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Universitat Autònoma de Barcelona,
08193 Bellaterra, Barcelona, Spain

(2) Centre de Recerca Matemàtica, Campus de Bellaterra,
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Abstract

We prove a result concerning the asymptotic stability and the basin of attraction of fixed

points for block triangular maps in Rn. This result is applied to some families of discrete

dynamical systems and several types of difference equations.
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1 Introduction and main results

In this work we consider block triangular discrete dynamical systems (DDS) of the form{
xn+1 = f(xn, un),

un+1 = g(un),
(1)

where x ∈ Rm, u ∈ Rk and f : Rm × Rk → Rm, g : Rk → Rk, and m and k are positive

integers. We assume that there exists a locally attracting fiber {u = u∗}, which is invariant and

with a unique fixed point on it. The existence of this locally attracting fiber is equivalent to

the existence of a locally asymptotically stable fixed point of the subsystem un+1 = g(un). We

will assume that on this limit fiber the dynamics given by the map x→ f(x, u∗) has a globally

asymptotically stable (GAS) fixed point. The problem considered here is to give conditions on

the map f under which this fact forces the same behavior for all initial conditions in the whole

basin of attraction of this fiber, that is (x∗, u∗) is also GAS for the DDS (1) on this basin. Next

theorem is our main result. In this work ||y|| denotes any vector norm of y ∈ R`.

Theorem A. Consider the DDS (1) with f and g continuous and such that:

(a) The map f is sublinear in x, that is, there exist continuous functions M,N : Rk → R+∪{0}
such that

||f(x, u)|| ≤M(u) +N(u)||x||. (2)

(b) The point u = u∗ is a stable attractor for the DDS un+1 = g(un).

(c) N∗ := N(u∗) < 1.

(d) The function x→ f(x, u∗) is contractive. That is, there exists a positive real number L < 1

such that

||f(x, u∗)− f(y, u∗)|| ≤ L ||x− y|| for all x, y ∈ Rm. (3)

In particular, the map f(·, u∗) has a unique fixed point x = x∗, i.e. f(x∗, u∗) = x∗.

Then (x∗, u∗) is a stable attractor and any initial condition (x0, u0), with u0 in the basin of

attraction of u = u∗, is in the basin of attraction of the fixed point (x∗, u∗). Hence on this set,

(x∗, u∗) is GAS.

We stress that the above result implies that the convergence is guaranteed for all (x0, u0)

such that u0 is in the basin of attraction of u = u∗, hence it is not a local result.

It is worth to remark that it is common knowledge that the sublinearity condition given

in (2) of the above hypothesis (a) is necessary to have GAS type results. In Examples A, B of

2



Section 2 we give two DDS illustrating this fact. The first one evidences that the result can fail

if, in (2), ||x|| is replaced by ||x||1+δ for any δ > 0.

The hypotheses (b) and (c) are natural if one wants to prove that some set of initial conditions

tends to the fixed point (u∗, x∗). The hypothesis (c) and the condition (3) in (d), which is a

contractivity condition, are related with the attractivity of x = x∗ on the invariant fiber u = u∗.

In the particular case that the function f in (1) is linear in x, the hypotheses in Theorem A

can be simplified (for instance, observe that in this case, condition (2) implies (3)). We state this

particular case in next corollary, which extends the results of [8, Prop. 2] to higher dimensions.

Notice that in its statement, given a m ×m matrix M and a vector norm in Rm, ‖M‖ is the

matrix norm induced by this vector norm, which recall that it is

‖M‖ = max{‖Mx‖ : x ∈ Rm with ‖x‖ = 1} = max

{
‖Mx‖
‖x‖

: x ∈ Rm with x 6= 0

}
.

Corollary 1. Consider the DDS{
xn+1 = f0(un) + f1(un)xn,

un+1 = g(un),
(4)

where f0 : Rk → Rm, g : Rk → Rk, f1(u) is a m×m matrix, all the involved functions continuous

and such that:

(i) The point u = u∗ is a stable attractor for the DDS un+1 = g(un) in U .

(ii) The matrix f1(u∗) satisfies ||f1(u∗)|| < 1 for some matrix norm induced by a vector norm.

Then, any initial condition (x0, u0) such that u0 is in the basin of attraction of u = u∗, is in the

basin of attraction of the fixed point (x∗, u∗).

In Section 2 we prove Theorem A and Corollary 1. In Section 3 we present some examples

of application to several DDS of these mains results. Finally, in Section 4 we apply them to

different types of difference equations. In fact, to give more complete results in that section we

complement the results of Theorem A and Corollary 1 with some related results, given in our

previous work [8], which cover some cases with other simple dynamics on the attracting fiber

when n = 2. More concretely, the new dynamics considered are when the fiber is full of fixed

points, or when it is full of 2-periodic points, see Proposition 12 for more details.

2 Proof of the main results

Before proving Theorem A and Corollary 1 we present two examples which show that the

sublinearity hypothesis (2) in Theorem A is essential.
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Example A. Consider the planar DDS{
xn+1 = xn/2 + 3 |un|δ |xn|1+δ/2,
un+1 = un/2,

(5)

for δ ≥ 0. It satisfies all the hypothesis of Theorem A except those related to the sublinearity

condition, that is (a) and (c). For it we have:

Lemma 2. For any δ > 0, the fiber {u = 0} for the DDS (5) is globally attracting. On this fiber,

x∗ = 0 is a GAS fixed point, but the orbit with initial condition (x0, u0) = (1, 1) is unbounded.

Proof. It is easy to see that this orbit for n ≥ 0 is (xn, un) = (2n, 2−n), so it is unbounded.

Notice that for δ = 0 the orbit starting at (1, 1) is the same, and in this case, the DDS is

sublinear and satisfies (2), but Theorem A does not apply because N∗ = 2 > 1.

The DDS (5) is a discrete counterpart of a similar example for ordinary differential equations,{
x′ = −x+ ux2,

u′ = −u,

which has similar qualitative properties and for the initial conditions (x, u) = (x0, u0) with

x0u0 = 2 has the solution (x(t), u(t)) = (x0 exp(t), u0 exp(−t)), see [12, p. 8].

