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1 Introduction and main results

The Casas-Alvero conjecture affirms that if a complex polynomial P of degree n > 1 shares roots
with all its derivatives, P (k), k = 1, 2 . . . , n−1, then there exist two complex numbers, a and b 6= 0,
such that P (z) = b(z − a)n. Notice that, in principle, the common root between P and each P (k)

might depend on k. Casas-Alvero arrived to this problem at the turn of this century, when he was
working in his paper [1] trying to obtain an irreducibility criterion for two variable power series
with complex coefficients. See [2] for an explanation of the problem in his own words.

Although several authors have got partial answers, to the best of our knowledge the conjecture
remains open. For n ≤ 4 the conjecture is a simple consequence of the wonderful Gauss-Lucas
Theorem ([6]). In 2006 it was proved in [5], by using Maple, that it is true for n ≤ 8. Afterwards
in [6, 7] it was proved that it holds when n is pm, 2pm, 3pm or 4pm, for some prime number p
and m ∈ N. The first cases left open are those where n = 24, 28 or 30. See again [6] for a very
interesting survey or [3, 8] for some recent contributions on this question.

Adding the hypotheses that P is a real polynomial and all its n roots, taking into account their
multiplicities, are real, the conjecture has a real counterpart, that also remains open. It says that
P (x) = b(x − a)n for some real numbers a and b 6= 0. For this real case, the conjecture can be
proved easily for n ≤ 4, simply by using Rolle’s Theorem. This tool does not suffice for n ≥ 5, see
for instance [4] for more details, or next section.

Also in the real case, in [6] it is proved that if the condition for one of the derivatives of P
is removed, then there exist polynomials satisfying the remaining n− 2 conditions, different from
b(x− a)n. The construction of some of these polynomials presented in that paper is very nice and
is a consequence of the Brouwer’s fixed point Theorem in a suitable context.
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Finally, it is known that if the conjecture holds in C, then it is true over all fields of characteris-
tic 0. On the other hand, it is not true over all fields of characteristic p, see again [7]. For instance,
consider P (x) = x2(x2 + 1) in characteristic 5 with roots 0, 0, 2 and 3. Then P ′(x) = 2x(2x2 + 1),
P ′′(x) = 12x2 + 2 = 2(x2 + 1) and P ′′′(x) = 4x and all them share roots with P.

The aim of this note is to present two natural extensions of the real Casas-Alvero conjecture
to smooth functions and show that none of them holds.

Question 1. Fix 1 < n ∈ N. Let F be a class Cn real function such that F (n)(x) 6= 0 for all x ∈ R,
and has n real zeroes, taking into account their multiplicities. Assume that F shares zeroes with
all its derivatives, F (k), k = 1, 2 . . . , n− 1. Is it true that F (x) = b(f(x))n for some 0 6= b ∈ R and
some f, a class Cn real function, that has exactly one simple zero?

Notice that one of the hypotheses of the real Casas-Alvero conjecture can be reformulated
as follows: The polynomial F shares roots with all its derivatives but one, precisely the one
corresponding to its degree. Trivially, this is so, because all the derivatives of order higher than n
are identically zero. The second question that we consider is:

Question 2. Fix 1 < n ∈ N. Let F be a real analytic function that shares zeroes with all its
derivatives but one, say F (n). Is it true that F (x) = b(f(x))n for some 0 6= b ∈ R and some real
analytic function f, that has exactly one simple zero?

Theorem A. (i) The answer to the Question 1 is “yes” for n ≤ 4 and “no” for n = 5.

(ii) The answer to the Question 2 is already “no” for n = 2.

Our result reinforces the intuitive idea that Casas-Alvero conjecture is mainly a question related
with the rigid structure of the polynomials.

2 Proof of Theorem A

(i) The answer to Question 1 is “yes” for n = 2, 3, 4 because the proof of the real Casas-Alvero
conjecture for the same values of n, based on the Rolle’s Theorem and given in [4], does not uses
at all that P is a polynomial. Let us adapt it to our setting. Since F (n) does not vanish we know
that F has exactly n real zeroes, taking into account their multiplicites. Moreover we know that
F has to have at least a double zero, that without loss of generality can be taken as 0. Next we
can do a case by case study to discard all situations except that F has only a zero and it is of
multiplicity n. For the sake of brevity, we give all the details only in the most difficult case, n = 4.

