Around some extensions of Casas-Alvero conjecture for non-polynomial functions

A. Cima, A. Gasull, and F. Mañosas
Departament de Matemàtiques
Universitat Autònoma de Barcelona, Barcelona, Spain
\{cima,gasull,manyosas\}@mat.uab.cat

Abstract

We show that two natural extensions of the real Casas-Alvero conjecture in the non-polynomial setting do not hold.

2010 MSC: Primary: 30C15. Secondary: 12D10; 13P15; 26C10.
Keywords: polynomial, Casas-Alvero conjecture, zeroes of functions

1 Introduction and main results

The Casas-Alvero conjecture affirms that if a complex polynomial P of degree $n>1$ shares roots with all its derivatives, $P^{(k)}, k=1,2 \ldots, n-1$, then there exist two complex numbers, a and $b \neq 0$, such that $P(z)=b(z-a)^{n}$. Notice that, in principle, the common root between P and each $P^{(k)}$ might depend on k. Casas-Alvero arrived to this problem at the turn of this century, when he was working in his paper [1] trying to obtain an irreducibility criterion for two variable power series with complex coefficients. See [2] for an explanation of the problem in his own words.

Although several authors have got partial answers, to the best of our knowledge the conjecture remains open. For $n \leq 4$ the conjecture is a simple consequence of the wonderful Gauss-Lucas Theorem ([6]). In 2006 it was proved in [5], by using Maple, that it is true for $n \leq 8$. Afterwards in [6, 7] it was proved that it holds when n is $p^{m}, 2 p^{m}, 3 p^{m}$ or $4 p^{m}$, for some prime number p and $m \in \mathbb{N}$. The first cases left open are those where $n=24,28$ or 30 . See again [6] for a very interesting survey or $[3,8]$ for some recent contributions on this question.

Adding the hypotheses that P is a real polynomial and all its n roots, taking into account their multiplicities, are real, the conjecture has a real counterpart, that also remains open. It says that $P(x)=b(x-a)^{n}$ for some real numbers a and $b \neq 0$. For this real case, the conjecture can be proved easily for $n \leq 4$, simply by using Rolle's Theorem. This tool does not suffice for $n \geq 5$, see for instance [4] for more details, or next section.

Also in the real case, in [6] it is proved that if the condition for one of the derivatives of P is removed, then there exist polynomials satisfying the remaining $n-2$ conditions, different from $b(x-a)^{n}$. The construction of some of these polynomials presented in that paper is very nice and is a consequence of the Brouwer's fixed point Theorem in a suitable context.

Finally, it is known that if the conjecture holds in \mathbb{C}, then it is true over all fields of characteristic 0 . On the other hand, it is not true over all fields of characteristic p, see again [7]. For instance, consider $P(x)=x^{2}\left(x^{2}+1\right)$ in characteristic 5 with roots $0,0,2$ and 3 . Then $P^{\prime}(x)=2 x\left(2 x^{2}+1\right)$, $P^{\prime \prime}(x)=12 x^{2}+2=2\left(x^{2}+1\right)$ and $P^{\prime \prime \prime}(x)=4 x$ and all them share roots with P.

The aim of this note is to present two natural extensions of the real Casas-Alvero conjecture to smooth functions and show that none of them holds.

Question 1. Fix $1<n \in \mathbb{N}$. Let F be a class \mathcal{C}^{n} real function such that $F^{(n)}(x) \neq 0$ for all $x \in \mathbb{R}$, and has n real zeroes, taking into account their multiplicities. Assume that F shares zeroes with all its derivatives, $F^{(k)}, k=1,2 \ldots, n-1$. Is it true that $F(x)=b(f(x))^{n}$ for some $0 \neq b \in \mathbb{R}$ and some f, a class \mathcal{C}^{n} real function, that has exactly one simple zero?

Notice that one of the hypotheses of the real Casas-Alvero conjecture can be reformulated as follows: The polynomial F shares roots with all its derivatives but one, precisely the one corresponding to its degree. Trivially, this is so, because all the derivatives of order higher than n are identically zero. The second question that we consider is:

Question 2. Fix $1<n \in \mathbb{N}$. Let F be a real analytic function that shares zeroes with all its derivatives but one, say $F^{(n)}$. Is it true that $F(x)=b(f(x))^{n}$ for some $0 \neq b \in \mathbb{R}$ and some real analytic function f, that has exactly one simple zero?

Theorem A. (i) The answer to the Question 1 is "yes" for $n \leq 4$ and " $n o$ " for $n=5$.
(ii) The answer to the Question 2 is already " $n o$ " for $n=2$.

Our result reinforces the intuitive idea that Casas-Alvero conjecture is mainly a question related with the rigid structure of the polynomials.