Example B. Consider the DDS
xn+1 = xn/2 + yn zn u

5
n,

yn+1 = yn/2 + 105xn zn u
3
n,

zn+1 = zn/2 + 217xn yn un

un+1 = un/2,

(6)

which can be written in the form (1) with x = (x, y, z), f(x, u) = (x/2+yzu5, y/2+105xzu3, z/2+

217xyu) and g(u) = u/2. Notice that the map f has quadratic terms in ||x||.

Proposition 3. For the DDS (6), the fiber {u = 0} is globally attracting. On this fiber, x∗ = 0

is a GAS fixed point. However, there exist initial conditions giving rise to unbounded orbits.

Proof. Observe that, trivially, u∗ = 0 is a GAS fixed point of the subsystem un+1 = g(un), and

also that x∗ = 0 a GAS fixed point of xn+1 = f(x∗, 0). Let us find some initial conditions of

unbounded orbits. The method of construction follows the ideas given in [6] to give counterex-

amples of the discrete Markus Yamabe conjecture. First we observe that the components of the

family of maps

H(x, y, z, u) =
(
x/2 + ayzu5, y/2 + bxzu3, z/2 + cxyu, u/2

)
,
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where a, b and c are real parameters to be determined, are quasi-homogeneous polynomials with

degree of homogeneity 2,3,4 and −1 respectively and weights 2,3,4 and −1 in the variables x,y,z

and u respectively. This is so, because for instance, if H1(x, y, z, u) = x/2 + ayzu5, it holds that

H1(λ
2x, λ3y, λ4z, λ−1u) = λ2H1(x, y, z, u),

and similarly with all the other components. In fact, this is the reason to choose the above

expression for the map H. By imposing that

xn = 22nx0, yn = 23ny0, zn = 24nz0 and un = 2−nu0, (7)

are solutions of system (xn+1, yn+1, zn+1, un+1) = H(xn, yn, zn, un) we arrive to the following

system of equations 
2ay0z0u

5
0 − 7x0 = 0,

2bx0z0u
3
0 − 15y0 = 0,

2cx0y0u0 − 31z0 = 0.

By solving it we get

x0 =
2aAB

7u20
, y0 =

A

u30
, z0 =

B

u40
,

where A is any solution of 4ac ξ2 − 217 = 0 and B is any solution of 4ab ξ2 − 105 = 0. Setting

a = 1, b = 105 and c = 217 we get that the DDS of the statement has unbounded solutions for

any initial condition

(x0, y0, z0, u0) =

(
± 1

14u20
,− 1

2u30
,∓ 1

2u40
, u0

)
or (x0, y0, z0, u0) =

(
± 1

14u20
,

1

2u30
,± 1

2u40
, u0

)
with u0 6= 0. In fact, these unbounded orbits are the ones given in (7) for any u0 6= 0 and

(x0, y0, z0) given above.

Let us prove our main results. We will need the following technical lemmas.

Lemma 4. Let f : Rm × Rk → R` be a continuous function. Consider K ⊆ Rm a compact set,

and fix u∗ ∈ Rk. Given any norm in R`, define

dK,u∗(u) = max
x∈K
||f(x, u)− f(x, u∗)||. (8)

Then lim
u→u∗

dK,u∗(u) = 0.

Proof. Take any norm in Rk and denote it also as || · ||. Given ε > 0, we will find δ > 0 such that

if ||u − u∗|| ≤ δ then dK,u∗(u) ≤ ε. Indeed, if we consider the continuous function f restricted

to some the compact set K × C where C = {u : ||u − u∗|| ≤ c} for some suitable c > 0, then

on this set f is uniformly continuous. Hence, for any ε > 0 there exists δ > 0 such that if
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||(x, u) − (x′, u′)|| ≤ δ then ||f(x, u) − f(x′, u′)|| ≤ ε for all (x, u), (x′, u′) ∈ K × C. Here, in

Rm ×Rk, we consider for instance ||(x, u)|| = ||x||+ ||u||. Taking x′ = x and u′ = u∗ we get the

result.

Lemma 5. Set e0 ≥ 0, 0 < L < 1 and let {αn}n be any non-negative sequence. Assume that

the sequence {en}n satisfies that for all n ≥ 0,

en+1 ≤ αn + Len.

Therefore, if lim
n→∞

αn = 0 then lim
n→∞

en = 0.

Proof. Fixed any ε > 0 it suffices to prove that there exists K = K(ε) such for all n ≥ K it

holds that en+1 < ε. Let A be such that αn < A for all n. Take N ∈ N such that

LN ≤ (1− L)ε

3A
and αn ≤

(1− L)ε

3
for n ≥ N.

Let M ∈ N be such that LM+1e0 ≤ ε/3. Then for n ≥ K := max(2N − 1,M) it holds that

en+1 ≤ αn + Len ≤ αn + Lαn−1 + L2en−1 ≤ αn + Lαn−1 + L2αn−2 + L3en−2 ≤ · · · ≤

≤ αn + Lαn−1 + L2αn−2 + · · ·+ Lnα0 + Ln+1e0 ≤

≤
(
αn + Lαn−1 + · · ·+ LN−1αn−N+1

)
+
(
LNαn−N + · · ·+ Lnα0

)
+
ε

3
≤

≤
(

1 + L+ · · ·+ LN−1
)(1− L)ε

3
+
(
LN + LN+1 + · · ·+ Ln

)
A+

ε

3
≤ ε

3
+
LNA

1− L
+
ε

3
≤ ε.

Proof of Theorem A. By hypothesis (e), the point (x∗, u∗) is a fixed point of the DDS given

by (1). Take (x0, u0) with u0 in the basin of attraction of u∗ for the DDS generated by g. The

proof that {(xn, un)}n tends to (x∗, u∗) will be done in two steps. Firstly we will show that the

sequence {xn}n is bounded and secondly we will prove its convergence.

