider the points
X1, Xo, ..., X3c41 introduced above. Then

(a) Foralli=1,2,...,3c+1, F(X;) = X; with j =i+ c mod (3c+ 1).
(b) The set {X1,Xa,...,Xsc+1} 18 a periodic orbit of period 3¢ + 1.

Proof. To prove statement (a) we are going to consider the points that are on each of the

six sides of the irregular hexagon delimited by the straight lines in Lemma

e Consider the points X1, Xo,..., X(.41)/2 which lie on y = V3(z + ¢). The map F,
sends this straight line to y = v/3(—2 + 1 + ¢) and

F(X)) = F, (—c +1/2, \/§/2) - ((c +2)/2, \/§c/2) = Xop1.

Since the distance between two consecutive points is constant and F. is an isometry
we get that Xo, X3,..., X(.41)/2 are mapped to X1, Xct3, ..., X(3c41)/2 respectively.
In particular

P(X)) = Xt (8)

foralli=1,2,..., X(ct1)/2-
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Now consider X(.i1)/2, X(c43)/25 - --» Xe41 which lie on y = V3c/2. F, sends y =
V/3¢/2 to the straight line y = v/3(z — ¢) and we already check that X(et1)2 18
mapped to X(3c11)/2- Being F; an isometry we get that X, 3)/, ..., Xc+1 are mapped
to X(3c43)/2; - - - » X2c+1 respectively. Finally, equation also holds for every ¢ =
(c+1)/2,...,c+ 1.

Following the same argument it is seen that Xci1, Xcy2,. .., X(3041)/2 are mapped to

Xoct1, X2c+2, - - - X(5¢41)/2 respectively.

The points X (3c13)/2,- -, Xoct1 lie on y = V3(z — ¢) and on H_. Then we have to
take into account F_ which maps y = v/3(z —¢) to y = —/3(z + ¢+ 1) and

F(X(3c43)2) = F- (C —-1/2, —\/52) = (—(C +2)/2, —\/§C/2> = X(5c+3)/2-

Hence F_ sends X(3.45)/2; - - - s X2c+1 10 X(5.45)/2, - - -, X3c+1 respectively and holds
for every i = (3¢ +3)/2,(3¢+5)/2,...,2c + 1.

Now consider the points of the irregular hexagon which lie on the straight line y =
—+/3¢/2, that is, Xoet1s -3 X(5c+3)/2- The map F_ sends y = —V/3¢/2 to y =
\/g(a; + ¢) and we verify that Xo.41 is sent to Xs3c41. Then Xocyo, ... ,X% are
sent to Xi,..., X(cp1y2- So F(X;) = X; with j = i 4+ cmod (3¢ + 1) for i =
2 +1,...,(5c+3)/2.

Finally, the points X(5.15)/2,---,X3c41 are on H_ and also lic on y = —/3(z +
c+1). The map F_ sends this straight line to y = 1/3¢/2 and since we already
know that that F__(X(sci5)/2) = X(c41)/2 We get that X(5.45)/2,- - -, X3et1 are sent to
X(c+3)/25 - - - » X¢ Tespectively. Again F(X;) = X; with j =i+ ¢ mod (3c+1) for every
i = (5¢+5)/2, ..., Xses1.

In order to prove (b) we proceed as in the proof of Proposition @ We use that the map F'

restricted to { X1, Xo, ..., X341} is conjugated to h : Zger1 —> Zse+1 defined by h(i) = i+c.

FPX)=X,eh(i)=ieit+cp=imod (3c+ 1)< IneN:cp=n(3c+1).

This implies that p must be a multiple of 3¢ + 1, and since p < 3¢ + 1 we get that the

minimal period is p = 3¢ + 1 as we wanted to see. [ |

4.2.2 Dynamics on the triangular tiles. The cases m =k+/{and m =k +{(+2

For the triangular tiles, a result analogous to Lemma [15]is the following. We omit all the
details.
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Lemma 17. (i) Let m = k + ¢ and the points qzo = (2k + €+ 1/2,4/3(¢ + 1/6)) . Then

(a) V(qxe) = c is an even number.