2 Proof of Theorem A

(i) The answer to Question 1 is "yes" for $n=2,3,4$ because the proof of the real Casas-Alvero conjecture for the same values of n, based on the Rolle's Theorem and given in [4], does not uses at all that P is a polynomial. Let us adapt it to our setting. Since $F^{(n)}$ does not vanish we know that F has exactly n real zeroes, taking into account their multiplicites. Moreover we know that F has to have at least a double zero, that without loss of generality can be taken as 0 . Next we can do a case by case study to discard all situations except that F has only a zero and it is of multiplicity n. For the sake of brevity, we give all the details only in the most difficult case, $n=4$.

Assume, to arrive to a contradiction, that $n=4, F$ is under the hypotheses of Question 1 and $x=0$ is not a zero of multiplicity four. Notice that by Rolle's theorem, for $k=1,2,3$, each $F^{(k)}$ has exactly $4-k$ zeroes, taking into account their multiplicities. Moreover, the only zero of $F^{\prime \prime \prime}$ must be one of the zeroes of F.

If $F^{\prime \prime}(0)=0$ and $F^{\prime \prime \prime}(0) \neq 0$ then F has only another zero at $x=a$ and, without loss of generality, we can assume that $a>0$. Applying three times Rolle's theorem we get that $F^{\prime \prime \prime}(b)=0$ for some $b \in(0, a)$ which is a contradiction with the hypotheses. If $F^{\prime \prime}(0) \neq 0$ then F has two more zeroes counting multiplicities. There are three possibilities. The first one is that there is $a>0$ such that $F(a)=F^{\prime}(a)=0$. In this case, applying two times Rolle's theorem we obtain that there
exist $b, c \in(0, a)$ with $F^{\prime \prime}(b)=F^{\prime \prime}(c)=0$ and they are the only zeroes of $F^{\prime \prime}$. This fact gives again a contradiction because none of them is a zero of F. The second one is that there exist $a_{1}, a_{2} \in \mathbb{R}$ with $0 \in\left(a_{1}, a_{2}\right)$ such that $F\left(a_{1}\right)=F\left(a_{2}\right)=0$. Also in this case, by applying two times Rolle's theorem we obtain that there exist $b, c \in\left(a_{1}, a_{2}\right)$ such that $0 \in(b, c)$ and $F^{\prime \prime}(b)=F^{\prime \prime}(c)=0$ giving us the desired contradiction. Lastly, assume that the other two zeroes of F are a_{1} and a_{2}, with $0<a_{1}<a_{2}$. By Rolle's Theorem the zeroes of F^{\prime} are $0, b_{1}$ and b_{2} and satisfy $0<b_{1}<a_{1}<b_{2}<a_{2}$. Then, since $F^{\prime \prime}$ has to have two zeroes, say c_{1}, c_{2}, and they satisfy $0<c_{1}<b_{1}<c_{2}<b_{2}$, the hypotheses force that $c_{2}=a_{1}$. Hence the zero of $F^{\prime \prime \prime}$ has to be between c_{1} and $c_{2}=a_{1}$, that is in particular in $\left(0, a_{1}\right)$, interval that contains no zero of F, arriving once more to the desired contradiction.

In short, we have proved for $n \leq 4$, that $F(x)=x^{n} G(x)$, for some class \mathcal{C}^{n} function G, that does not vanish. Hence

$$
F(x)=\operatorname{sign}(G(0))\left(x \sqrt[n]{\frac{G(x)}{\operatorname{sign}(G(0))}}\right)^{n}=b(f(x))^{n}
$$

where f has only one zero, $x=0$, that is simple, as we wanted to prove.
To find a map F for which the answer to Question 1 is "no" we consider $n=5$ and a configuration of zeroes of F and its derivatives proposed in [4] as the simplest one, compatible with the hypotheses of the Casas-Alvero conjecture and Rolle's Theorem. Specifically, we will search for a function F, of class at least \mathcal{C}^{5}, with the five zeroes $0,0,1, c, d$, to be fixed, satisfying $0<1<c<d$, and moreover

$$
\begin{equation*}
F^{\prime}(0)=0, \quad F^{\prime \prime}(1)=0, \quad F^{\prime \prime \prime}(c)=0, \quad F^{(4)}(1)=0 \tag{1}
\end{equation*}
$$

and such that $F^{(5)}$ does not vanish. Notice that $F^{\prime}(0)=0$ is not a new restriction.
We start assuming that $F^{(5)}(x)=r-\sin (x)$, for some $r>1$ to be determined. By imposing that conditions (1) hold, together with $F(0)=0$, we get that

$$
F(x)=\int_{0}^{x} \int_{0}^{u} \int_{1}^{w} \int_{c}^{z} \int_{1}^{y}(r-\sin (t)) \mathrm{d} t \mathrm{~d} y \mathrm{~d} z \mathrm{~d} w \mathrm{~d} u
$$