Clearly, by hypothesis (b), given any ε > 0 it holds that ||un − u∗|| ≤ ε when n ≥ n0 for

some n0 = n0(ε). Therefore, changing the initial condition, if necessary, we can assume that

||un − u∗|| ≤ ε for all n ≥ 0. We take ε such that

N̄ := max
{u : ||u−u∗||≤ε}

N(u) < 1,

where N(u) is given in item (a). This is possible by the hypothesis in item (c) and by the

continuity of N. Similarly, define

M̄ := max
{u : ||u−u∗||≤ε}

M(u).
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Hence, applying recurrently (2) we get the boundeness of {xn}n, because

||xn+1|| ≤ M̄ + N̄ ||xn|| ≤ M̄ + N̄M̄ + N̄2||xn−1|| ≤ M̄ + N̄M̄ + N̄2M̄ + N̄3||xn−2|| ≤ · · · ≤

≤ M̄
(
1 + N̄ + N̄2 + · · ·+ N̄n

)
+ N̄n+1||x0|| ≤

M̄

1− N̄
+ ||x0||.

To prove the convergence, we define en := ||xn − x∗|| and we will show that the limit of

{en}n is 0. By using the fact that {xn}n is bounded, we can assume that it is confined in some

compact set K, and consider the function dK,u∗(u) defined in (8). By using also inequality (3)

we get that

en+1 = ||xn+1 − x∗|| = ||f(xn, un)− f(x∗, u∗)||

≤ ||f(xn, un)− f(xn, u∗)||+ ||f(xn, u∗)− f(x∗, u∗)|| ≤

≤ dK,u∗(un) + L ||xn − x∗|| = dK,u∗(un) + Len.

If we denote by αn = dK,u∗(un), by Lemma 4 we have that limn→∞ αn = 0. Hence, since L < 1,

we can apply Lemma 5 obtaining that limn→∞ en = 0, as we wanted to prove.

Proof of Corollary 1. By hypothesis the DDS (4) satisfies hypothesis (b) of Theorem A. Using

the vector norm whose induced matrix norm satisfies (ii), we get:

||f(x, u)|| ≤ ||f0(u) + f1(u)x|| ≤ ||f0(u)||+ ||f1(u)x|| ≤ ||f0(u)||+ ||f1(u)|| ||x||.

So taking M(u) = ||f0(u)|| and N(u) = ||f1(u)|| we have that the DDS (4) also satisfies the

hypothesis (a) and (c) of the main result. Also, straightforwardly one gets

||f(x, u∗)− f(y, u∗)|| = ||f1(u∗)(x− y)|| ≤ ||f1(u∗)|| ||(x− y)||,

hence hypothesis (d) of Theorem A is fulfilled. Then Corollary 1 is obtained as a direct conse-

quence of the main result.

3 Some examples of application of Theorem A

Example C. Consider the DDS defined in Q+ = {(x, u) ∈ R2, with x > 0, u > 0}:
xn+1 =

f0(un)

1 + xn
+
f1(un)xn

1 + xn
,

un+1 =
(α+ 1)un

1 + un
,

(9)

where α > 0, f0 > 0, f1 > 0 and f0(α) + f1(α) < 1. As a consequence of Theorem A we have:
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Proposition 6. Any orbit of DDS (9) with initial condition (x0, u0) ∈ Q+ converges to the

fixed point (x∗, u∗) given by

x∗ =
(
f1(α)− 1 +

√
(1− f1(α))2 + 4f0(α)

)
/2, and u∗ = α,

which is a stable attractor in Q+.

Proof. The result is a consequence of Theorem A by taking || · || = || · ||2. To see this, we check

that all the four hypotheses of the theorem are satisfied. Indeed, since we are considering x > 0,

observe that the sublinearity condition 2 stated in hypothesis (a) is straightforwardly satisfied

with M(u) = f0(u) and N(u) = f1(u).

(b) The Riccati difference equation un+1 = (α+ 1)un/(1 + un) has two fixed points at u = 0

and u∗ = α. Since α > 0, this last fixed point is GAS in R+ = {x : x > 0}.
(c) Since f0(α) + f1(α) < 1, then N∗ = f1(u∗) = f1(α) < 1.

(d) A computation shows that,

||f(x, u∗)− f(y, u∗)|| =
∣∣∣∣f0(u∗)(y − x) + f1(u∗)(x− y)

(1 + x)(1 + y)

∣∣∣∣ ≤ |f0(u∗)(y − x) + f1(u∗)(x− y)|

≤ (f0(u∗) + f1(u∗)) |x− y|.

Setting L := f0(u∗) + f1(u∗), by hypothesis we obtain L < 1, and therefore hypothesis (d) is

satisfied.

For instance, next result is a corollary of the above proposition.

Corollary 7. The DDS, defined on Q+,
xn+1 =

xn + un
2(1 + xn)

,

un+1 =
(α+ 1)un

1 + un
,

with α > 0, has the GAS fixed point (x∗, α) with x∗ = (−1 +
√

1 + 8α)/4.

Before introducing next example we need to prove a preliminary result. As usual, for x =

(x1, . . . , xm) and 1 ≤ p ∈ R,

||x||p = p
√
|x1|p + · · ·+ |xm|p, and ||x||∞ = max

i=1,...,m
|xi|.

Lemma 8. For x, y ∈ Rm set x ∗ y = (x1y1, x2y2, . . . , xmym). Then, for any vector norm || · ||
on Rm,

||x ∗ y|| ≤ R ||x||∞||y||, (10)

where R is a positive constant that depends on the norm. In particular, when the norm is any

p norm, 1 ≤ p ∈ R ∪ {∞} then R = 1, but for other norms R can be bigger that 1.
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Proof. For any p norm, 1 ≤ p ∈ R ∪ {∞} it is easy to prove that (10) holds with R = 1. For

instance, when p ≥ 1 is finite,

||x ∗ y||p ≤ p

√√√√ m∑
i=1

|xi|p|yi|p ≤ max
i=1,...,m

|xi| p
√√√√ m∑

i=1

|yi|p = ||x||∞||y||p.