(b) The set {qrs : V(qxe) = ¢} has 3c + 1 elements. In particular there are 3¢ + 1

triangles Tj, o k4o in this energy level.

(¢) The points qre : V(qre) = c lie in the irreqular hexagon determined by the in-
tersection of the siz straight lines y = v/3(z + ¢ — 1/3),y = V/3(3c + 1)/6,y =
—V3(x—c—2/3),y = V3(x—c—1/3),y = —V/3(3¢—1)/6 and y = —/3(z+c+4/3).

(ii) Let m =k + €+ 2 and the points rpp = (2k + €+ 5/2,/3( 4+ 5/6)) . Then

(a) V(rye) = c is an even number.

(b) The set {ry¢ : V(rke) = ¢} has 3c + 1 elements. In particular there are 3¢ + 1

triangles Tj, o k40 in this energy level.

(¢) The points r e : V(rie) = c lie in the irreqular hexagon determined by the in-
tersection of the siz straight lines y = v/3(x —c+ 1/3),y = v/3(3¢c — 1)/6,y =
—V3(x+c+4/3),y = V3(x—c+1/3),y = —V/3(3c+1)/6 andy = —/3(z+c—4/3).
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Figure 9: Position of the centers g, ¢ and 744 in the level ¢ = 4.

For a fixed even number ¢ > 2 consider {qx /s : V(qie) = ¢} (vesp. {rpe: V(rpe) = c}).
We denote by Y7 (resp. Z;) the point g ¢ (resp. r ) in the corresponding irregular hexagon
defined by the lines in the above lemma, which belongs to H, and its first component is the
smallest one, that is Y1 = (—c+ 1/2,4/3/6) (resp. Z1 = (—c+1/2,5v/3/6)). We denote
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by Y2,Y3,...,Y3.41 (vesp. Za,Z3,...,Z3.+1) the consecutive points on the corresponding
hexagon turning clockwise. See Figure [9] where the center points of the energy level ¢ = 4

are shown.

Proposition 18. Consider a fized even energy level Vi, o = ¢ and the points Y1,Ya, ..., Y3.41
and Z1,Zs, ..., Zscy1 defined above. Then

(a) Foralli=1,2,...,3c+1, F(Y;) =Y with j =i+ c mod (3c+ 1) and F(Z;) = Z; with
j=i+cmod (3c+1).

(b) The set{Y1,Ya,...,Yaci1} is a periodic orbit of period 3c+1 and the set Zy, Za, . .., Z3ct1

also is a periodic orbit of period 3c + 1.

The proof follows exactly by the same arguments involved in the proofs of Lemma [5| and
Proposition @ The next corollary simply consists of gluing (in a suitable way) the two sets

given in the previous proposition, to form a single necklace with 6¢ + 2 triangular beads.

Corollary 19. Consider a fized even energy level Vi, = ¢ and denote the set of 6¢ + 2
ordered points Y1,21,Y2,Zo...,Y3c11, Z3cx1, that we will denote Wy,i = 1,2,...,6¢c + 2.
Then for alli =1,2,...,6¢c+ 2, F(W;) = W; with j =1+ 2¢ mod (6¢ + 2).

Proof of item (i) of Theorem @ Following the spirit of Definition [7} we can introduce the
concept of itinerary map for the centers py ¢, 71 and gx, in an analogous way. Then, the
proof is exactly the same proof as for item (i) of Theorem [A] It is based on the fact that all
the points in the same tile have the same itineraries of arbitrary length (a result analogous
to Lemma E[) and also on Lemma [ |

Proof of item (ii) of Theorem @ We start proving that V' = V3,5 is a first integral. As in
the proof of item (i7) of Theorem |A] we notice that since the tiles are completely contained
in H{\{y = 0} or H_ and the maps F are rotations, then F' sends tiles to tiles. Remember
that by its definition V is constant on each tile, and in particular takes the value attained
at the center point. The result follows now from the fact that in each level set, the set of
centers is invariant, see Propositions [16] and