Some straightforward computations give that

$$
\begin{aligned}
F(x)= & \frac{r}{120} x^{5}-\frac{r+\cos (1)}{12} x^{4}+\frac{2 r c-2 \sin (c)+2 \cos (1) c-r c^{2}}{12} x^{3} \\
& +\frac{6 \sin (c)+2 r+9 \cos (1)-6 r c+3 r c^{2}-6 \cos (1) c}{12} x^{2}-1+\cos (x)
\end{aligned}
$$

Imposing now that $F(1)=0$ we obtain that

$$
r=\frac{5(8 \cos (1) c-41 \cos (1)-8 \sin (c)+24)}{4\left(5 c^{2}-10 c+4\right)}=R(c)
$$

Next we have to impose that $F(c)=0$. By replacing the above expression of r in F we obtain that

$$
F(c)=\frac{G(c)}{96\left(5 c^{2}-10 c+4\right)}
$$

where

$$
\begin{aligned}
G(c)= & -c^{2}\left(12 c^{4}-369 c^{3}+1437 c^{2}-1708 c+532\right) \cos (1)-8 c^{2}(c-1)(c-2)^{2} \sin (c) \\
& +\left(480 c^{2}-960 c+384\right) \cos (c)-24(c-1)\left(9 c^{4}-36 c^{3}+24 c^{2}+24 c-16\right)
\end{aligned}
$$

A carefully study shows that G has exactly one real zero $c_{1} \in(17 / 10,19 / 10)=I$, with $c_{1} \approx 1.79343096$. To prove its existence it suffices to show that

$$
\begin{aligned}
& G\left(\frac{17}{10}\right)=-\frac{99211099}{500000} \cos (1)-\frac{18207}{12500} \sin \left(\frac{17}{10}\right)+\frac{696}{5} \cos \left(\frac{17}{10}\right)+\frac{1583211}{12500}>0 \\
& G\left(\frac{19}{10}\right)=-\frac{180110481}{500000} \cos (1)-\frac{3249}{12500} \sin \left(\frac{19}{10}\right)+\frac{1464}{5} \cos \left(\frac{19}{10}\right)+\frac{3616677}{12500}<0
\end{aligned}
$$

By using Taylor's formula we know that for any $c>0, S^{-}(c)<\sin (c)<S^{+}(c)$ and $C^{-}(c)<$ $\cos (c)<C^{+}(c)$ where

$$
S^{ \pm}(c)=c-\frac{c^{3}}{3!}+\frac{c^{5}}{5!}-\frac{c^{7}}{7!}+\frac{c^{9}}{9!} \pm \frac{c^{11}}{11!} \quad \text { and } \quad C^{ \pm}(c)=1-\frac{c^{2}}{2!}+\frac{c^{4}}{4!}-\frac{c^{6}}{6!}+\frac{c^{8}}{8!} \pm \frac{c^{10}}{10!}
$$

Hence we can replace the values of the trigonometric functions in G by rational numbers to have upper or lower bounds of this function evaluated at $1,17 / 10$ or $19 / 10$. For instance,

$$
0.5403023 \approx \frac{1960649}{3628800}=C^{-}(1)<\cos (1)<C^{+}(1)=\frac{280093}{518400} \approx 0.5403028
$$

We obtain that

$$
\begin{aligned}
G\left(\frac{17}{10}\right) & >-\frac{99211099}{500000} C^{+}(1)-\frac{18207}{12500} S^{+}\left(\frac{17}{10}\right)+\frac{696}{5} C^{-}\left(\frac{17}{10}\right)+\frac{1583211}{12500} \\
& =\frac{3444600099561969856969}{49896000000000000000000}>0
\end{aligned}
$$

and

$$
\begin{aligned}
G\left(\frac{19}{10}\right) & <-\frac{180110481}{500000} C^{-}(1)-\frac{3249}{12500} S^{-}\left(\frac{19}{10}\right)+\frac{1464}{5} C^{+}\left(\frac{19}{10}\right)+\frac{3616677}{12500} \\
& =-\frac{1689627895469649855823}{16632000000000000000000}<0
\end{aligned}
$$

To show the uniqueness of the zero in I, we will prove that G is strictly decreasing in this interval. It holds that

$$
G^{\prime}(c)=T(c) \cos (1)+U(c) \sin (c)+V(c) \cos (c)+W(c)
$$

with

$$
\begin{aligned}
& U(c)=-8\left(5 c^{2}-10 c+4\right)\left(c^{2}-2 c+12\right), \quad V(c)=-8(c-1)\left(c^{4}-4 c^{3}+4 c^{2}-120\right) \\
& T(c)=-c\left(72 c^{4}-1845 c^{3}+5748 c^{2}-5124 c+1064\right), \quad W(c)=-120\left(9 c^{4}-36 c^{3}+36 c^{2}-8\right)
\end{aligned}
$$

Figure 1: Plot of a map F for which the answer to Question 1 for $n=5$ is "no".