Since any two norms in Rm are equivalent, taking for instance the 2-norm, there exist two

positive constants K1 and K2 such that for any y ∈ Rm, K1||y||2 ≤ ||y|| ≤ K2||y||2. Hence,

||x ∗ y|| ≤ K2||x ∗ y||2 ≤ K2||x||∞||y||2 ≤
K2

K1
||x||∞||y||,

and taking R = K2/K1 the inequality (10) follows.

Let us define a norm on R2 for which R > 1 in (10). For any x = (x1, x2), introduce the

polynomial Px(t) = x1 + x2t. Then

||x|| := ||Px|| =

√∫ 1

0
P 2
x (t) dt =

√
x21 + x1x2 + x22/3 .

where, in the above line, ||Px|| is the L2([0, 1]) norm of Px (recall that ||f ||2 =
∫ 1
0 f

2(t) dt).

Because of this definition it is easy to see that || · || is a norm on R2. For instance, ||x + y|| =

||Px+y|| = ||Px + Py|| ≤ ||Px||+ ||Py|| = ||x||+ ||y||.
By taking x = (−1, 1) and y = (−1, 2), then x ∗ y = (1, 2), ||x||∞ = 1, ||y|| =

√
1/3 and

||x ∗ y|| =
√

13/3. Hence R ≥ ||x ∗ y||/(||x||∞||y||) =
√

13 > 1, as we wanted to show.

Example D. Consider x = (x1, . . . , xm), u = (u1, . . . , uk) and the DDS given by{
xn+1 = f(xn, un) = f0(un) + f1(xn, un),

un+1 = g(un).
(11)

where f0 : Rk −→ Rm, f1(x, u) = (at1(u)F1(x), at2(u)F2(x), . . . , atm(u)Fm(x)) defined from

U × Rk, with U ⊆ Rm into Rm, g : Rk −→ Rk, all the functions differentiable, and a > 0.

Moreover, we will consider un+1 = g(un) given by a map g from Rk into itself associated to a

k-th order recurrence and having a GAS fixed point. Some concrete examples are given in [9].

We prove:

Proposition 9. Consider the DDS (11) and assume that it satisfies the following hypotheses:

(a) There exist positive constants A,B and K such that the map F (x) = (F1(x), . . . , Fm(x))

satisfies ||F (x)|| ≤ A+B||x|| and ||F (x)− F (y)|| ≤ K ||x− y|| for all x, y ∈ U ⊆ Rm.

(b) The map g can be written as g(u) = (u2, . . . , uk, h(u1, . . . , uk)), where h is such for all

u ∈ Rk,
k∑
i=1

∣∣∣∂h(u)∂ui

∣∣∣ < 1, and u∗ = (z, . . . , z) ∈ Rk, where v = z is the unique solution of the

equation h(v, . . . , v) = v.
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Then there exists a0 > 0 such that for all a < a0 it has a fixed point (x∗, u∗) which is GAS in

U × Rk.

Proof. Let us see that the system (11) satisfies the hypothesis of Theorem A. Indeed, set T (u) =

max
i=1,...,m

(|ti(u)|). Then, by using Lemma 8, we get

||f(x, u)|| ≤ ||f0(u)||+ aT (u) ||F (x)|| ≤ ||f0(u)||+ aAT (u) + aBT (u)||x||.

Hence, setting M(u) = ||f0(u)|| + aAT (u) and N(u) = aBT (u) we get that the sublinearity

hypothesis (a) of Theorem A is satisfied.

The hypotheses on the map g ensure, from [9, Thm. 1], that the fixed point u∗ of the

subsystem un+1 = g(un) is a GAS in Rk. Hence the hypothesis (b) of Theorem A holds.

Observe that N∗ = aBT (u∗). Hence taking a < a1 = (BT (u∗))
−1 the hypothesis (b) of The-

orem A is satisfied. To verify hypothesis (d), observe that by using Lemma 8, straightforwardly

one gets

||f(x, u∗)− f(y, u∗)|| ≤ aRT (u∗)||F (x)− F (y)|| ≤ aRKT (u∗)||x− y||,

for some constant R given in its statement. Hence, for all a < a2 = (RKT (u∗))
−1 hypothesis

(d) is satisfied. Thus, setting a0 = min(a1, a2), for all a < a0 there exists a fixed point (x∗, u∗)

which is a GAS in U × Rk.

Next we give concrete examples of functions F and h for which system (11) is under the

hypotheses of Proposition 9.

We start giving a family of functions F. Fix σ and τ two permutations of the set {1, 2, . . . ,m}.
Then take

F (x) =
(
e−xσ1 + xτ1 , e

−xσ2 + xτ2 , . . . , e
−xσm + xτm

)
. (12)

This map is sublinear in U = (0,∞)m because ||F (x)|| ≤ ||(1, 1, . . . , 1)|| + ||x||. Hence we can

set the constants A and B in Proposition 9 to be A = ||(1, 1, . . . , 1)|| and B = 1.

Next, if we find K > 0 such that ||DF (x)|| < K for all x ∈ U , where the norm of the matrix

is the one induced by the vector norm, then for all x, y ∈ U we have ||F (x)−F (y)|| ≤ K ||x−y||,
see for instance [14, Thm. 9.19].

In our case observe that for each row of DF (x), either there is a unique non-zero entry

−e−xσi + 1, if σi = τi; or there are only two non-zero entries e−xσi and 1, respectively if σi 6= τi.

In any case, the sum of the squares of the elements of each row is less than 4 for all x ∈ U .