Similarly that in the proof of Theorem @ we consider the tile T}, ¢ ,,,. We know that all
the points in the tile have the same itinerary than its center which, by Propositions
and Corollary give the discrete dynamical systems generated by the functions A given
in the statement of Theorem [B] between the corresponding Z);. Moreover, we know that
the centers are periodic with period 3¢ + 1. Hence, if I is the itinerary map associated
with the center point, that is I = F36+1|Tk,e,m’ we have that I(Tj ¢m) = Tkem- Writing
F(z,y) = A (x —sign(y),y)" where A = Ryr /3, we have I = A3t Ly = A+ for a
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certain v € R?, v # 0, which implies that I is a rotation with a unique fixed point, hence
it is the center point. Furthermore I® = Id because I = A% + (A% + A + Id)v = Id, since
A%2 4+ A +1d = 0. In summary, I is a rotation of angle a = 27/3 which implies that the
points (x,y) € Ty ¢,m which are not centers are 3-periodic for F3¢+1 and consequently, they

are (9c + 3)-periodic. |

4.3 Proof of item (iii) of Theorem B dynamics in the non zero-free set

From the previous results, we know that the non zero-free set F is formed by the borders
of the tiles, both hexagons and triangles.

Consider an energy level ¢ € Ng. Assume that ¢ is an odd number, then the level set
{V = ¢} is formed by 3¢+ 1 hexagonal tiles, whose centers X1, Xo, ..., X3.4+1 form a periodic
orbit. Denoting by H; the closure of this hexagon we also know that H; and Hs._1 intersect
y = 0 at the bottom edge while Hs, and Hj.;1 intersect y = 0 at the top edge. When c is
even, we have the points Y7,Ys, ..., Y3.41 (respectively, Z1, Za, ..., Z3c.+1). Each Y; (resp.
Z;) is the center of an upward (resp. downward) facing triangle; its closure intersects y = 0
only when i = 1 and i = (3¢ + 2)/2 (resp. i = (3¢ + 2)/2 and i = 3¢ + 1), see Figure [10]

y=0
X3c+1< * > < * >X2c

0 AN/ &
3c+1 3.

Figure 10: Position of the tiles which intersect y = 0.

We are going to call perfect triangles the ones corresponding to Y1, Ys, ..., Ys.y1. As for
perfect squares, we will prove that these figures will evolve avoiding the discontinuity of F.
They are positioned as the Figure [11|shows, the perfect triangles being the red ones, which

are precisely the ones pointing upwards. The blue ones correspond to 21, Za, ..., Z3c41.
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Figure 11: Position of the perfect triangles in red. The borders and the vertices are high-
lighted with the color of the tile having the same itinerary map. The level set {V = ¢} is

indicated in each tile.

Proof of item (iii) of Theorem @ First, we observe that the borders of the perfect triangles
(including the vertices) have the same period as the interior points which are not centers.
Indeed, set an even number ¢ € Ny and denote by 7; the closed triangle (i.e. including the
boundary with vertices) which contain the point Y;. For i # 1,3¢/2+ 1, the triangle T; does
not intersect y = 0, hence F(T;) = Tiyc. For i = 1 or i = 3¢/2 + 1, F(T;) = F(1;) which
also is Tj1.. Therefore, by continuity, the points in the boundary of T; are periodic with
period 3(3c+ 1) = 9c + 3, as for the points in the interior of T;.

Now take ¢ odd and let H; be the closed hexagon which contains X; in its interior.
Looking at Figure we see that H; has three edges which also are edges of a perfect
triangle; if we call these edges the perfect edges, we consider fI, = H;\perfect edges. (the
motivation for this name is similar that the ones of perfect triangles, or squares, and will
be apparent later). Then, .FNIZ contains three alternate edges, say l1,1ls2,l3, such that the
slopes of the straight lines which contain them are +/3, —v/3 and 0 respectively. Observe
that I3 is always at the bottom of the hexagon, hence H; is always fully contained in H,
and H_, and therefore F(H;) = F.(H;) or F(H;) = F_(H;). In any case the three edges
included in F(H;) are three alternate edges with the edge of slope 0 in the bottom of the
hexagon F(flz) That is, F(flz) = ﬁIHC foralli =1,2,...,3c+ 1. As in the previous case,
by continuity, the points in the boundary of H; are periodic with period 9c + 3, as for the

points in the interior of H;. Hence we have proved that all the points in the edges of the
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hexagons are periodic points.