By computing the Sturm sequences of T, U and V we can prove that $T(c)<0, U(c)<0$ and $V(c)>0$ for all $c \in I$. Hence, for $c \in I$,

$$
G^{\prime}(c)<T(c) C^{-}(c)+U(c) S^{-}(c)+V(c) C^{+}(c)+W(c)=Q(c),
$$

where

$$
\begin{aligned}
Q(c)= & \frac{72469}{64800} c-\frac{669211}{43200} c^{2}+\frac{18852329}{302400} c^{3}-\frac{8854991}{80640} c^{4}+\frac{4732471}{50400} c^{5}-\frac{532}{15} c^{6}+\frac{8}{7} c^{7}+\frac{191}{70} c^{8} \\
& -\frac{797}{1890} c^{9}-\frac{34}{405} c^{10}+\frac{1651}{103950} c^{11}+\frac{3533}{2494800} c^{12}-\frac{193}{623700} c^{13}+\frac{1}{142560} c^{14}-\frac{1}{831600} c^{15} .
\end{aligned}
$$

The Sturm sequence of Q shows that it has no zeroes in I. Moreover, it is negative in this interval, and as a consequence, G^{\prime} is also negative, as we wanted to prove.

We fix $c=c_{1}$. Then, $r=R\left(c_{1}\right)$ and F is also totally fixed. Moreover, by using the same techniques we get that $r=R\left(c_{1}\right)>R(19 / 10)>1$ and as a consequence $F^{(5)}$ does not vanish. In fact, $r=R\left(c_{1}\right) \approx 1.04591089$. Finally, F has one more real zero $d \in(33 / 10,34 / 10)$. In fact, $d \approx 3.32178369$. This F gives our desired example, see Figure 1 .
(ii) Consider $F(x)=4 x^{2}+\pi^{2}(\cos (x)-1)$ that has a double zero at 0 and also vanishes at $\pm \pi / 2$. Moreover, $F^{\prime}(x)=8 x-\pi^{2} \sin (x)$ vanishes at $x=0, F^{\prime \prime}(x)=8-\pi^{2} \cos (x)$ has no common zeroes with F and, for any $k>1,\left|F^{(2 k)}(x)\right|=\pi^{2}|\cos (x)|$ vanishes at $x=\pi / 2$ and $\left|F^{(2 k-1)}(x)\right|=\pi^{2}|\sin (x)|$ vanishes at $x=0$.

A similar example for $n=3$ is $F(x)=4 x^{3}-6 \pi x^{2}+\pi^{3}(1-\cos (x))$, that vanishes at $0, \pi$ (double zeroes) and $\pi / 2$.

Acknowledgements

The authors are supported by Ministerio de Ciencia, Innovación y Universidades of the Spanish Government through grants MTM2016-77278-P (MINECO/AEI/FEDER, UE, first and second
authors) and (MTM2017-86795-C3-1-P third author). The three authors are also supported by the grant 2017-SGR-1617 from AGAUR, Generalitat de Catalunya.

References

[1] E. Casas-Alvero. Higher order polar germs. J. Algebra 240 (2001), 326-337.
[2] Interview to E. Casas-Alvero in Spanish. https://www.gaussianos.com/la-conjetura-de-casas-alvero-contada-por-eduardo-casas-alvero/
[3] W. Castryck, R. Laterveer, M. Ounaïes. Constraints on counterexamples to the Casas-Alvero conjecture and a verification in degree 12. Mathematics of Computation 83 (2014), 3017-3037.
[4] M. Chellali. On the number of real polynomials of the Casas-Alvero type. J. of Taibah Univ. for Science 9 (2015), 351-356.
[5] G. M. Díaz-Toca, L. González-Vega. On analyzing a conjecture about univariate polynomials and their roots by using Maple. A Maple conference 2006. Proc. of the conference, Waterloo, Ontario, Canada, July 23-26, 2006. Waterloo: Maplesoft, 2006, p. 81-98.
[6] J. Draisma, J. P. de Jong. On the Casas-Alvero conjecture. Eur. Math. Soc. Newsl. 80 (2011), 29-33.
[7] H.-C. Graf von Bothmer, O. Labs, J. Schicho, C. van de Woestijne. The Casas-Alvero conjecture for infinitely many degrees. J. Algebra 316 (2007), 224-230.
[8] S. Yakubovich, Polynomial problems of the Casas-Alvero type. J. Class. Anal. 4 (2014), 97-120.