Hence, by using that ||A||2 ≤
∑

i,j a
2
ij for any matrix norm ([14, Eq. (6), p. 211]), we obtain that:

||DF (x)|| ≤
√

4m = K. Therefore for this family of maps F the hypothesis (a) of Proposition 9

holds.
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Finally, a simple example of function h, that provides a g under the hypothesis (b) of Propo-

sition 9 with u∗ = (0, . . . , 0) is

h(u1, . . . , uk) =
u1 + · · ·+ uk

(k + 1)
√

1 + (u1 + · · ·+ uk)2
. (13)

This is so, because v = 0 is the unique solution of equation h(v, . . . , v) = v and

k∑
i=1

∣∣∣∣∂h(u)

∂ui

∣∣∣∣ =

k∑
i=1

1

(k + 1) (1 + (u1 + · · ·+ uk)2)
3
2

=
k

(k + 1)(1 + (u1 + · · ·+ uk)2)
3
2

≤ k

k + 1
< 1.

In summary, consider the DDS defined in (11) with the functions F and h given in (12)

and (13). Then, by Proposition 9, there is a computable value a0 such that for all a < a0, there

exists a fixed point (x∗, 0) which is a GAS in U × Rk.

Example E. In this example we study a system with a kind of diffusive coupling.

Proposition 10. Consider the DDS
xn+1 = un (a xn + b h(xn − yn)) ,

yn+1 = vn (a yn − b h(xn − yn)) ,

un+1 = g1(un, vn),

vn+1 = g2(un, vn),

(14)

where h : R → R is differentiable and being h and h′ bounded functions such that h(0) = 0.

Assume that there exists a stable attracting point (u∗, u∗) in a certain non-empty set U for the

subsystem (un+1, vn+1) = g(un, vn) with g = (g1, g2). Then, there exist a and b small enough,

such that (0, 0, u∗, u∗) is a stable attractor of (14) in R2 × U .

The explicit conditions that must satisfy the parameters a and b to guarantee the statement

of the above result are given in Remark 11 below.

Proof. To prove the above statement, we set x = (x, y) and u = (u, v) and

f(x,u) = f(x, y, u, v) = (u (a x+ b h(x− y)), v (a y − b h(x− y))) ,

and we check that the hypotheses of Theorem A, by taking the || · ||2 norm, are satisfied. For

the sake of simplicity, we skip the subscript 2 in the rest of the proof.

Let K1 and K2 be positive constants such that |h(z)| ≤ K1 and |h′(z)| ≤ K2 for all z ∈ R.

By using that x2u2 + y2v2 ≤ (x2 + y2)(u2 + v2) we have

||f(x,u)|| ≤ |a| ||(ux, vy)|| + |b|K1 ||(u,−v)|| ≤ |a| ||x|| ||u|| + |b|K1||u||.

Setting M(u) = |b|K1||u|| and N(u) = |a| ||u|| we get that condition (a) of Theorem A is

verified. Observe that hypothesis (b) is verified by the initial assumptions on the system.
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Set u∗ = (u∗, u∗). If a is such that N(u∗) = |a| ||u∗|| =
√

2 |a| |u∗| < 1 condition (c) is

satisfied.

To check condition (d) of Theorem A we use again that if ||Df(x,u∗)|| < L for all x ∈ R2

then ||f(x,u∗)− f(y,u∗)|| ≤ L ||x− y||, see [14, Thm. 9.19]. In our case

Df(x,u∗) = u∗

(
a+ bh′(x− y) −bh′(x− y)

−bh′(x− y) a+ bh′(x− y)

)
.

Hence, by using once more that ||A||2 ≤
∑

i,j a
2
ij for any matrix norm ([14, Eq. (6), p. 211]),

we have

||Df(x,u∗)|| ≤
√

2 |u∗|
√

(a+ bh′(x− y))2 + b2 (h′(x− y))2 ≤
√

2|u∗|
√
a2 + 2b2K2

2 + 2|a| |b|K2.

Setting L :=
√

2 |u∗|
√
a2 + 2b2K2

2 + 2|a| |b|K2, we get that if a and b are small enough, L < 1

and, therefore, f(x, u∗) is contractive and condition (d) of Theorem A is verified. Since f(x,u∗)

has the unique fixed point (x,u) = (0, 0, u∗, u∗), the result follows.

Remark 11. The existence of a GAS fixed point for system (14) in R × U is guaranteed if

a and b are small enough. From the above arguments, we get the following explicit necessary

conditions:

�

√
2 |a| |u∗| < 1, and

�

√
2 |u∗|

√
a2 + 2b2K2

2 + 2|a| |b|K2 < 1, where maxz∈R |h′(z)| = K2.

4 Applications to difference equations

In this section we apply our results on planar triangular maps given in Corollary 1 and an

extension given in [8] to study the asymptotic behavior of several difference equations.

First we state a general proposition that collects both results. On one side the hypotheses

are stronger, because the maps are assumed to be of class C1 and the fixed point that gives rise

to the attracting fiber is assumed to be hyperbolic, but on the other hand it covers different

situations for the dynamics on this attracting fiber. In short, before, the attracting fiber had

a single GAS fixed point, but this result also covers other cases with simple dynamics: either

when the fiber is full of fixed points or when the map restricted to it is a linear involution of

the form x → k − x, full of 2-periodic points. See [8] for the details on the reason why more

regularity for the functions, or the hyperbolicity condition, are needed.

Proposition 12. Consider the planar DDS{
xn+1 = f0(un) + f1(un)xn,

un+1 = g(un),
(15)
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with f0, f1, g ∈ C1(U), where U is a neighborhood of u = u∗ and suppose that u = u∗ is a

hyperbolic attractor of g. Then, for all initial conditions (x0, u0) with u0 ∈ U in the basin of

attraction of u = u∗, it holds:

(a) If |f1(u∗)| < 1, then lim
n→∞

(xn, un) = (f0(u∗)/(1− f1(u∗)), u∗).

(b) If f0(u∗) = 0 and f1(u∗) = 1, then lim
n→∞

(xn, un) = (`(x0, u0), u∗) for some `(x0, u0) ∈ R.

(c) If f1(u∗) = −1, then lim
n→∞

(x2n, u2n) = (`(x0, u0), u∗) and lim
n→∞

(x2n+1, u2n+1) = (f0(u∗) −
`(x0, u0), u∗) for some `(x0, u0) ∈ R.