It remains to consider the edges of the triangles which are not perfect. But, as can be
seen in Figure all these edges are also the edges of the contiguous hexagons, which we
have already proved that all of them are periodic. Observe also that all the vertices belong

to perfect triangles. |

4.4 Proof of item (iv) of Theorem

As in the case a = 7/2, the proof follows by replacing the value of V' by 2n or 2n + 1, for

n € Np, in the results of the previous items. We re-obtain the results of [10].

5 Proof of Theorem

5.1 Preliminaries

As in the case studied in the previous section, for each tile T} ¢ ,,, the values k, ¢, m are not

independent. Here, either m=k+{¢{—1lorm=k+form=k+{+ 1.
Lemma 20. Let T} ¢, be one tile of Uz =U.
(a) If m = k+{ then T}, ¢, is a hexagon whose center is py ¢ = (Qk + 04 1/2,4/30+ \/3/2) .

(b) If m =k+0—1o0rm=k+{+1, then Ty, is a triangle whose center is either
Ty = (2k‘ +0—1/2,4/30+ \/3/6) Or Thy = (2k‘ +0+3/2,4/30+ 5\/3/6) , respectively.

5.2 Proof of items (i) and (ii) of Theorem [C}; dynamics on the zero-free

set

These results can be proved by the same arguments that we have used in the proofs of
Theorems [A] and [B] in Sections [3] and [d] Although we will not give all the details of their
proofs, we want to highlight the main features and results that allow to give the dynamics
in this case.

Consider an even number c¢. Then, by Lemma the tiles on the level set V = ¢ are
hexagons whose centers are some of the points py , for some £, £. It can be proved that there
are 3c + 2 centers in this level. This centers lie in certain hexagons. We denote them by
{X1,Xs,..., X3.42} labeling them as in the case o = 27/3, see the Figure
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Figure 12: Position of the centers in the level ¢ = 4. Observe that the points do not belong
to the same orbit. In this case there are two different orbits. The lines linking the centers
are plotted because their expressions play a role in order to obtain the expression of the

first integrals V, as explained in Section [6]

In this case F' restricted to {Xi, Xo,..., X3.+2} is conjugated to
h : Z3cr9 —> Z3cro where h(’l) =1+ 0/2. (9)

From this equality, and using that 3¢ = —2 mod 3¢ + 2, one easily gets that when ¢/2
is even then the minimal period is 3¢/2 + 1, and that when ¢/2 is odd, then the minimal
period is 3¢ + 2. In the first case we get two periodic orbits {Xi, X3,..., X3.+1} and
{Xo, X4,..., X3.12} while in the second one all the points X;, i = 1,2,...,3c+ 1 belong to
the same periodic orbit.

To study the periodicity of the points in the hexagonal tile different from its center, for

each X; we consider its itinerary map I;.

e When ¢/2 is even, I; has the form I; = A3%/?*1 4 v (where v = X; — A3/2*1X;) and
3¢/24+1=3-2n+1 = 6n+ 1 for some n € Ny. Hence, since A% = Id, it holds that
I; = A+ v. Therefore I; restricted to the hexagon which contains X, is a rotation of
angle /3 centered at X; and every point in the hexagon is a 6-periodic point for I;.

It implies that these points are 6(3¢/2 + 1) = 9¢ + 6 periodic points for F.

e When ¢/2 is odd, [; = A3*2 +vand 3c+2=3-22n+1)+2 =6(2n+ 1) + 2 for
some n € Ng. Thus I; = A? + v, using again that A% = Id. This implies that every
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point in the hexagon is a 3(3c + 2) = 9¢ + 6 periodic point for F.

Now let ¢ be an odd number. Then the tiles in {V = ¢} are triangles whose centers are
either the points g, or the points 7, introduced in Lemma for some k,¢ € Z. The
points g ¢ lie in some lines that define a hexagon, as do the points 7. But now all these
centers belong to the same periodic orbit. To prove this, as usual, we label these points in
a clockwise direction, as Figure [13| shows for the case ¢ = 3: the red points are the points
gk € {V = 3} while the blue ones are ry ¢ € {V = 3}.