Assume, to arrive to a contradiction, that n = 4, F is under the hypotheses of Question 1 and
x = 0 is not a zero of multiplicity four. Notice that by Rolle’s theorem, for k = 1, 2, 3, each F (k)

has exactly 4 − k zeroes, taking into account their multiplicities. Moreover, the only zero of F ′′′

must be one of the zeroes of F.

If F ′′(0) = 0 and F ′′′(0) 6= 0 then F has only another zero at x = a and, without loss of
generality, we can assume that a > 0. Applying three times Rolle’s theorem we get that F ′′′(b) = 0
for some b ∈ (0, a) which is a contradiction with the hypotheses. If F ′′(0) 6= 0 then F has two more
zeroes counting multiplicities. There are three possibilities. The first one is that there is a > 0
such that F (a) = F ′(a) = 0. In this case, applying two times Rolle’s theorem we obtain that there
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exist b, c ∈ (0, a) with F ′′(b) = F ′′(c) = 0 and they are the only zeroes of F ′′. This fact gives again
a contradiction because none of them is a zero of F. The second one is that there exist a1, a2 ∈ R
with 0 ∈ (a1, a2) such that F (a1) = F (a2) = 0. Also in this case, by applying two times Rolle’s
theorem we obtain that there exist b, c ∈ (a1, a2) such that 0 ∈ (b, c) and F ′′(b) = F ′′(c) = 0 giving
us the desired contradiction. Lastly, assume that the other two zeroes of F are a1 and a2, with
0 < a1 < a2. By Rolle’s Theorem the zeroes of F ′ are 0, b1 and b2 and satisfy 0 < b1 < a1 < b2 < a2.
Then, since F ′′ has to have two zeroes, say c1, c2, and they satisfy 0 < c1 < b1 < c2 < b2, the
hypotheses force that c2 = a1. Hence the zero of F ′′′ has to be between c1 and c2 = a1, that
is in particular in (0, a1), interval that contains no zero of F, arriving once more to the desired
contradiction.

In short, we have proved for n ≤ 4, that F (x) = xnG(x), for some class Cn function G, that
does not vanish. Hence

F (x) = sign(G(0))

(
x n

√
G(x)

sign(G(0))

)n

= b(f(x))n,

where f has only one zero, x = 0, that is simple, as we wanted to prove.

To find a map F for which the answer to Question 1 is “no” we consider n = 5 and a configu-
ration of zeroes of F and its derivatives proposed in [4] as the simplest one, compatible with the
hypotheses of the Casas-Alvero conjecture and Rolle’s Theorem. Specifically, we will search for a
function F, of class at least C5, with the five zeroes 0, 0, 1, c, d, to be fixed, satisfying 0 < 1 < c < d,
and moreover

F ′(0) = 0, F ′′(1) = 0, F ′′′(c) = 0, F (4)(1) = 0, (1)

and such that F (5) does not vanish. Notice that F ′(0) = 0 is not a new restriction.

We start assuming that F (5)(x) = r − sin(x), for some r > 1 to be determined. By imposing
that conditions (1) hold, together with F (0) = 0, we get that

F (x) =

∫ x

0

∫ u

0

∫ w

1

∫ z

c

∫ y

1

(
r − sin(t)

)
dt dy dz dw du.

Some straightforward computations give that

F (x) =
r

120
x5 − r + cos(1)

12
x4 +

2rc− 2 sin(c) + 2 cos(1)c− rc2

12
x3

+
6 sin(c) + 2r + 9 cos(1)− 6rc+ 3rc2 − 6 cos(1)c

12
x2 − 1 + cos(x).

Imposing now that F (1) = 0 we obtain that

r =
5
(
8 cos(1)c− 41 cos(1)− 8 sin(c) + 24

)
4(5c2 − 10c+ 4)

= R(c).

Next we have to impose that F (c) = 0. By replacing the above expression of r in F we obtain that

F (c) =
G(c)

96(5c2 − 10c+ 4)
,
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where

G(c) =− c2
(
12 c4 − 369 c3 + 1437 c2 − 1708 c+ 532

)
cos (1)− 8 c2 (c− 1) (c− 2)2 sin (c)

+
(
480 c2 − 960 c+ 384

)
cos (c)− 24 (c− 1)

(
9 c4 − 36 c3 + 24 c2 + 24 c− 16

)
.