Furthermore, in cases (b) and (c), for any point (x̄, u∗) ∈ {u = u∗} there exist initial condi-

tions (x0, u0) in the basin of attraction of the attracting fiber such that (x̄, u∗) is one of the

acummulation points of the orbit {xn, un}n≥0.

In the sequel, in each section we consider several types of difference equations for which

Proposition 12 can be applied.

4.1 Multiplicative difference equations

We consider the next family of second order multiplicative difference equations

xn+2 = xnh(xnxn+1), (16)

where h : U → R is a C1 function defined in an open set of U ⊆ R, which we call of multiplicative

type. Multiplying both sides of (16) by xn+1, and setting un = xnxn+1 we get that it can be

written as {
xn+1 = un/xn,

un+1 = un h(un).
(17)

It has the associated map F (x, u) = (u/x, u h(u)) . If we consider the map F 2(x, u) = F ◦F (x, u)

we obtain F 2(x, u) = (h(u)x, u h(u)h(uh(u))) . Hence, by calling zn = x2n and vn = u2n

(respectively zn = x2n+1 and vn = u2n+1) we get the DDS{
zn+1 = h(vn) zn,

vn+1 = vn h(vn)h(vn h(vn)),
(18)

which is of the form (15). Hence we can apply Proposition 12 to it and study the behav-

ior of (x2n, u2n) (respectively (x2n+1, u2n+1)). Notice that when we consider the initial con-

ditions (x0, u0) (resp. (x1, u1)) and we apply system (18) iteratively we get (x2n, u2n) (resp.

(x2n+1, u2n+1)).

Example F. Among all the recurrences of type (16), we are going to consider the one given by

xn+2 =
xn

a+ bxnxn+1
, ab 6= 0, a, b ∈ R. (19)
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The behavior of the solutions for the case ab = 0, a2 + b2 6= 0, is very simple. The global behav-

ior of the difference equation (19) is already completely understood after the work [5]. Their

approach is based on the computation of the explicit solutions of (19). Previously, particular

cases of this equation have been studied in several works, see [1, 2, 3, 4, 10, 15]. The reader is

also referred to [5] for a summary of these previous references concerning this equation.

Difference equation (19) has the form (16), where h(u) = 1/(a + bu). Furthermore, it

corresponds with the DDS of type (17):
xn+1xn = un,

un+1 =
un

a+ bun
.

This DDS has two invariant fibers given by {u = 0} and {u = (1 − a)/b} whose stability is

determined by the parameter a, since setting g(u) = uh(u) = u/(a + bu) we have g′(0) = 1/a

and g′((1− a)/b) = a. The global dynamics of (19) in its good set (that is, the set of all initial

conditions for which the dynamical system is well defined, [13]) G = R \ {∪n≥0g−n(−a/b)}, is

determined by the graph of g (notice that in another framework we could consider this recurrence

defined in R̄ = [−∞,∞], and then the good set would be R̄). First it is necessary to know the

dynamics of the recurrence un+1 = g(un) which, since g is a Möbius transformation, is well

known. For instance, using [7, Cor. 7] we get:

Lemma 13. Consider the real one-dimensional difference equation given by

un+1 =
un

a+ bun
, ab 6= 0. (20)

Then the points u = 0 and u = (1 − a)/b are fixed points. Furthermore setting G = R \
{∪n≥0g−n(−a/b)} we have:

(a) If |a| > 1, then for any initial condition (1− a)/b 6= u0 ∈ G, lim
n→∞

un = 0.

(b) If |a| < 1, then for any initial condition 0 6= u0 ∈ G, lim
n→∞

un = (1− a)/b.

(c) If a = −1, then for any initial condition in G, the sequence {un} is 2-periodic.

(d) If a = 1, then for any initial condition in G, lim
n→∞

un = 0.

Hence as a consequence of the above lemma and Proposition 12, as well as some other ad

hoc arguments, we obtain an alternative proof of the result in [5]:

Theorem 14. Consider the difference equation (19). Then the following statemens hold:

(a) If x0 = x1 = 0, then the sequence xn = 0 for all n ∈ N.
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(b) If |a| > 1, then for any initial condition x0, x1 such that (1−a)/b 6= x0x1 ∈ G, lim
n→∞

xn = 0.

If x0x1 = (1− a)/b then {xn} is 2-periodic.

(c) If |a| < 1, then for any initial condition x0, x1 such that x0x1 ∈ G we have: if x0x1 6= 0

and x0x1 6= (1 − a)/b then {xn} tends to a 2-periodic orbit {`0(x0, x1), `1(x1, x2)} such

that `0(x0, x1)`1(x1, x2) = (1 − a)/b; if x0x1 = (1 − a)/b then {xn} is 2-periodic; and if

x0x1 = 0 then lim
n→∞

|xn| =∞.

(d) If a = −1, then for any initial condition x0, x1 such that x0x1 ∈ G we have: if x0x1 6= 0

and x0x1 6= 2/b then the solution {xn} is unbounded; if x0x1 = 2/b then {xn} is 2-periodic;

and if x0x1 = 0 then {xn} is 4-periodic.

(e) If a = 1, then for any initial condition x0, x1 such that 0 6= x0x1 ∈ G, lim
n→∞

xn = 0. If

x0x1 = 0 then {xn} is 2-periodic.

Proof. Statement (a) is trivial. In order to prove (b) we consider |a| > 1. Then, by item (a) of

Lemma 13, u = 0 is an attractor of the recurrence (20) in G \ {u = (1 − a)/b}. We now note

that for equation (19), the DDS (18) writes as
zn+1 =

1

a+ bvn
zn,

vn+1 =
vn

a2 + b(1 + a)vn
.

(21)

Applying Proposition 12 to system (21) we deduce that zn → 0. It implies that x2n → 0 and

x2n+1 → 0 too. Hence, for each initial condition such that (1 − a)/b 6= x0x1 ∈ G lim
n→∞

xn = 0.