R A A A
>< 7 x X

6 8

Figure 13: Position of the centers in the level ¢ = 3. Observe that all the points belong
to the same orbit. As shown in Section [ the lines joining the centers play a role in the

determination of the first integral V' and do not represent two different orbits.

With this labeling it can be proved that F'(X;) = X; with j =4 + ¢ (mod 6¢ + 4) which
implies that the minimal period is p = 6¢ 4+ 4. To see the periodicity of the points in the
triangles different from its center we consider the itinerary function of the center X; which
has the form I; = A* + v. Then I;’ = A2 + (A* + A2 + 1d)v = Id . Arguing as before we get
that each point in the triangle different from its center is a 3(6¢ + 4) = 18¢ + 12 periodic

point.

5.3 Proof of item (iii) of Theorem dynamics on the non zero-free set

In this case, the dynamics of the points on the edges and vertices of the tiles is more
complicated than the ones found in the cases a = 7/2 and o = 27/3, so we are going to

give the details.
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5.3.1 Perfect edges and vertices

We begin by considering the levels ¢ = 4k, k € N. We already know that in these levels
there are 3¢ + 2 = 12k + 2 centers, X1, Xo,..., Xi9p42 and F(X;) = X; where j = i + 2k
mod (12k + 2). Also X1, X3,..., Xj9x+1 form a periodic orbit of period 6k + 1, as does
X, X4, ... X12k+2. Let Hj be the hexagon such that X; € H; including its boundary (hence
also its vertices). Then the hexagons that meet y = 0 are Hy, Hgr41 (its bottom edge is
contained in y = 0) and Hggr2, Hi2x+2 (its top edge is contained in y = 0). See Figure

Figure 14: Position of the hexagonal tiles of a level ¢ = 4k which intersect y = 0. The red

ones belong to the set of perfect hexagons.

Clearly for all j = 1,2,...,6k+1, F(H;) = F.(H;) = Hjor. while for j = 6k + 3,6k +
4,...,12k+1 also F'(H;) = F_(H;) = ijC mod (12k+2)"
do not satisfy this property because on the top edge of these hexagons F = F'". Then we

But the hexagons Hgg 1o, Hiog12

easily get:

Lemma 21. Assume that ¢ = 4k and consider the (closed) hexagons Hi, Hs, ..., Hiok 1.
Then for all j = 1,3,...,12k + 1 every point in H; different from its center is periodic of
period 36k + 6.

Proof. For j =1,3,...,12k + 1, the hexagons satisfy F(H;) = H, hence it

j+2k mod (12k+2)°
is easy to observe that their images are never the hexagons Hgiio and Hiorio. Then, by
continuity, every point on the boundary of H; has the same periodicity as the points inside

the hexagon (except the center). In particular, Hy, Hs, ..., Ho;+1 form an invariant set. |

As in the above sections we call Hy, Hs, ..., Hiopi1 perfect heragons and their edges
and vertices behave as the corresponding interior points, apart from the centers, that is
they are (36k + 6)— periodic. Also we will call non-perfect edges or vertices those which do

not collide with a perfect hexagon.
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T
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Figure 15: Position of the perfect hexagons in red. The level {V = ¢} is indicated in each

set.

5.3.2 Non-perfect edges

We continue the study considering the even levels of the form ¢ = 4k + 2. We know that
in these level sets there are 3c + 2 = 12k + 8 centers and that all of them belong to the

same periodic orbit. The hexagons which meet y = 0 are Hy, Hgx14, Hgr+5 and Hyopyg, see

Figure

Figure 16: Position of the hexagonal tiles of a level ¢ = 4k + 2, which intersect y = 0.

We are going to follow the dynamics of the interior of the bottom edge of Hi, that we
will denote as £ (for simplicity we will use the term edge although the two boundary points
are not included). This dynamics is, by far, the most complex of those we have studied
in this paper. Since the argument is long, we first briefly summarize it: we will show that

every point in L is (108k + 72)-periodic. The edge is rigidly mapped by by iterating F into
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the edges of the hexagons in the level 4k + 2, but also into the edges of the triangles in the
levels 4k + 1 and 4k + 3.