A carefully study shows that G has exactly one real zero c1 ∈ (17/10, 19/10) = I, with
c1 ≈ 1.79343096. To prove its existence it suffices to show that

G

(
17

10

)
=− 99211099

500000
cos (1)− 18207

12500
sin

(
17

10

)
+

696

5
cos

(
17

10

)
+

1583211

12500
> 0,

G

(
19

10

)
=− 180110481

500000
cos (1)− 3249

12500
sin

(
19

10

)
+

1464

5
cos

(
19

10

)
+

3616677

12500
< 0.

By using Taylor’s formula we know that for any c > 0, S−(c) < sin(c) < S+(c) and C−(c) <
cos(c) < C+(c) where

S±(c) = c− c3

3!
+
c5

5!
− c7

7!
+
c9

9!
± c11

11!
and C±(c) = 1− c2

2!
+
c4

4!
− c6

6!
+
c8

8!
± c10

10!
.

Hence we can replace the values of the trigonometric functions in G by rational numbers to have
upper or lower bounds of this function evaluated at 1, 17/10 or 19/10. For instance,

0.5403023 ≈ 1960649

3628800
= C−(1) < cos(1) < C+(1) =

280093

518400
≈ 0.5403028.

We obtain that

G

(
17

10

)
> −99211099

500000
C+ (1)− 18207

12500
S+

(
17

10

)
+

696

5
C−

(
17

10

)
+

1583211

12500

=
3444600099561969856969

49896000000000000000000
> 0

and

G

(
19

10

)
< −180110481

500000
C− (1)− 3249

12500
S−
(

19

10

)
+

1464

5
C+

(
19

10

)
+

3616677

12500

= − 1689627895469649855823

16632000000000000000000
< 0.

To show the uniqueness of the zero in I, we will prove that G is strictly decreasing in this
interval. It holds that

G′(c) = T (c) cos (1) + U(c) sin (c) + V (c) cos (c) +W (c),

with

U(c) =− 8
(
5 c2 − 10 c+ 4

) (
c2 − 2 c+ 12

)
, V (c) = −8 (c− 1)

(
c4 − 4 c3 + 4 c2 − 120

)
,

T (c) =− c
(
72 c4 − 1845 c3 + 5748 c2 − 5124 c+ 1064

)
, W (c) = −120(9c4 − 36c3 + 36c2 − 8).

4



Figure 1: Plot of a map F for which the answer to Question 1 for n = 5 is “no”.

By computing the Sturm sequences of T,U and V we can prove that T (c) < 0, U(c) < 0 and
V (c) > 0 for all c ∈ I. Hence, for c ∈ I,

G′(c) < T (c)C−(c) + U(c)S−(c) + V (c)C+(c) +W (c) = Q(c),

where

Q(c) =
72469

64800
c− 669211

43200
c2 +

18852329

302400
c3 − 8854991

80640
c4 +

4732471

50400
c5 − 532

15
c6 +

8

7
c7 +

191

70
c8

− 797

1890
c9 − 34

405
c10 +

1651

103950
c11 +

3533

2494800
c12 − 193

623700
c13 +

1

142560
c14 − 1

831600
c15.

The Sturm sequence of Q shows that it has no zeroes in I. Moreover, it is negative in this interval,
and as a consequence, G′ is also negative, as we wanted to prove.

We fix c = c1. Then, r = R(c1) and F is also totally fixed. Moreover, by using the same
techniques we get that r = R(c1) > R(19/10) > 1 and as a consequence F (5) does not vanish.
In fact, r = R(c1) ≈ 1.04591089. Finally, F has one more real zero d ∈ (33/10, 34/10). In fact,
d ≈ 3.32178369. This F gives our desired example, see Figure 1.

(ii) Consider F (x) = 4x2 + π2(cos(x) − 1) that has a double zero at 0 and also vanishes
at ±π/2. Moreover, F ′(x) = 8x − π2 sin(x) vanishes at x = 0, F ′′(x) = 8 − π2 cos(x) has no
common zeroes with F and, for any k > 1, |F (2k)(x)| = π2| cos(x)| vanishes at x = π/2 and
|F (2k−1)(x)| = π2| sin(x)| vanishes at x = 0.

A similar example for n = 3 is F (x) = 4x3−6πx2+π3(1−cos(x)), that vanishes at 0, π (double
zeroes) and π/2.
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