On the other hand, substituting x0x1 = (1− a)/b in Equation (19) we get x2 = x0, obtaining a

2-periodic orbit.

(c) If |a| < 1, then by Lemma 13 (b), for all u0 6= u∗ := (1 − a)/b the sequence un →
u∗. Since f1(u∗) = 1 and u∗ is a hyperbolic attractor of (20), we can use Proposition 12 to

assert that the sequence vn converges to a point which depend on the initial condition. Then,

if we take the initial condition (z0, v0) = (x0, u0) (resp. (z0, v0) = (x1, u1)) we have that

limn→∞ u2n = limn→∞ vn = `0(x0, u0) := `0(x0, x1) (resp. limn→∞ u2n+1 = limn→∞ vn =

`1(x1, u1) := `1(x1, x2)). Then, since un = xnxn+1, the condition `0(x0, x1) `1(x1, x2) = u∗ must

be satisfied. The other assertions of statement (c) are easily deduced from (19).

(d) If a = −1 and x0x1 6= 0 , x0x1 6= 2/b then

un+2 = un, x2n =
x0

(bx0x1 − 1)n
and x2n+1 = x1(bx0x1 − 1)n.

Hence xn is unbounded. If x0x1 = 2/b, then x2n = x0 , x2n+1 = x1 and {xn} is 2-periodic.

If x0 = 0, then x2n = 0 , x2n+1 = x1 (−1)n and {xn} is 4-periodic. If x1 = 0, then x2n =

(−1)n x0 , x2n+1 = 0 and {xn} is 4-periodic.
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(e) Similarly, if a = 1 and x0x1 = 0 then {xn} is 2-periodic. Consider now x0x1 6= 0. The

DDS (18) is 
zn+1 =

(
1

1 + bvn

)
zn,

vn+1 =
vn

1 + 2bvn
.

A straightforward computation shows that its second component has the following explicit so-

lution vn = v0/(1 + 2 b v0 n). Hence its first equation writes as

zn+1 =

(
1

1 + bv0
2 b v0 n+1

)
zn,

and we obtain the explicit solution

zn+1 =

 n∏
j=0

1

1 + bv0
2 b v0 j+1

 z0.

So if n > n0 for a suitable n0, we can take logarithms in the above equations, obtaining:

ln |zn+1| = −
n∑
j=0

ln

∣∣∣∣1 +
b v0

2 b v0 j + 1

∣∣∣∣ + ln |z0| ∼ −
n∑
j=0

∣∣∣∣ bv0
2 b v0 j + 1

∣∣∣∣ .
Observe that, for any value of b and v0 we have lim

n→∞

n∑
j=0

∣∣∣ bv0
2 b v0 j+1

∣∣∣ = +∞, hence lim
n→∞

zn = 0,

and the result follows.

The next third order difference equation can be studied using the same approach.

Example G The exact solutions of the third order difference equation

xn+3 =
xn+2xn

xn+1(a+ bxn+2xn)
,

have been obtained in [11]. A complete analysis of the dynamics associated to this equation can

be done using a similar approach as in Example F. Setting g(u) = u/(a+ bu), we have that the

subsequences {x2k} and {x2k+1} can be studied using the DDS yn+1yn = vn,

vn+1 = g2(vn) =
vn

b(a+ 1)vn + a2
,

where yn = x2n+i, and vn = u2n+i for i = 0, 1. Hence, the sequences {x2k+i} can be straightfor-

wardly characterized using the behavior of the real Möebius recurrence vn+1 = vn/(b(a+ 1)vn +

a2).
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The next example shows that the approach in this section can be applied to other families of

difference equations not in the class (16). We will not develop the analysis in this paper, since

our main purpose is only to illustrate a range of applications of our results.

Example H. Consider the difference equation

xn+2 =
xγnh(xn+1x

γ
n)

xγ−1n+1

,

with xn ∈ R+, γ ∈ R and being h a C1 positive function. By multiplying both sides of the

equation by xγn+1; setting un = xn+1x
γ
n, and taking yn = lnxn we get the DDS of type (15){
yn+1 = ln(un)− γyn,
un+1 = unh(un),

that can be studied again by using the results of Proposition 12.

4.2 Additive difference equations

In this section we consider the second order difference equations

xn+2 = −bxn+1 + g(xn+1 + bxn), (22)

the we call that we will call additive. They can be studied via the associated map F (x, y) =

(y,−by + g(y + bx)) which preserves the fibration F = {y + bx = c, c ∈ R}. So if u = u∗ is a

fixed point of h, the map preserves the fiber y + bx = u∗.

Setting un = xn+1 + bxn, we get the DDS{
xn+1 = un − bxn,
un+1 = g(un),

(23)

which is of type (15) with f0(u) = u and f1(u) ≡ −b.
It is easy to observe that if |b| > 1, or b = −1 and u∗ 6= 0 then there are iterates of map F

on the invariant fiber y+ bx = u∗ which are unbounded, and therefore these cases are out of our

scope. In fact it is straightforward to obtain the following result.

Lemma 15. Consider the difference equation (22) where g is a continuous function defined in

an open set U ⊆ R. Let u∗ ∈ U be a fixed attracting point un+1 = g(un). Then, for each initial

condition x0, x1 such that x1 + bx0 = u∗, we have lim
n→∞

xn = u∗/(1 + b) if |b| < 1; the orbits are

2-periodic if b = 1 ; are fixed points if b = −1 and u∗ = 0; and there are unbounded orbits if

b = −1 and u∗ 6= 0, or |b| > 1.

For the rest of initial conditions, the dynamics can be studied using Proposition 12, obtaining:
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Proposition 16. Consider the difference equation (22) being g ∈ C1(U) function defined in an

open set U ⊆ R. Let u∗ ∈ U be a hyperbolic attracting point of un+1 = g(un). Then, for all

initial conditions x0, x1 such that u0 = x1 + bx0 is in the basin of attraction of u = u∗, we have:

(a) If |b| < 1, then lim
n→∞

xn = u∗/(1 + b).