Indeed, after the first iteration, F'(L£) is the edge of Hogio obtained after rotating
L an angle equal to 7/3, because F(X;) = Xogio (remember that from @D, F(X;) =
Xitok+1 mod (12k+8)')
pute how many iterations we need for X; to reach Xgr,5 we ask for the minimal pos-
itive number p such that FP(X;) = Xggis. That is, FP(X;) = Xggys, or equivalently,

1+ p(2k + 1) = 6k + 5 mod (12k + 8). Thus,

We continue iterating until we find the hexagon Hggys. To com-

p=(2k 4+ 1)"1(6k + 4) = (6k + 1)(6k + 4) = 36k* + 30k + 4 = 6k + 4 mod (12k + 8).

That is FS**4(X1) = Xgpis. Now FO*+4(L) is the edge of Hg,s after rotating £
an angle equal to %’T. Hence we follow iterating until we arrive to Xjoryg, that is, three
iterates more: F3(Xgry5) = Xiopss. This implies that FO*7(L) is the edge of Higpyg
obtained after rotating £ an angle equal to /3. Now we ask for the minimal p such that

FP(X12k+8) = Xek+5. The computation gives that p = 12k + 5. Hence we can write
6k+4 3 12k+5 3
X1 5 Xoprs £ Xiopes ' Xokrs —— Xiors,
and following the edge £ we have that after 18k + 15 iterates the initial edge £ of H; is the
top edge of Hiokig, which is the bottom edge of the triangle Ty in the level 4k + 3.

Next, we follow the orbit of the centers of the triangles in the level ¢ = 4k + 3. Let
Y1,Ys, ..., Your 100 be the centers of the triangles 11,75, ..., Togr00. All of them form a
unique periodic orbit and F(Y;) = Y; where j = i + 4k + 3 mod (24k + 22), remember that
in the triangles F(Y;) =Y.

ite mod (6c+4)" The triangles with edges in the critical line are
displayed in the Figure

N [N
[ ] [ ] y:
Y24k+2M \/ Y12k+12

Figure 17: Position of the triangular tiles which intersect y = 0.

Taking into account that (4k+3)~! = 18k +15 in Zoyr, 22 and solving the corresponding

congruences we find that:

F6k+7 F6k+4 Fl8k‘+l8 F6k+4
Y1 — Youpi00 — Yiopy12 — Youryoo — Xiopyi2.
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Then we see that the bottom edge of 77 is transformed into the top edge of Tior, 12 after
36k + 33 iterates. This one also is the bottom edge of the hexagon Hgp iy in the level
¢ = 4k + 2, see again Figure and also Figure [3

Following the same procedure it can be seen that F6k+1(X6k+4) = Xgi+5 and using the
calculations made before we obtain

Xoki1 o= Xohrs ~= Xiopss ' — Xois-
Hence, the bottom edge of Hgp.4 is transformed into the top edge of Hgy.5 after 18k + 9
iterates.

The top edge of Hgi5 is also the bottom edge of one triangle whose center belongs to
the level set 4k + 1. In this level set there are 24k + 10 centers of triangles, that we denote
by Zi, 2, ..., Zaak+10, and we know that F(Z;) = Z; with j = i + 4k + 1 mod (24k + 10).
We call T1,T5, ..., Toyr110 these triangles. Specifically, the top edge of Hgy. 5 is the bottom
edge of Tiok5, see Figures [15] and

Z, /.\ /.\Z1zk+5
V4 ® * /7 y=0
24k+1M \/12k+6

Figure 18: Position of some of the triangular the tiles which intersect y = 0.

Using that in Zogr 10, (4k + 1)7! = 6k + 1 and solving the corresponding congruences
we have that
F6k+1 F6k+4 F18k+6 F6k+4
Zi9k+s — Z12k+6 — Z24k+10 — Z12k+6 — Z24k+10-
It follows that after 36k + 15 iterates, the bottom edge of 1515 is transformed in the top
edge of Tos10-

But this top edge of Toyri10 is exactly the edge £. Hence summing up the involved
iterates we have that every point in £ is a 108k + 72 periodic point. Also the same holds
for all the points belonging to the 108k + 72 edges obtained iterating £. In other words, we
get a periodic orbit of edges of period 108k + 72 and, of course, the points of £ are mapped

to themselves after these iterations.

5.3.3 Non-perfect vertices

And what about the vertices? As we will see in the proof of Theorem we only need

to prove the periodicity of the vertices in y = 0. Observe that if such a vertex belongs to
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a perfect hexagon, then we already know that it is periodic with the same period as the
interior points. If it is non-perfect, then either (a) it is mapped to a vertex colliding from
the top with a triangle of level V' = 4k + 1 and a hexagon of level V = 4k + 2, both in
H, , as the solid-circle point in Figure or (b) it collides from the top with a hexagon of
level V = 4k + 2 and triangle of level V' = 4k + 3, both in H,, as the box-shaped point in

Figure

&Oe 600

c=4k+3 c=4k+1 c=4k+1 c=4k+3

Figure 19: Position of the non-perfect vertices in y = 0. If Hj is the left non-perfect hexagon
with level V' = 4k + 2 then the vertex V;(H1) is the box-shaped point and the vertex Vs(H;)

is the solid-circle point. The perfect hexagons are the red ones.

To study the dynamics of the non-perfect vertices in y = 0, we will use the following
notation: given a hexagon H, we label its vertices as V;(H) with ¢ = 1,--- ,6 starting from

the left-bottom vertex and in clockwise sense, see Figure

V,(H) V,(H)

Figure 20: Labeling the vertices of a hexagon H

Let H; be the non-perfect hexagon at level V = 4k 4+ 2 in Q;, whose intersection with
y = 0 is its bottom edge. Then:

(a) We will follow the orbit of the point Vg(Hp) (the blue point in Figure by us-
ing the results found in Section In particular, we know that F3(Hi) = Hgpiy ,
FO** Y (Hepys) = Hepys , F3(Hepys) = Hioprs and FO*T1(Hyop g) = Hy. Therefore, we
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easily find

Fbk+1 Fb6k+1

3
Ve (H1) R Vs(Hep+a) — Va(Herys) = Vi(Heppa) —

F6k+1

3
Va(Herss) —— Vs(Hiopes) '—> Vi(Hy),

hence the point Vi(H;) is (18k + 9)-periodic.
(b) We will pursue the orbit of the point V;(H;) (the box-shaped point in Figure [19)).

F6k+1 Fbk+1 F3

F3 78
Vi(H1) — Vi(Hepa) — Vs(Herys) — Vo(Hiopts) — V3(Hi) —

Fbk+1

3
Vo(Hepva) — Vi(Herts) RN Vi(Hiokts) = Vi(Hy),
hence the point Vi (H;) is (18k + 15)-periodic.

Now we have all the ingredients to prove the main result of this section, that clearly
implies item (7i7) of Theorem

Theorem 22. Every non zero-free point of F is periodic. Furthermore:

(a) If (x,y) is a point in the edge of a perfect hexagon (which has energy level V = 4k),
then it is periodic with period 36k + 6.

(b) If (x,y) is a point in a non-perfect (open) edge of a tile then it is periodic with period
108k + 72 for some k € Ny.

(c) If (z,y) is a non-perfect vertex then it is periodic with period 18k + 9 or 18k + 15 for

some k € Ny.
Observe that any non zero-free point belongs to one of the above cases.

Proof. We already know that the set of the non zero-free points is formed by the edges and
the vertices of the hexagons and triangles introduced before.

Consider the points in one edge. Then after a finite number of iterates this edge is
transformed in one edge contained in y = 0. If this edge correspond to an edge of a perfect
hexagon with center belonging to the level 4k, every point will be 6(6k + 1)—periodic. If
not, it will be an edge of a polygon with center belonging to the level either 4k + 1,4k + 2 or
4k + 3. From the discussion above we know that every point will be (108k + 72)—periodic.