(b) If b = 1 then {xn} tends to a 2-periodic orbit {`(x0, x1), u∗ − `(x0, x1)}.

(c) If b = −1, u∗ = 0 then there exists `(x0, x1) such that lim
n→∞

xn = `(x0, x1).

Proof. (a) If |b| < 1, then system (23) is under the hypothesis of Proposition 12, hence

lim
n→∞

xn =
f0(u∗)

1− f1(u∗)
=

u∗

1 + b
.

To prove statement (b) we apply Proposition 12 to DDS (23). Since f1(u) = −1 we get

that lim
n→∞

(x2n, u2n) = (`(x0, u0), u∗) and lim
n→∞

(x2n+1, u2n+1) = (u∗ − `(x0, u0), u∗). Since u0 =

bx0 + x1 , `(x0, u0) = `(x0, x1).

Finally, if b = −1 and u∗ = 0, then by Proposition 12 again, lim
n→∞

xn = `(x0, x1).

Example I. In an analogous way as in the previous example, by adding axn+1 in both sides of

the difference equation

xn+2 = axn + (1− a)xn+1 + f(xn+1 + axn),

and setting un = xn+1 + axn, we get that the it can be studied via the DDS of type (15){
xn+1 = un − axn,
un+1 = un + f(un).

4.3 Other higher order difference equations

A similar approach can be applied to several higher order multiplicative-type of difference equa-

tions. Consider the k-th order difference equation:

xn+k = xn h(xnxn+1 · · ·xn+k−1). (24)

Some straightforward computations using the associated map

F (x0, . . . , xk−1) = (x1, . . . , xk−1, x0h(x0 · · ·xk−1)),

show that the sets x0x1 · · ·xk−1 = 0 and x0x1 · · ·xk−1 = u∗ for u∗ 6= 0 such that h(u∗) = 1 (if it

exists) are invariant, and also lead to the following result:
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Lemma 17. Consider the difference equation (24), being h a C1(U) function, for some open set

U ⊆ R containing 0. Given some initial conditions x0, . . . , xk−1 we have:

(i) If xi = 0 for all i = 0, . . . , k − 1 then xn = 0 for all n ∈ N.

(ii) Suppose that x0x1 · · ·xk−1 = 0 and x20 + · · · + x2k−1 6= 0. If additionally h(0) = −1 then

{xn} is 2k-periodic; if h(0) = 1 then {xn} is k-periodic; if |h(0)| < 1 then lim
n→∞

xn = 0;

and if |h(0)| > 1 then lim
n→∞

|xn| =∞.

(iii) If there exists u∗ 6= 0 in U such that h(u∗) = 1, and x0x1 · · ·xk−1 = u∗ then {xn} is

k-periodic (non-minimal).

Proposition 18. Consider the difference equation (24) being h a C1(U) function, for some open

set U ⊆ R. If 0 ∈ U and |h(0)| < 1, then u = 0 is an attractor for the DDS un+1 = unh(un), and

for all initial condition x0, . . . , xk−1 such that 0 6= u0 = x0 . . . xk−1 is in the basin of attraction

of {u = 0} we have that lim
n→∞

xn = 0.

Proof. Multiplying both sides of (24) by xn+k−1 · · ·xn+1 and setting un = xnxn+1 · · ·xn+k−1,
we obtain that equation (24) can be written as{

xn+k = h(un)xn,

un+1 = m(un) := unh(un),
=⇒

{
xn+k = h(un)xn,

un+k = g(un) := mk(un),

where mk denotes the composition of m, k times, that is mj(u) = m(mj−1(u)). From the

expressions, and after renaming zi,n = xkn+i and vi,n = ukn+i we get k systems of type (15)

associated to each initial condition (xi, ui) for i = 0, . . . , k − 1.{
zi,n+1 = h(vi,n)zi,n,

vi,n+1 = g(vi,n).
(25)

The result follows because each of these systems is under the hypotheses of Proposition 12.

Proposition 19. Consider the difference equation (24) being h a C1 function defined in an open

set U ⊆ R. Let ua ∈ U be a hyperbolic attractor of g(u) = uh(u). Then, for all initial condition

(x0, . . . , xk−1) such that ua 6= u0 = x0 · · ·xk−1 is in the basin of attraction of {u = ua} we have

that:

(a) If h(ua) = 1, then the solution of (24) tends to a k-periodic orbit.

(b) If ua = 0 and h(0) = −1, then the solution {xn} tends to a 2k-periodic orbit.

In both cases, the period is not necessarily minimal.
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Proof. We consider again the systems (25) which, under the current hypotheses, also satisfy

the ones of Proposition 12. Hence if h(ua) = 1, then for i = 0, . . . , k − 1 there exists `i

depending on xi, ui, that is depending on xi, xi+1, . . . , xi+k−1, such that each sequence {zi,n}
satisfies lim

n→∞
zi,n = `i. If h(0) = −1, then there exist `i,0 and `i,1 such that lim

j→∞
zi,2j = `i,0,

lim
j→∞

zi,2j+1 = `i,1 and (`i,0, `i,1) is a 2k-periodic orbit. Hence the result follows.

Example J. Consider the difference equation

xn+k = xn + f

(
n+k−1∑
i=n

xi

)
.

Adding the term
∑n+k−1

i=n+1 xi in both sides; setting un = xn + xn+1 + · · · + xn+k−1, and after

renaming zi,n = xkn+i and vi,n = ukn+i we get k systems of type (15) associated to each initial

condition (xi, ui) for i = 0, . . . , k − 1.{
zi,n+1 = f(vi,n) + zin ,

vi,n+1 = g(vi,n),

where here g(v) = mk(v) with m(v) = v+ f(v). Again, under suitable hypotheses we can apply

Proposition 12 to each of these DDS and obtain similar results on GAS.
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[7] A. Cima, A. Gasull, V. Mañosa. Dynamics of some rational discrete dynamical systems via

invariants. Int. J. Bifurcations and Chaos 16 (2006), 631–645.
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