With respect to the vertices, observe that since any vertex belongs to F, after some
iterates it will be mapped to a vertex point in y = 0. Hence there are three possibilities: it
is mapped to a perfect vertex of a perfect hexagon in H,, which has energy level V = 4k
(and in this case it is periodic of period 36k + 6); or it is mapped to a vertex colliding from
the top with a triangle of level V' = 4k + 1 and a hexagon of level V' = 4k + 2 (and in this
case it is periodic with period 18k + 9); or it is mapped to a vertex colliding from the top
with a hexagon of level V = 4k + 2 and a triangle of level V' = 4k + 3. In this case it is
periodic with period 18k + 15. |
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The proof of item (iv) is a straightforward consequence of all the previous results.

6 Obtaining the first integrals

We have intuited the expressions of the first integrals after several simulations. For com-
pleteness we present in detail a three-step constructive procedure that allows to obtain the
first integrals of F' given in corresponding to a = 7/2. For the other two cases the line

of argument is the same, and the details are analogous, and we only give some comments.

Step 1. By displaying some preimages of the critical line LC_; we realize that the zero-free
set is formed by open tiles of a regular or uniform tessellation of R2. This fact is trivial
in this case where o« = 7/2 but, a priori, it was not so obvious in the cases a = 27/3 and
a = /3 studied in Sections 4] and The normal form of F given in regularizes the

tesselation.

Step 2. From preliminary numerical explorations we also realize that the centers of some
tiles form an invariant set under the dynamics of F. In the case a = 7/2 these centers were
located in the linesy = x+c¢,y = —x+c+1,y =x—cand y = —x —c—1 for a certain fixed
value ¢ € Ny, depending on the quadrant where the center points are located (see Lemma
and Figure [4] and see Lemmas [15| and [17] for the case o = 27/3).

Step 3. Isolating the value in the expression of the lines linking the centers we obtain that
¢c=y—uxfor (x,y) € Q1,c=y+x—1for (z,y) € Qg, ¢ = x —y for (z,y) € Q3 and
c=—x—y—1for (z,y) € Qu, where recall that Q;,j = 1,2,3,4, are the four quadrants of
R?2. From these expressions and taking into account that ¢ € Ny and that given a zero-free
point (z,y) the center point of its associated tile is (E(x) + 1/2,E(y) 4+ 1/2), we arrive to
the expression of the first integral V; (7, y) = max (|E(x) + E(y) + 1| — 1, |[E(x) — E(y)]) -

7 Final comments.

We have proved that for a € {n/3,7/2,27/3}, the corresponding zero-free sets U are the
union of a countable number of open sets (the tiles), hence the associated critical sets F =
R2\U are closed sets. In consequence, for any point (x,%) € R?, the distance dist ((z,y), F)

is well defined. Since F is also invariant, we have:

Remark 23. Any map with o € {7/3,7/2,2m/3} has the non-quantized continuous first
integral W (z,y) = dist ((z,y), F).

We believe that the only pointwise periodic cases for the maps F' with « € (0,27), are
the ones studied in this work as well the cases a € {47/3,37/2,57/3} (recall that we where
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motivated by the study of the maps G in with |p| < 2, which are conjugated with the
maps F in (2) with a € (0,7)). In these later cases we have observed that the quantized first
integrals given in this paper are also integrals of these maps. In particular: V5, Vor/3 and
V3 are first integrals of F' when o = 37/2,57/3 and 4 /3 respectively. However notice that
none of these last maps are conjugated to the maps considered in this work: for example,
note that the maps F' with « € {47/3,37/2,57/3} do not have fixed points since the centers
of the rotations are virtual.

The maps F belong to the class of symmetric maps studied in the relevant paper [14].
We refer the reader to this reference to learn about the general properties of the maps
F with « a general value in [0, 27)\{n/3,7/2,27/3,47/3,37/2,57/3}. For instance, in that
paper it is proved that for any o # +7 being a rational multiple of 7 there exists a sequence
of open invariant nested necklaces, that tend to infinity, each one of them being similar to
the level sets of our quantized first integrals, whose beads are polygons, and where the
dynamics of F' is given by a product of two rotations. Remarkably, although the adherence
of the union of all these invariant necklaces does not fill the full plane, it allows to prove
that all orbits of F' are bounded.
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